ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ATTILIO IMMIRZI, GIUSEPPE ALLEGRA

Struttura cristallina dell'1, 5, 9-trans, trans, trans-ciclododecatriene

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.5, p. 338–349. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_5_338_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Chimica fisica. — Struttura cristallina dell' 1, 5, 9–trans, trans, trans–*ciclododecatriene* ^(*). Nota ^(**) di Attilio Immirzi e Giuseppe Allegra, presentata dal Socio G. Natta.

SUMMARY. — X-ray single crystal analysis of 1,5,9-*trans, trans, trans*-cyclododecatriene (CDT) has been performed by multiple film Weissenberg equi-inclination tecniques, the crystal being held under a cooled nitrogen stream. The monoclinic unit cell has the following constants: $a = 14.20 \pm 0.06$; $b = 8.41 \pm 0.03$; $c = 9.37 \pm 0.04$ Å; $\beta = 109.1 \pm 0.5^{\circ}$; Z = 4. The approximate orientation of the molecule, assumed as corresponding to **D**₃ symmetry, and the choice of the space group, have been obtained by trial methods; resulting space group is C_2/c . The structural refinement has been carried on through 4 cycles of three-dimensional least-squares method (h k l reflections with l = 0, I, 2, 3, 4); the final molecular conformation is in good agreement with the idealized **D**₃ symmetry, and is very close to the model "a priori" assumed on the basis of minimum intramolecular energy requirements. Bond lengths and angles are also close to the expected values. Both the molecular conformation and the crystal packing are very similar to those found for the Ni^o CDT complex [7].

I. PREMESSA.

Nel presente lavoro viene descritto il raffinamento tridimensionale della struttura cristallina dell' I, 5, 9-*trans, trans, trans*-ciclododecatriene [I] (CDT). Oltre che dall'interesse che attualmente presenta lo studio conformazionale delle molecole organiche a cicli medi [2-5], la nostra analisi è stata stimolata dalle forti analogie esistenti tra la struttura cristallina del CDT e quella del complesso Ni^o CDT [6, 7], che suggeriscono la possibilità di estendere a quest'ultimo alcune delle conclusioni strutturali risultanti dal presente studio.

2. PARTE SPERIMENTALE.

Cristalli di CDT sono stati ottenuti lasciando raffreddare a temperatura ambiente il composto previamente fuso: ne risultano cristalli di forma prismatica allungata, di lunghezza fino a qualche centimetro, limpidi e incolori, fondenti a 37° C. In taluni casi si è avuta la formazione di geminati, secondo la stessa geometria già osservata nel complesso con Ni^o [7]. A causa della bassa temperatura di fusione e della tendenza a sublimare rapidamente, i cristalli sono stati esaminati ai raggi X chiusi in capillare, sotto un getto di azoto raffreddato per passaggio in un serpentino di rame immerso in miscela metanolo-ghiaccio secco.

(*) Lavoro eseguito presso l'Istituto di Chimica Industriale del Politecnico e Centro Nazionale di Chimica delle Macromolecole del C.N.R., Sezione I, Milano.

(**) Pervenuta all'Accademia il 7 ottobre 1967.

Le dimensioni della cella elementare e la scelta del gruppo spaziale, risultato essere il monoclino C_2/c , sono stati argomento di un precedente lavoro [1]; per completezza riportiamo qui i valori delle costanti della cella:

$$a = 14.20 \pm 0.05 \text{ Å} \quad ; \quad b = 8.41 \pm 0.03 \text{ Å} \quad ; \quad c = 9.37 \pm 0.04 \text{ Å}$$

$$\beta = 109.1^{\circ} \pm 0.5^{\circ}; Z = 4 \quad ; \quad D_{calc} = 1.01 \text{ g/cm}^{3} \quad ; \quad D_{sper} = 0.99 \text{ g/cm}^{3}.$$

Sono state valutate, con la usuale tecnica Weissenberg e misura visuale delle intensità, 333 riflessioni osservabili su un totale di 611 riflessioni incluse nella sfera limite, entro le zone $(h \ k \ l)$, l = 0, 1, 2, 3, 4.

