Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Judita Cofman

Double transitivity in finite affine and projective planes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 43 (1967), n.5, p. 317-320.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1967_8_43_5_317_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - Double transitivity in finite affine and projective planes. Nota di Judita Cofman, presentata ${ }^{\left({ }^{(}\right)}$dal Socio B. Segre.

Abstract

Riassunto. - Ostrom e Wagner [II] hanno dimostrato che, se un piano affine (proiettivo) finito ammette un gruppo di collineazioni 2-transitivo sui punti, allora il piano è un piano di traslazione (desarguesiano).

Siano $\mathfrak{S}^{*}(\mathscr{P})$ un piano affine (proiettivo) finito ed \mathcal{O} un suo sottoinsieme di punti, tali che vi sia un gruppo di collineazioni del piano che trasformi \mathcal{O} in se e che sia 2 -transitivo sui punti di \mathcal{O}; allora è possibile dimostrare, sotto opportune ipotesi addizionali, che i punti di \mathcal{O} costituiscono un sottopiano di $\mathfrak{S}^{*}(\mathscr{S})$. Questa Nota riassume i risultati ottenuti sulla questione; per le dimostrazioni si rinvia alla Bibliografia qui data alla fine.

i. - Introduction.

Investigating projective and affine planes with transitive collineation groups Ostrom and Wagner [II] have proved the following results:

Theorem A: Let \mathfrak{g}^{*} be a finite affine plane and Δ be a collineation group of \mathfrak{B}^{*} doubly transitive on the affine points of \mathfrak{g}^{*}. Then \mathfrak{g}^{*} is a translation plane and Δ contains the translation group of \mathfrak{P}^{*} as a subgroup.

Theorem B: Let \mathfrak{B} be a finite projective plane and let Δ be a collineation group of \mathfrak{P} doubly transitive on the points of \mathfrak{S}. Then \mathfrak{B} is desarguesian and Δ contains the little projective group of \mathfrak{B}.

It is natural to state the following question:
Let $\mathfrak{g}^{*}(\mathfrak{B})$ be a finite (projective) plane with a subset \mathcal{O} of points admitting a collineation group Δ which maps \mathcal{O} onto itself and induces a doubly transitive permutation group on the points of \mathcal{O}. What can we say about the plane, the set \mathcal{O} and the collineation group Δ ?

The purpose of this note is to give a catalogue of results which I have obtained concerning the above problem. The proofs of these results will be published elsewhere. While the methods applied by Ostrom and Wagner in [II] are elementary, my approach is based on deep group-theoretical statements.

2. Main Results.

For definitions of an affine and projective plane, translation plane and desarguesian plane, collineations, perspectivities, of a translation group and little projective group see for instance Pickert [I2].

An involution of an affine or projective plane is a collineation of order two.
(*) Nella seduta del 14 novembre 1967.

Concerning affine planes I have been able to prove the following statement:
Theorem I: Let \mathfrak{G}^{*} be a finite affine plane of order n containing a subset \mathcal{O} of k affine points. Let Δ be a collineation group of \mathfrak{B}^{*} mapping \mathcal{O} onto itself and inducing a doubly transitive permutation group on the poins of \mathcal{O}. If the involutions of Δ are perspective then
(a) (see Cofman [2]):
if $k>n+1$ then \mathcal{O} consists of all affine points of \mathfrak{g}^{*}, the plane \mathfrak{g}^{*} is a translation plane and Δ contains the translation group of \mathfrak{B}^{*} :
(b) (see Cofman [3]):
if
(i) n is even,
(ii) $2<k \leq n+\mathrm{I}$,
(iii) Δ is non-soluble,
(iv) the points of \mathcal{O} are not all collinear but at least three of them are collinear,
then the points of \mathcal{O} form a proper affine subplane \mathfrak{B}_{0}^{*} of \mathfrak{P}^{*} and Δ, restricted to \mathscr{D}_{0}^{*}, contains the translation group of \mathfrak{P}_{0}^{*} :
(c) (see Cofman [4]):
if
(i) n is odd,
(ii) $2<k \leq n+\mathrm{I}$,
(iii) Δ is non-soluble,
(iv) the points of \mathcal{O} are not all collinear but at least three of them are collinear,
(v) non non-identical collineation of Δ fixes a proper subplane of \mathfrak{g}^{*},
then the points of \mathcal{O} form a proper affine subplane \mathfrak{S}_{0}^{*} of \mathfrak{P}^{*} and Δ, restricted to \mathfrak{S}_{0}^{*} contains, the translation group of \mathfrak{B}_{0}^{*}.

The assumption that the involutions of Δ are perspectivities is probably superfluous. In both cases (b) and (c) restriction (iii) cannot be eliminated because, as T. G. Ostrom has pointed out to me, the finite translation planes \mathfrak{G} of André [I] of order n admit soluble collineation groups acting doubly transsitively on the elements of a set \mathcal{O} of n affine points such that the points of $\mathcal{\theta}$ satisfy condition (iv) but do not form a subplane of \mathfrak{A}. Restriction (iv) is also essential since there are: (i) examples of finite affine planes with collineation groups Δ acting doubly transitively on the points of an affine line fixed under Δ (for instance finite desarguesian planes or the Ostrom-Rosati planes (see Ostrom [9])) and (2) examples of finite desarguesian affine planes admitting collineation groups which fix a set \mathcal{O} of affine points no three of which are collinear inducing a doubly transitive permutation group on the points of \mathcal{O}. (I could not find examples of non-desarguesian planes with this last property).

