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Matematica. — Dowble transitivity in finite affine and projective
planes. Nota di Jupita CormaN, presentata  dal Socio B. SEGRE.

RIASSUNTO. — Ostrom e Wagner [11] hanno dimostrato che, se un piano affine (proiet-
tivo) finito ammette un gruppo di collineazioni 2-transitivo sui punti, allora il piano & un
piano di traslazione (desarguesiano).

Siano §* () un piano affine (proiettivo) finito ed © un suo sottoinsieme di punti, tali
che vi sia un gruppo di collineazioni del piano che trasformi © in se e che sia 2-transitivo
sui punti di &; allora & possibile dimostrare, sotto opportune ipotesi addizionali, che i punti
di O costituiscono un sottopiano di &* (8). Questa Nota riassume i risultati ottenuti sulla
questione; per le dimostrazioni si rinvia alla Bibliografia qui data alla fine.

1. — INTRODUCTION.

Investigating projective and affine planes with transitive collineation
groups Ostrom and Wagner [11] have proved the following results:

THEOREM A: Let 8* be a finite affine plane and A be a collineation group
of 8* doubly transitive on the affine points of §*. Then 8* is a translation
plane and A contains the translation group of 8% as a subgroup.

THEOREM B: Let 8 be a finite projective plane and let A be a collineation
group of 8 doubly transitive on the points of 8. Then 8 is desarguesian and A
contains the little projective group of 8.

It is natural to state the following question:

Let 8% (8) be a finite (projective) plane with a subset © of points admitt-
ing a collineation group A which maps @ onto itself and induces a doubly
transitive permutation group on the points of ©. What can we say about
the plane, the set @ and the collineation group A?

The purpose of this note is to give a catalogue of results which I have
obtained concerning the above problem. The proofs of these results will
be published elsewhere. While the methods applied by Ostrom and Wagner
in [11] are elementary, my approach is based on deep group-theoretical
statements. ~

2. MAIN RESULTS.

For definitions of an affine and projective plane, translation plane and
desarguesian plane, collineations, perspectivities, of a translation group and
little projective group see for instance Pickert [12].

An involution of an affine or projective plane is a collineation of order two.

(*) Nella seduta del 14 novembre 1967.
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Concerning affine planes I have been able to prove the following statement:

THEOREM I: Let 8% be a finite affine plane of order n containing a subset ©
of k affine points. Let A be a collineation group of 8% mapping O onto itself
and inducing a doubly transitive permutation group on the poins of O. If the
involutions of N are perspective then

(@) (see Cofman [2]):

if b >n 1 then O consists of all affine points of 8%, the plane 8§ is a trans-
lation plane and A contains the translation group of $*:
(6) (see Cofman [3]):

i

(i) n s even,

(i) 2 <k <n+1,

(iii) A is non-soluble,

(iv) the points of O are not all collinear but at least three of them are

collinear,

then the points of O form a proper affine subplane 8§ of 8* and A, restricted
to 8§, contains the translation group of S :

(¢) (see Cofman [4]):
f
(1) » is odd,
() 2< & <n+ 1,
(iii) A s non-soluble,
(iv) the points of O are not all collinear but at least three of them are
collinear,
(v) non non-identical collineation of A fixes a proper subplane of $*,

then the points of O form a proper affine subplane $§ of 8% and A, restricted
to 8§ conmtains, the translation group of S .

The assumption that the involutions of A are perspectivities is probably -
superfluous. In both cases (4) and (c) restriction (iii) cannot be eliminated
because, as T. G. Ostrom has pointed out to me, the finite translation planes @
of André [1] of order # admit soluble collineation groups acting doubly trans-
sitively on the elements of a set O of 7 affine points such that the points of ©
satisfy condition (iv) but do not form a subplane of &. Restriction (iv) is
also essential since there are: (1) examples of finite affine planes with colline-
ation groups A acting doubly transitively on the points of an affine line fixed
under A (for instance finite desarguesian planes or the Ostrom—Rosati planes
(see Ostrom [9])) and (2) examples of finite desarguesian affine planes admitt-
ing collineation groups which fix a set O of affine points no three of which
are collinear inducing a doubly transitive permutation group on the points
of ©. (I could not find examples of non-desarguesian planes with this last

property). :
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The investigation of finite projective planes presents more difficulties.

A similar result to theorem I can be obtained if instead of double transi-
tivity of A on a subset © of points in the plane we assume that A is transitive
on the ¢ ordered triangles” of O:

THEOREM II (Cofman [5]: Let 8 be a finite projective plane of order n
with a subset O of k points such that the points of O are not all collinear but at
least three of them are collinear. Let A be a collineation group of 8 which maps O
onto itself and is transitive on the ordered non-collinear triplets of points of O.
If the involutions of A are perspectivities then either the points of O form an
affine subplane 8§ of 8 and A, restricted to 8§, contains the transiation group
of 8§, or the points of O form a desarguesian subplane 8 of 8o and A, restricted
to 8o, contains the litile projective group of So.

In the case when A is doubly transitive on the elements of a subset of
points in a finite projective plane I could prove the following two theorems:

THEOREM III (unpublished): Let & be a finite projective plane of order n
with a subset O of k > (1 -+ n)|2 points. Let A be a collineation group of 8
fixing O and acting doubly transitively on the elements of ©. If the involutions
of A are perspectivities then either O consists of all points of 8, the plane is
desarguesian and A contains the little projective group of 8 or O consists of n2
elements which form an affine subplane 8§ of 8; the plane 8§ is a translation
Plane and N contains the translation group of 8§ .

THEOREM IV: Let 8 be a finite projective plane of odd order n == 1 (mod 8)
or of prime order n and let O be a set of n+ 1 points of 8. If 8 admits a
collineation group fixing O and acting doubly transitively on the points of O
then either

(@) (see Cofman [6]) the points of O are collinear, 8 is desarguesian
and A contains the special linear group SL (2 ,#), or

(b) (unpublished) #o three points of © are collinear, § is desarguesian
and N contains the projective special linear group PSL (2 ,7n) ®.

Projective planes of even order admitting a collineation group A which
acts doubly transitively on the points of a line are not all desarguesian. This
is illustrated by the example of the Tits-Liineburg planes (see Tits [13] and
Lineburg [8]).

The above investigations raise the following question: Do there exist
planes of order n satisfying the conditions of Theorems I and II for k < n2?

The answer is affirmative since finite desarguesian planes have the requir-
ed properties. Moreover the affine Hughes planes and the projective Hughes
planes of order 7 are examples of strict semi-translation planes (see Ostrom [10])
which satisfy the conditions of Theorems I-1I for £ = 7 and £ = % + {n - 1
respectively.

(1) For the definitions of SL(2,7) and PSL (z,7) see Dickson [7].
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