3. RISOLUZIONE STRUTTURALE DI PRIMA APPROSSIMAZIONE MEDIANTE METODI FOURIER.

Il modello molecolare preliminarmente assunto è indicato in fig. 1: esso ha simmetria **D**₃ e soddisfa in modo eccellente ai requisiti di stabilità conformazionale ($\sigma_{-C-C-} = -60^{\circ}$; $\sigma_{-C-C-} = 120^{\circ}$; distanze intramolecolari H···H tra atomi separati da almeno quattro legami tutte superiori a 2.3 Å). Poiché

Fig. 1. - Modello molecolare del CDT con simmetria D3.

uno dei tre assi binari della molecola deve coincidere con un asse cristallografico, solo due parametri restano da determinare: l'angolo di rotazione φ della molecola intorno a tale asse binario ($\varphi = 0^{\circ}$ se il suo piano medio è ortogonale a c) e la posizione del baricentro della molecola lungo l'asse stesso. Il valore di 9.37 Å dell'asse c suggerisce che, per ragioni di impacchettamento, φ deve

339

Fig. 2. – Impacchettamento molecolare del CDT visto lungo l'asse c (in alto) e b (in basso). Sono indicate le distanze C···C inferiori a 4,1 Å.

essere piccolo; si è assunto inizialmente $\varphi = o$ (valore finale $\approx 7^{\circ}$, fig. 2). La posizione del baricentro è stata dedotta sia da considerazioni di impacchettamento, sia mediante calcoli di fattori di struttura. Ottenuto così un primo accordo tra i fattori di struttura osservati e calcolati, abbiamo cercato di ottenere con metodi Fourier una buona immagine della molecola nella proiezione lungo c. La sovrapposizione tra le due molecole con l'asse binario a z = 1/4 (molecola A) e z = 3/4 (molecola B) (fig. 2) può essere eliminata combinando le riflessioni con indici ($h \ k \ 0$) ed ($h \ k \ 1$) in una opportuna proiezione modulata di Fourier [8]. Infatti, nell'ipotesi che il piano medio della molecola sia ortogonale a c ($\varphi = 0^{\circ}$), esso è rappresentato per la molecola A dalla seguente equazione, in coordinate frazionali:

(I)
$$z_1 = \frac{I}{4} - \left(\frac{a}{c}\cos\beta\right) \cdot x$$
.

Nel nostro caso si ha $(a|c) \cdot \cos \beta = -1/2$ per cui il piano medio della molecola risulta un piano razionale di equazione:

(2)
$$z_1 = \frac{1}{4} + \frac{1}{2}x$$
.

Poiché i piani medi delle molecole sovrapposte sono tra loro paralleli e distanti c/2 lungo la direzione di quest'asse, nell'ipotesi approssimativa che le molecole siano planari, si ottiene l'immagine generalizzata di una sola di esse utilizzando la espressione [9]:

(3)
$$\rho_{1}(x, y) = \frac{c}{2} \int_{z=0}^{z=1} \rho(x, y, z) \left[1 + \cos 2\pi (z - z_{1})\right] dz$$

che nel caso presente si riduce alla formula (cfr. espress. (I) e (5) della referenza [9]):

(4)
$$\rho_{1}(x, y) = \frac{1}{2A} \sum_{h} \sum_{k} \left[F(h \, k \, 0) \cos 2 \pi (hx + ky) + F(h \, k \, 1) \cos 2 \pi \left(\left(h + \frac{1}{2} \right) x + ky + \frac{1}{4} \right) \right] \cdot$$

In realtà, lo scostamento Δ di ciascun atomo dal piano medio, secondo il modello assunto, non supera il valore di 0.40 Å ($\Delta/c = 0.042$) ed in tali condizioni il fattore $f(z) = \frac{1}{2} [1 + \cos 2\pi (z - z_1)]$ (vedi espress. (3)) risulta compreso nei seguenti limiti:

$$0.96 \le |f(z)| \le 1.00$$
 per la molecola A
 $0.00 \le |f(z)| \le 0.04$ per la molecola B.

Si può pertanto concludere che con un errore massimo di $\sim 4\%$ la $\rho_1(x, y)$ fornisce l'immagine della sola molecola A.

La ottima risoluzione da noi ottenuta è messa in evidenza in fig. 3, dove è rappresentata a destra la proiezione ordinaria della densità elettronica ottenuta dalle riflessioni (h k o) e a sinistra la proiezione modulata $\rho_1(x, y)$ (espress. (4)).

