ATTI ACCADEMIA NAZIONALE DEI LINCEI ## CLASSE SCIENZE FISICHE MATEMATICHE NATURALI # RENDICONTI # Judita Cofman # Double transitivity in finite affine and projective planes Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.5, p. 317–320. Accademia Nazionale dei Lincei <http://www.bdim.eu/item?id=RLINA_1967_8_43_5_317_0> L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Matematica. — Double transitivity in finite affine and projective planes. Nota di Judita Cofman, presentata (*) dal Socio B. Segre. RIASSUNTO. — Ostrom e Wagner [11] hanno dimostrato che, se un piano affine (proiettivo) finito ammette un gruppo di collineazioni 2-transitivo sui punti, allora il piano è un piano di traslazione (desarguesiano). Siano \mathcal{S}^* (\mathcal{S}) un piano affine (proiettivo) finito ed \mathcal{O} un suo sottoinsieme di punti, tali che vi sia un gruppo di collineazioni del piano che trasformi \mathcal{O} in se e che sia 2-transitivo sui punti di \mathcal{O} ; allora è possibile dimostrare, sotto opportune ipotesi addizionali, che i punti di \mathcal{O} costituiscono un sottopiano di \mathcal{S}^* (\mathcal{S}). Questa Nota riassume i risultati ottenuti sulla questione; per le dimostrazioni si rinvia alla Bibliografia qui data alla fine. #### INTRODUCTION. Investigating projective and affine planes with transitive collineation groups Ostrom and Wagner [11] have proved the following results: Theorem A: Let S^* be a finite affine plane and Δ be a collineation group of S^* doubly transitive on the affine points of S^* . Then S^* is a translation plane and Δ contains the translation group of S^* as a subgroup. THEOREM B: Let \mathcal{S} be a finite projective plane and let Δ be a collineation group of \mathcal{S} doubly transitive on the points of \mathcal{S} . Then \mathcal{S} is desarguesian and Δ contains the little projective group of \mathcal{S} . It is natural to state the following question: Let \mathcal{S}^* (\mathcal{S}) be a finite (projective) plane with a subset \mathcal{O} of points admitting a collineation group Δ which maps \mathcal{O} onto itself and induces a doubly transitive permutation group on the points of \mathcal{O} . What can we say about the plane, the set \mathcal{O} and the collineation group Δ ? The purpose of this note is to give a catalogue of results which I have obtained concerning the above problem. The proofs of these results will be published elsewhere. While the methods applied by Ostrom and Wagner in [11] are elementary, my approach is based on deep group—theoretical statements. ### 2. MAIN RESULTS. For definitions of an affine and projective plane, translation plane and desarguesian plane, collineations, perspectivities, of a translation group and little projective group see for instance Pickert [12]. An involution of an affine or projective plane is a collineation of order two. ^(*) Nella seduta del 14 novembre 1967. Concerning affine planes I have been able to prove the following statement: Theorem I: Let S^* be a finite affine plane of order n containing a subset O of k affine points. Let Δ be a collineation group of S^* mapping O onto itself and inducing a doubly transitive permutation group on the poins of O. If the involutions of O are perspective then - (a) (see Cofman [2]): - if k > n + 1 then $\mathfrak S$ consists of all affine points of $\mathfrak S^*$, the plane $\mathfrak S^*$ is a translation plane and Δ contains the translation group of $\mathfrak S^*$: - (b) (see Cofman [3]): if - (i) n is even, - (ii) $2 < k \le n + 1$, - (iii) Δ is non-soluble, - (iv) the points of \circ are not all collinear but at least three of them are collinear, then the points of \mathfrak{S} form a proper affine subplane \mathfrak{S}_0^* of \mathfrak{S}^* and Δ , restricted to \mathfrak{S}_0^* , contains the translation group of \mathfrak{S}_0^* : (c) (see Cofman [4]): if - (i) n is odd, - (ii) $2 < k \le n + 1$, - (iii) Δ is non-soluble, - (iv) the points of \circ are not all collinear but at least three of them are collinear, - (v) non non-identical collineation of Δ fixes a proper subplane of S^* , then the points of \mathfrak{D} form a proper affine subplane \mathfrak{S}_0^* of \mathfrak{S}^* and Δ , restricted to \mathfrak{S}_0^* contains, the translation group of \mathfrak{S}_0^* . The assumption that the involutions of Δ are perspectivities is probably superfluous. In both cases (b) and (c) restriction (iii) cannot be eliminated because, as T. G. Ostrom has pointed out to me, the finite translation planes $\mathfrak A$ of André [1] of order n admit soluble collineation groups acting doubly transsitively on the elements of a set $\mathfrak O$ of n affine points such that the points of $\mathfrak O$ satisfy condition (iv) but do not form a subplane of $\mathfrak A$. Restriction (iv) is also essential since there are: (1) examples of finite affine planes with collineation