The investigation of finite projective planes presents more difficulties.
A similar result to theorem I can be obtained if instead of double transitivity of Δ on a subset \mathcal{O} of points in the plane we assume that Δ is transitive on the " ordered triangles" of \mathcal{O} :

Theorem II (Cofman [5]: Let \mathfrak{g} be a finite projective plane of order n with a subset \mathcal{O} of k points such that the points of \mathcal{O} are not all collinear but at least three of them are collinear. Let Δ be a collineation group of \mathfrak{B} which maps \mathcal{O} onto itself and is transitive on the ordered non-collinear triplets of points of \mathcal{Q}. If the involutions of Δ are perspectivities then either the points of \mathcal{O} form an affine subplane \mathfrak{D}_{0}^{*} of \mathfrak{B} and Δ, restricted to \mathfrak{g}_{0}^{*}, contains the translation group of \mathfrak{S}_{0}^{*}, or the points of \mathfrak{O} form a desarguesian subplane \mathfrak{B} of \mathfrak{S}_{0} and Δ, restricted to \mathfrak{B}_{0}, contains the little projective group of \mathscr{P}_{0}.

In the case when Δ is doubly transitive on the elements of a subset of points in a finite projective plane I could prove the following two theorems:

Theorem III (unpublished): Let \mathfrak{B} be a finite projective plane of order n with a subset \mathcal{O} of $k>\left(n^{2}+n\right) / 2$ points. Let Δ be a collineation group of \mathfrak{J} fixing \mathcal{O} and acting doubly transitively on the elements of \mathcal{O}. If the involutions of Δ are perspectivities then either \mathcal{O} consists of all points of \mathfrak{B}, the plane is desarguesian and Δ contains the little projective group of \mathfrak{B} or $\mathcal{\theta}$ consists of n^{2} elements which form an affine subplane \mathfrak{S}_{0}^{*} of \mathfrak{B}; the plane \mathfrak{S}_{0}^{*} is a translation plane and Δ contains the translation group of \mathfrak{P}_{0}^{*}.

ThEOREM IV: Let \mathfrak{g} be a finite projective plane of odd order n 丰 $\mathrm{I}(\bmod 8)$ or of prime order n and let \mathcal{O} be a set of $n+1$ points of \mathfrak{B}. If \mathfrak{B} admits a collineation group fixing \mathcal{O} and acting doubly transitively on the points of \mathcal{O} then either
(a) (see Cofman [6]) the points of \mathcal{O} are collinear, $\mathfrak{B}^{\mathfrak{B}}$ is desarguesian and Δ contains the special linear group $\mathrm{SL}(2, n)$, or
(b) (unpublished) no three points of \mathcal{O} are collinear, \mathfrak{B} is desarguesian and Δ contains the projective special linear group $\operatorname{PSL}(2, n)^{(1)}$.

Projective planes of even order admitting a collineation group Δ which acts doubly transitively on the points of a line are not all desarguesian. This is illustrated by the example of the Tits-Lüneburg planes (see Tits [13] and Lüneburg [8]).

The above investigations raise the following question: Do there exist planes of order n satisfying the conditions of Theorems I and II for $k<n^{2}$?

The answer is affirmative since finite desarguesian planes have the required properties. Moreover the affine Hughes planes and the projective Hughes planes of order n are examples of strict semi-translation planes (see Ostrom [io]) which satisfy the conditions of Theorems I-II for $k=n$ and $k=n+\sqrt{n}+\mathrm{I}$ respectively.
(I) For the definitions of $\operatorname{SL}(2, n)$ and $\operatorname{PSL}(2, n)$ see Dickson [7].

References.

[I] André J., Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, «Math. Z.», 156-186 (1960).
[2] Cofman J., Double transitivity in finite affine planes I. "Math. Z.», Ior, 335-352 (1967).
[3] Cofman J, Double transitivity in finite affine planes II. To be published.
[4] Cofman J., Double transitivity in finite affine planes III. To be published.
[5] Cofman J., Transitivity on triangles in finite projective planes. To appear in Proc. London Math. Soc.
[6] Cofman J., On a conjecture of Hughes. «Proc. Camb. Phil. Soc.», 63, 647-652 (1967).
[7] Dickson L. E., Linear groups. New York, Dover Publ. 1958.
[8] Luneburg H., Über projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird. "Abh. Math. Sem. Univ. Hamburg», 29, 37-76 (1965).
[9] Ostrom T. G., Finite planes with a single (p, l)-transitivity «Arch. Math.», 15, 378834 (1964).
[io] Ostrom T. G., Semi-translation planes «Trans. Amer. Math. Soc.», 3, I-I8 (1964).
[II] Ostrom T. G. and Wagner A., On projective and affine planes with transitive collineation groups, "Math. Z.», 71, 186-199 (1959).
[12] Pickert G., Projektive Ebenen., Berlin-Göttingen-Heidelberg, Springer 1965.
[13] Tits J., Ovoides et groupes de Suzuki, «Arch. Math.», 13, 187-198 (1962).