Fig. 3. – Proiezione della densità elettronica del CDT lungo l'asse cristallografico c;
a destra la proiezione normale, a sinistra quella generalizzata. I livelli sono tracciati
a I (a tratteggio); 2, 3... el/Å² a destra; a 0,5 (a tratteggio) I, 1.5, 2... el/Å² a sinistra. La mappa è stata tracciata con tracciatore «Calcomp» [10].

4. RAFFINAMENTO TRIDIMENSIONALE.

Le coordinate ottenute sulla base del modello iniziale ed i primi calcoli di tentativo davano un fattore di disaccordo di 0.16 sulle riflessioni $(h \ k \ 0)$ ed $(h \ k \ 1)$ ma alquanto superiori $(0.20 \div 0.30)$ sulle riflessioni con l > 1. Abbiamo effettuato, partendo da queste coordinate, il raffinamento tridimensionale con il metodo dei minimi quadrati usando fattori termici individuali ed isotropi e fattori di scala diversi per le 5 zone di riflessioni. È stato usato il programma preparato da uno degli autori [11] nella versione 'matrice a blocchi'. Con quattro cicli di raffinamento si è ottenuto un fattore di disaccordo di 0.13 sulle 333 riflessioni osservate. La pesatura delle riflessioni è stata effettuata secondo la formula [12]:

 $I/w (h k l) = a + F_o + cF_o^2$

dove $a \approx 2 \cdot F_{o \text{ minimo}} e \ c \approx 2/F_{o \text{ massimo}}$.

Nel calcolo finale sono stati introdotti gli atomi di idrogeno collocandoli nelle posizioni attese alla distanza di 1.08 Å dagli atomi di carbonio rispettivi [13].

Coordinate e fattori termici finali sono riportati in Tabella I insieme alle rispettive deviazioni standard. La lista dei fattori di struttura osservati e calcolati è riportata in Tabella II.

TABELLA I.

Coordinate frazionali e fattori termici isotropi con relative deviazioni standard.

	· · ·					······		
	x a	у/b	z/c	${\rm B}~({\rm \AA}^2)$	$\sigma(x)(\text{\AA})$	σ (y) (Å)	$\sigma(z)(\text{\AA})$	$\sigma(B)({\rm \AA}^2)$
C(I)	o .o388	0.1209	0.2281	3.10	0.0057	0.0058	0.0092	0.12
C(2)	0.1427	-0.1195	0.3286	3.40	0.0060	0.0062	0.0096	0.13
C(3)	0.1964	0.0346	0.3111	3.29	0.0059	0.0060	0.0091	0.12
C(4)	0.1484	0.1765	0.3523	3.35	0.0062	0.0060	0.0096	0.13
C(5)	0.1067	0.2919	0.2564	4.04	0.0063	0.0062	0.0097	0.14
C(6)	0.0550	0.4312	0.2970	3.50	0.0064	0.0069	0.0103	0.14
$H(I)\ldots$	0.0260	-0.1220	0.1079	3.50				
H(2)*	0.1442	-0.1292	0.4442	3.50				·
H(2)	0.1806	-0.2199	0.3011	3.50				
H(3)	0.2722	0.0286	0.3842	3.50				
H(3)*	0.1942	0.0456	0.1952	3.50		an a		
H(4)	0.1476	0.1858	0.4668	3.50				
H(5)	0.1101	0.2853	0.1431	3.50				
H(6)*	0.0625	0.4245	0.4153	3.50				
H(6)	0.0833	0.5398	0.2756	3.50				

TABELLA II.

h k l	Fo Fc	h k l	F _o F _c	h k l	Fo Fc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Fattori di struttura osservati e calcolati; i valori sono in (elettroni/cella)×10.

Segue: TABELLA II.