groups Δ acting doubly transitively on the points of an affine line fixed under Δ (for instance finite desarguesian planes or the Ostrom–Rosati planes (see Ostrom [9])) and (2) examples of finite desarguesian affine planes admitting collineation groups which fix a set $\mathfrak O$ of affine points no three of which are collinear inducing a doubly transitive permutation group on the points of $\mathfrak O$. (I could not find examples of non-desarguesian planes with this last property). The investigation of finite projective planes presents more difficulties. A similar result to theorem I can be obtained if instead of double transitivity of Δ on a subset $\mathcal O$ of points in the plane we assume that Δ is transitive on the "ordered triangles" of $\mathcal O$: THEOREM II (Cofman [5]: Let \mathcal{S} be a finite projective plane of order n with a subset \mathcal{O} of k points such that the points of \mathcal{O} are not all collinear but at least three of them are collinear. Let Δ be a collineation group of \mathcal{S} which maps \mathcal{O} onto itself and is transitive on the ordered non-collinear triplets of points of \mathcal{O} . If the involutions of Δ are perspectivities then either the points of \mathcal{O} form an affine subplane \mathcal{S}_0^* of \mathcal{S} and Δ , restricted to \mathcal{S}_0^* , contains the translation group of \mathcal{S}_0^* , or the points of \mathcal{O} form a desarguesian subplane \mathcal{S} of \mathcal{S}_0 and Δ , restricted to \mathcal{S}_0 , contains the little projective group of \mathcal{S}_0 . In the case when Δ is doubly transitive on the elements of a subset of points in a finite projective plane I could prove the following two theorems: THEOREM III (unpublished): Let \Im be a finite projective plane of order n with a subset \Im of $k > (n^2 + n)/2$ points. Let Δ be a collineation group of \Im fixing \Im and acting doubly transitively on the elements of \Im . If the involutions of Δ are perspectivities then either \Im consists of all points of \Im , the plane is desarguesian and Δ contains the little projective group of \Im or \Im consists of n^2 elements which form an affine subplane \Im 0 of \Im 3; the plane \Im 0 is a translation plane and Δ contains the translation group of \Im 0. Theorem IV: Let 3 be a finite projective plane of odd order $n \not\equiv 1 \pmod{8}$ or of prime order n and let O be a set of n+1 points of 3. If 3 admits a collineation group fixing O and acting doubly transitively on the points of O then either - (a) (see Cofman [6]) the points of $\mathfrak O$ are collinear, $\mathfrak F$ is desarguesian and Δ contains the special linear group $\mathrm{SL}\,(2\,,n)$, or - (b) (unpublished) no three points of \mathfrak{O} are collinear, \mathfrak{F} is desarguesian and Δ contains the projective special linear group PSL (2, n) (1). Projective planes of even order admitting a collineation group Δ which acts doubly transitively on the points of a line are not all desarguesian. This is illustrated by the example of the Tits-Lüneburg planes (see Tits [13] and Lüneburg [8]). The above investigations raise the following question: Do there exist planes of order n satisfying the conditions of Theorems I and II for $k < n^2$? The answer is affirmative since finite desarguesian planes have the required properties. Moreover the affine Hughes planes and the projective Hughes planes of order n are examples of strict semi-translation planes (see Ostrom [10]) which satisfy the conditions of Theorems I–II for k=n and $k=n+\sqrt{n}+1$ respectively. ⁽¹⁾ For the definitions of SL(2, n) and PSL(2, n) see Dickson [7]. ### REFERENCES. - [1] ANDRÉ J., Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, «Math. Z.», 156–186 (1960). - [2] COFMAN J., Double transitivity in finite affine planes I. «Math. Z.», 101, 335-352 (1967). - [3] COFMAN J, Double transitivity in finite affine planes II. To be published. - [4] COFMAN J., Double transitivity in finite affine planes III. To be published. - [5] COFMAN J., Transitivity on triangles in finite projective planes. To appear in Proc. London Math. Soc. - [6] COFMAN J., On a conjecture of Hughes. « Proc. Camb. Phil. Soc. », 63, 647-652 (1967). - [7] DICKSON L. E., Linear groups. New York, Dover Publ. 1958. - [8] LUNEBURG H., Über projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird. «Abh. Math. Sem. Univ. Hamburg », 29, 37–76 (1965). - [9] OSTROM T. G., Finite planes with a single (p, l)-transitivity «Arch. Math. », 15, 378-834 (1964). - [10] OSTROM T. G., Semi-translation planes «Trans. Amer. Math. Soc. », 3, 1-18 (1964). - [11] OSTROM T. G. and WAGNER A., On projective and affine planes with transitive collineation groups, «Math. Z.», 71, 186–199 (1959). - [12] PICKERT G., Projektive Ebenen., Berlin-Göttingen-Heidelberg, Springer 1965. - [13] TITS J., Ovoides et groupes de Suzuki, «Arch. Math. », 13, 187-198 (1962).