·											
h	k l	Fo	$\mathbf{F_{c}}$	h	k l	Fo	$\mathbf{F_{c}}$	h	k l	Fo	Fc
$\begin{array}{c} 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ -2 \\ -4 \\ -6 \\ 8 \\ -10 \\ -12 \\ -14 \\ 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ -11 \\ -13 \\ -7 \\ 9 \\ -11 \\ -13 \\ -7 \\ 9 \\ -11 \\ -13 \\ -7 \\ 9 \\ -11 \\ -13 \\ -7 \\ -9 \\ -11 \\ -13 \\ -7 \\ -9 \\ -10 \\ -1 \\ -13 \\ -7 \\ -9 \\ 0 \\ 2 \\ 4 \\ -6 \\ 2 \\ -4 \\ -6 \\ -2 \\ -4 \\ -2 \\ -4 \\ -6 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -2$	$ \begin{array}{c} 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 6 & 1 \\ 7 & 1 \\ 1 & 1 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145\\ -208\\ 65\\ 75\\ 39\\ -14\\ 32\\ 77\\ -28\\ -95\\ 136\\ -26\\ 20\\ 77\\ -28\\ -95\\ 136\\ -26\\ 20\\ 25\\ -62\\ 20\\ 77\\ -302\\ 126\\ 25\\ -62\\ 20\\ 77\\ -302\\ -302\\ 126\\ 25\\ -62\\ 20\\ 77\\ -39\\ -302\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 86\\ -16\\ -7\\ -22\\ 80\\ -7\\ -45\\ 39\\ 98\\ 44\\ -87\\ -30\\ 66\\ 61\\ 2\\ -31\\ 49\\ -74\\ -12\\ 532\\ -116\\ -85\\ 243\\ 19\\ 22\\ 21\\ 70\\ -76\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7$	$ \begin{array}{c} -4 \\ -8 \\ -8 \\ -10 \\ -12 \\ -14 \\ -16 \\ -13 \\ -17 \\ -9 \\ -11 \\ -13 \\ -57 \\ -9 \\ -9 \\ -11 \\ -13 \\ -57 \\ -9 \\ -11 \\ -57 \\ -$	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 553\\ 172\\ 66\\ 87\\ 271\\ 111\\ <70\\ <38\\ 337\\ 545\\ <80\\ <76\\ 491\\ 423\\ 122\\ 89\\ <84\\ <78\\ <491\\ 423\\ 122\\ 89\\ <80\\ 76\\ 77\\ 118\\ 121\\ <84\\ 83\\ 70\\ 309\\ 314\\ 310\\ 17\\ <84\\ 266\\ <58\\ 284\\ <72\\ <84\\ <72\\ 284\\ <74\\ <284\\ <74\\ <284\\ <74\\ <284\\ <74\\ <284\\ <74\\ <284\\ <74\\ <284\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <84\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <76\\ <252\\ <76\\ 336\\ 298\\ <76\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <76\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <74\\ <252\\ <76\\ 336\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <76\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 298\\ <36\\ <36\\ 36\\ <36\\ 298\\ <36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ <36\\ 36\\ 36\\ <36\\ 36\\ <36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ $	$\begin{array}{c} 602\\ 187\\59\\ 73\\ 318\\ 113\\ -68\\ 43\\ 364\\ 17\\ -624\\ -56\\ 27\\ 32\\ 15\\ 33\\ -558\\ 524\\ 129\\ -39\\ -21\\ 14\\ 91\\ -71\\ -109\\ -21\\ 14\\ 91\\ -71\\ -109\\ -39\\ 21\\ 14\\ 91\\ -71\\ -109\\ -39\\ 256\\ -28\\ -293\\ 326\\ 8\\ -40\\ -79\\ -235\\ -28\\ -40\\ -79\\ -235\\ -28\\ -40\\ -79\\ -235\\ -28\\ -40\\ -79\\ -235\\ -28\\ -40\\ -79\\ -25\\ -262\\ -10\\ 70\\ -59\\ -271\\ 432\\ -286\\ 62\\ -79\\ -278\\ -286\\ 62\\ -79\\ -278\\ -286\\ 62\\ -79\\ -278\\ -286\\ 62\\ -79\\ -278\\ -29\\ -262\\ -10\\ -79\\ -262\\ -10\\ -79\\ -262\\ -10\\ -79\\ -262\\ -10\\ -79\\ -262\\ -10\\ -79\\ -262\\ -10\\ -79\\ -262\\ -10\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28$	$\begin{array}{c} 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ -2 \\ -4 \\ -6 \\ -8 \\ -10 \\ -12 \\ -14 \\ -16 \\ 13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -13 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ 11 \\ -3 \\ -5 \\ -7 \\ 9 \\ -11 \\ -3 \\ -5 \\ -7 \\ -9 \\ -11 \\ -5 \\ -7 \\ -9 \\ -11 \\ -5 \\ -7 \\ -9 \\ -11 \\ -5 \\ -7 \\ -9 \\ -11 \\ -5 \\ -7 \\ -9 \\ -11 \\ -5 \\ -7 \\ -7 \\ -7 \\ -5 \\ -7 \\ -7 \\ -7$	4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	$\begin{matrix} 105\\ 200\\ 85\\ 143\\ 81\\ 156\\ 81\\ 239\\ 81\\ 156\\ 81\\ 239\\ 81\\ 156\\ 82\\ 81\\ 156\\ 84\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 84\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82$	$\begin{array}{c} 100\\ 210\\60\\165\\ 39\\18\\ 333\\ 26\\ -135\\ 88\\ -135\\ 88\\ -155\\ -135\\ 88\\168\\ -22\\ 28\\59\\ 123\\ 40\\25\\41\\15\\190\\23\\25\\41\\15\\190\\23\\25\\41\\26\\39\\57\\26\\78\\22\\$

24. — RENDICONTI 1967, Vol. XLIII, fasc. 5.

Segue: TABELLA II.

h k l	Fo	Fc	h k l	Fo	$\mathbf{F_{c}}$	h k l	Fo	Fc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -77 \\ -29 \\ 38 \\ 14 \\ -2 \\ 4 \\ 10 \\ 30 \\ 16 \\ -53 \\ -40 \\ 11 \\ -13 \\ -30 \\ -68 \\ -29 \\ 16 \\ -21 \\ -77 \\ -19 \\ -30 \\ -58 \\ -21 \\ -17 \\ 27 \\ -30 \\ -58 \\ -21 \\ -17 \\ 27 \\ -30 \\ -58 \\ -151 \\ -222 \\ 131 \\ -33 \\ -98 \\ 45 \\ 188 \\ 89 \\ -44 \\ -10 \\ 18 \\ -98 \\ -423 \\ -333 \\ -333 \\ -362 \\ 136 \\ 13 \\ 128 \\ -333 \\ -137 \\ -65 \\ -125 \\ -$	$ \begin{array}{c} -15 & 3 & 3 \\ -17 & 3 & 3 & 3 \\ 2 & 4 & 3 & 3 \\ 4 & 4 & 3 & 3 \\ 2 & 4 & 3 & 3 \\ -2 & 4 & 4 & 3 & 3 \\ -4 & 6 & 4 & 3 & 3 \\ -16 & 4 & 4 & 4 & 3 \\ -16 & 4 & 4 & 4 & 3 \\ -16 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 & 4 \\ -16 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & 4 \\ -18 & 4 & 4 & 4 & $	$ \begin{array}{c} < 50 \\ < 34 \\ < 448 \\ 611 \\ 2265 \\ 970 \\ 1143 \\ < 842 \\ < 384 \\ 2265 \\ 970 \\ 143 \\ < 842 \\ < 556 \\ < 308 \\ < 484 \\ < 976 \\ < 840 \\ < 1237 \\ < 143 \\ < 143 \\ < 143 \\ < 143 \\ < 143 \\ < 143 \\ < 143 \\ < 143 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < 144 \\ < $	$\begin{array}{c} -2 \\ 5 \\ 158 \\ 36 \\ -53 \\ -47 \\ 159 \\ -234 \\ -288 \\ 93 \\ -70 \\ 100 \\ 147 \\ -45 \\ -15 \\ 65 \\ 5 \\ -1 \\ 125 \\ -15 \\ 65 \\ -1 \\ 252 \\ -18 \\ 78 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -44 \\ -93 \\ -32 \\ -45 \\ -61 \\ 231 \\ 299 \\ -108 \\ -67 \\ -5 \\ -33 \\ -14 \\ 97 \\ -83 \\ -8 \\ 1 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} < 42 \\ < 28 \\ < 44 \\ < 57 \\ < 40 \\ < 32 \\ < 40 \\ < 34 \\ < 57 \\ 251 \\ 116 \\ 98 \\ 255 \\ < 28 \\ 87 \\ 211 \\ 256 \\ < 273 \\ 253 \\ 269 \\ < 273 \\ 253 \\ 269 \\ < 273 \\ 253 \\ 269 \\ < 273 \\ 255 \\ 269 \\ < 273 \\ 255 \\ 269 \\ < 273 \\ 255 \\ 269 \\ < 273 \\ 255 \\ 269 \\ < 273 \\ 255 \\ 269 \\ < 28 \\ 87 \\ 211 \\ 256 \\ < 28 \\ 87 \\ 211 \\ 256 \\ < 28 \\ 87 \\ 215 \\ 255 \\ 72 \\ 38 \\ 309 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 28 \\ 87 \\ 255 \\ 72 \\ 38 \\ 309 \\ < 28 \\ < 67 \\ 80 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 40 \\ < 4$	$\begin{array}{c} 3^2 \\ -25 \\ -45 \\ 13 \\ 10 \\ -50 \\ -82 \\ 64 \\ 28 \\ -50 \\ -11 \\ -58 \\ 27 \\ 99 \\ -146 \\ 244 \\ -160 \\ -91 \\ -51 \\ -131 \\ -248 \\ -56 \\ -6 \\ -51 \\ -131 \\ -244 \\ -160 \\ -91 \\ -251 \\ -76 \\ -269 \\ 301 \\ 326 \\ -45 \\ 27 \\ -269 \\ 301 \\ -251 \\ -76 \\ -269 \\ 301 \\ -251 \\ -76 \\ -269 \\ -269 \\ -27 \\ -55 \\ -244 \\ -155 \\ -244 \\ -155 \\ -244 \\ -155 \\ -269 \\ -27 \\ -63 \\ -62 \\ -11 \\ -54 \\ -16 \\ -79 \\ -70 \\ -30 \\ -80 \\ -76$

Segue: TABELLA II.

h	k l	Fo	Fc	h	k l	Fo	Fc	h	k l	Fo	$\mathbf{F}_{\mathbf{c}}$
$\begin{array}{c} -12 \\ -14 \\ -16 \\ 18 \\ 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ -11 \\ -3 \\ -5 \\ -7 \\ -9 \\ -9 \\ -11 \\ -13 \\ -15 \\ -17 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ -2 \\ -4 \\ -6 \\ -8 \\ -10 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 41\\ < 40\\ < 34\\ 18\\ 73\\ 136\\ 197\\ 37\\ 126\\ < 36\\ 32\\ 362\\ < 28\\ 212\\ 162\\ 125\\ 86\\ < 24\\ < 32\\ < 34\\ 154\\ 99\\ 97\\ < 36\\ < 28\\ 167\\ 183\\ 226\\ < 38\\ < 40\\ \end{array}$	$\begin{array}{c} 32\\ -19\\ 15\\ -21\\ 88\\ -125\\ -70\\ 63\\ -380\\ 33\\ 197\\ -75\\ 132\\ 95\\ -45\\ -12\\ 28\\ -55\\ -152\\ -127\\ 99\\ 36\\ -35\\ -152\\ -127\\ 99\\ 36\\ -35\\ -131\\ -166\\ 209\\ 20\\ 33\\ \end{array}$	$\begin{array}{c} -12 \\ -14 \\ -16 \\ 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ -1 \\ -3 \\ -5 \\ -7 \\ -9 \\ -11 \\ -13 \\ -15 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ -2 \\ -4 \\ -6 \\ 8 \\ 10 \\ -2 \\ -4 \\ -6 \\ 8 \\ 10 \\ -12 \\ -14 \\ 1 \\ 1 \\ \end{array}$	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\$	$\begin{array}{c} 183\\ < 36\\ < 28\\ 197\\ < 40\\ < 42\\ 700\\ < 36\\ < 28\\ 129\\ < 36\\ 181\\ 126\\ 83\\ < 40\\ < 36\\ < 28\\ < 40\\ < 6\\ < 28\\ < 40\\ < 40\\ < 40\\ < 40\\ < 40\\ < 40\\ < 42\\ < 40\\ < 36\\ < 28\\ < 42\\ < 42\\ < 40\\ < 36\\ < 28\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < 42\\ < $	$ \begin{array}{c} 156\\ 12\\ -19\\ -166\\ 11\\ -34\\ -95\\ 6\\ 0\\ -99\\ 28\\ 171\\ 91\\ -59\\ 26\\ 35\\ 23\\ -88\\ -11\\ 92\\ -3\\ 1\\ 32\\ -3\\ -50\\ -64\\ 2\\ 68\\ 25\\ 1\\ 38\\ \end{array} $	$ \begin{vmatrix} 3 \\ 5 \\ 7 \\ 9 \\ -1 \\ -3 \\ -5 \\ -7 \\ -9 \\ -11 \\ -13 \\ 0 \\ 2 \\ 4 \\ -6 \\ -8 \\ -10 \\ 1 \\ -3 \\ 5 \\ -1 \\ -3 \\ -5 \\ -7 \\ -9 \\ 0 \\ -2 \\ -4 \end{vmatrix} $	7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	$< 40 \\ < 38 \\ < 24 \\ 142 \\ 95 \\ < 42 \\ < 40 \\ < 38 \\ < 40 \\ < 38 \\ < 40 \\ < 38 \\ < 40 \\ < 38 \\ < 34 \\ < 40 \\ < 38 \\ < 34 \\ < 22 \\ < 32 \\ < 22 \\ < 32 \\ < 32 \\ < 22 \\ < 32 \\ < 22 \\ < 22 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 20 \\ < 2$	$\begin{array}{c}18\\30\\ -27\\ 129\\ 78\\ -46\\ -30\\ 26\\ -29\\ -80\\ 21\\ 38\\ 74\\ 89\\ -29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ 29\\ -38\\ -30\\ -38\\ -38\\ -30\\ -38\\ -38\\ -30\\ -38\\ -38\\ -38\\ -30\\ -38\\ -38\\ -38\\ -38\\ -38\\ -38\\ -38\\ -38$

5. GEOMETRIA MOLECOLARE ED IMPACCHETTAMENTO.

Nella fig. 4 sono indicate le distanze interatomiche e gli angoli di valenza; gli angoli di rotazione interna sono riportati in Tabella III. Le distanze di legame semplice C(1)—C(2), C(3)—C(4), C(5)—C(6), che interessano atomi di carbonio insaturi sono sistematicamente più corte (~ 0.05 Å) delle distanze C(2)—C(3) e C(6)—C(6)' tra atomi di carbonio saturi in buon accordo con quanto osservato in casi analoghi [14].

La fig. 2 mostra l'impacchettamento molecolare del CDT; sono indicate tutte le distanze C · · C inferiori a 4.1 Å. Per contatti tra gruppi saturi (--CH₂---) la minima distanza è di 3.96 Å in accordo con il valore (2.0 Å) generalmente accettato per il raggio di Van der Waals di tali composti [15]. Le distanze tra gruppi saturi (--CH₂---) ed insaturi (--CH=-) scendono fino a 3.70 Å e quelle tra gruppi (--CH=-) fino a 3.53 Å. Quest'ultimo valore è osservato solo in un caso nel quale le direzioni C---H sono all'incirca ortogonali alla congiungente la coppia di atomi di carbonio. La minima distanza intermole-

347

Fig. 4. – Modello molecolare del CDT quale risulta dal raffinamento strutturale, in vista assonometrica. Le deviazioni «standard» sono, mediante: per le distanze C—C $\sigma=0.015$ Å; per gli angoli di valenza C—C $\sigma=0.3^{\circ}$.

colare $H \cdots H$ risulta 2.33 Å. Mentre i contatti $C \cdots C$ relativi a molecole sovrapposte lungo c non sono significativi (> 4.6 Å), le minime distanze $H \cdots H$ si osservano appunto in questo caso.

TABELLA	Ι	I	Ι.	
---------	---	---	----	--

Angoli di rotazione interna ($\sigma_{\text{medio}} \approx 0, 8^{\circ}$).

	1
C(2)' - C(I)' - C(I) - C(2)	176.20
C(I)'-C(I)-C(2)-C(3)	115.30
C(I) - C(2) - C(3) - C(4)	61.30
C(2) - C(3) - C(4) - C(5)	117.50
C(3) - C(4) - C(5) - C(6)	177.50
C(4)C(5)C(6)C(6)'	116.20
C(5) - C(6) - C(6)' - C(5)'	66.7°

La relazione tra le costanti della cella $(a/c) \cos \beta = -1/2$, che è tornata molto utile alla risoluzione strutturale, ha un significato ben preciso. Essa consente (vedi fig. 2 in basso) alle molecole con asse binario a x = 0 di intercalarsi simmetricamente rispetto alle molecole con assi binari a $x = \pm 1/2$.

6. CONCLUSIONI.

Come previsto dall'esame del modello inizialmente adottato, i parametri conformazionali della molecola sono prossimi ai valori di minima energia interna. Inoltre i parametri geometrici della molecola (vedi fig. 4 e Tabella III) risultano in ottimo accordo con il gruppo D_3 (simmetria idealizzata; vedi fig. 1).

Le deviazioni degli angoli torsionali dai valori « gauche » (\pm 60°) e « skew » $(\pm 120^{\circ})$ sono molto piccole (< 5° salvo che in un caso); sono pure modeste le deviazioni degli angoli di valenza dai valori normali in molecole non cicliche (~112° per C—Ĉ–C e ~123° per C=Ĉ–C) [15]. L'energia interna conformazionale dovrebbe quindi essere inferiore a quella della corrispondente cicloparaffina [4], per la quale sono riportate apprezzabili deformazioni di detti angoli di valenza. Anche i contatti intramolecolari H...H tra atomi separati da più di 5 legami appaiono meno favorevoli nel ciclododecano cristallino rispetto al caso presente. Lo spazio prossimo all'asse trigonale della molecola si presenta praticamente vuoto, come si può osservare in fig. 4 dall'assenza di distanze di contatto H....H inferiori a 2.5 Å tra atomi situati in posizioni diametralmente opposte. Questo « vuoto » intramolecolare è riempito, nel caso dell'addotto con Niº, dall'atomo di metallo coordinante, rimanendo praticamente invariata sia la geometria molecolare, sia l'impacchettamento allo stato cristallino. Anche il volume occupato da una molecola è in quest'ultimo caso (260 Å³) praticamente identico a quello da noi riscontrato per il CDT cristallino (264 \mathring{A}^{3}).

BIBLIOGRAFIA.

- [I] G. ALLEGRA e I. W. BASSI, «Rend. Acc. Naz. Lincei», 33, 72 (1962).
- [2] R. F. BRYAN e J. D. DUNITZ, «Helv. Chimica Acta», 43, 3 (1960).
- [3] E. HUBER-BUSER e J. D. DUNITZ, «Helv. Chimica Acta», 44, 2027 (1961); J. D. DUNITZ e K. VENTATESAN, *ibidem*, 44, 2033 (1961).
- [4] J. D. DUNITZ e H. M. M. SHEARER, «Helv. Chimica Acta», 43, 18 (1960).
- [5] J. D. DUNITZ e E. F. MEYER, «Helv. Chimica Acta», 48 (7) 1441 (1965).
- [6] G. WILKE, «Angew. Chemie», 72, 581 (1960).
- [7] H. DIETRICH e H. SCHMIDT, « Naturwissenschaften », 52 (11), 301 (1965).
- [8] M. J. BÜRGER, Crystal Structure Analysis, J. Wiley & Sons N. Y. (1960), cap. 14.
- [9] A. COLOMBO e G. ALLEGRA, «Acta Cryst», 21, 124 (1966).
- [10] A. IMMIRZI, «La Ricerca Scientifica», 719 (1967).
- [11] A. IMMIRZI, «La Ricerca Scientifica», 743 (1967).
- [12] D. W. J. CRUISKSHANK e D. E. PILLING; in parte A. BUJOSA, F. M. LOVELL e M. R. TRU-BER, Computing Methods and the Phase Problem in X-ray Crystal Analysis edito da R. PEPINSKY, J. M. ROBERTSON e J. C. SPEAKMAN, Pergamon Press (1961), p. 32 e sgg.
- [13] Intern. Tables for X-ray Crystallography, «The Kynoch Press», Birminghan (England) (1962), Vol. 3, p. 275.
- [14] G. W. WHELAND, Resonance in Organic Chemistry, J. Wiley & Sons N. Y. (1955), cap. 4.
- [15] L. PAULING, The Nature of the Chemical Bond, Cornell University Press, Ithaca N.Y. (1960), cap. 7.