ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

J. A. Jensen

Note on semi-continuous functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 43 (1967), n.3-4, p. 158–160.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_3-4_158_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

NOTE PRESENTATE DA SOCI

Matematica. — Note on semi-continuous functions. Nota (*) di J. A. Jensen, presentata dal Socio G. Scorza Dragoni.

RIASSUNTO. — In questa Nota è dimostrato che la trasformazione composta $f \circ g$ di una trasformazione univoca continua ed aperta g di un primo spazio topologico su un secondo e di una trasformazione univoca f del secondo in un terzo, è semicontinua (semiaperta) se, e soltanto se, f è semicontinua (semiaperta); e sono stabilite alcune proposizioni sulla semicontinuità e la continuità di trasformazioni univoche da spazi topologici lineari a spazi topologici lineari (per esempio: una tal trasformazione è necessariamente continua se è lineare e semicontinua).

I. Introduction.—A function $f: E_1 \to E_2$ where E_1 and E_2 are topological spaces is called *semi-continuous* if and only if, for U open in E_2 , then $f^{-1}[U]$ is in S.O.(E_1). S.O.(E_1) is the class of all semi-open sets in E_1 where a set A is *semi-open* if and only if there exists an open set U in E_1 such that $U \subset A \subset U^-$, U^- is the closure of U. The function f is called *open* (*semi-open*) if and only if for every open (semi-open) set A of the domain of f, f[A] is open (semi-open) in the range of f. The inverse f^{-1} , not necessarily a function, is called *semi-open* if and only if for every semi-open set A, $f^{-1}[A]$ is semi-open.

In [1] the proof of the following theorem is given.

THEOREM I.—If f is a continuous open function from a topological space E_1 into a topological space E_2 , then f is semi-open and f^{-1} is semi-open.

This note gives an application of Theorem 1 and some results concerning semi-continuity on linear topological spaces.

2. Semi-continuity on linear topological spaces.

THEOREM 2.—If g is a continuous open function from E_1 onto E_2 and f is a function from E_2 to E_3 where E_1 , E_2 and E_3 are topological spaces, then f is semi-continuous (semi-open) if and only if the composition $f \circ g$ is semi-continuous (semi-open).

Proof.—Let U be an open set in E₃ and suppose $f \circ g$ is semi-continuous, then $(f \circ g)^{-1}[U] = g^{-1}[f^{-1}[U]] \in S.O.$ (E₁). Since g is continuous and open, by Theorem 1, $g[g^{-1}[f^{-1}[U]]] = f^{-1}[U] \in S.O.$ (E₂). Therefore, f is semi-continuous.

Suppose f is semi-continuous and U is open in E_3 , then, by Theorem 1, $g^{-1}[f^{-1}[U]]$ is semi-open. Therefore, $f \circ g$ is semicontinuous.

(*) Pervenuta all'Accademia il 6 settembre 1967.

If f is a semi-open function on E_2 into E_3 and $A \in S.O.$ (E₁), then, by Theorem I, $g[A] \in S.O.$ (E₂) and $f[g[A]] = (f \circ g)[A] \in S.O.$ (E₃). Therefore, $f \circ g$ is semi-open.

Suppose $f \circ g$ is semi-open, and let $B \in S.O.$ (E₂) and $A = g^{-1}[B]$, then, by Theorem I, $A \in S.O.$ (E₁). Therefore, $(f \circ g)[A] = (f \circ g)[g^{-1}[B]] = f[B] \in S.O.$ (E₃).

If E is a linear topological space, then, because of continuity of addition, translation by a member x of E is continuous. Moreover, a translation by x and multiplication by a non-zero scalar t are homeomorphisms since each have a continuous inverse, namely translation by -x and multiplication by 1/t. Therefore, if a set U is open (closed), so are x + U and tU, for each $x \in E$ and each non-zero scalar t.

THEOREM 3.—If $A \in S.O.$ (E), then $x + A \in S.O.$ (E) and $tA \in S.O.$ (E) for each $x \in E$ and each non-zero scalar t; and if $A \in S.O.$ (E), then B + A is semi-open where B is a subset of E.

Proof.—If $A \in S.O.$ (E), then $U \subset A \subset U^-$ where U is open. Since $(x+U)^- = x + U^-$ and $(tU)^- = tU^-$ for each non-zero scalar t, it follows that x+A and tA are in S.O. (E). $B+A=\cup\{x+A:x\in B\}$ is a union of semi-open sets each x+A is a translation of a semi-open set. Therefore, since the union of an arbitrary collection of semi-open sets is semi-open, B+A is semi-open.

Definition.—A set $M \subset E$ is a *semi-neighborhood* of a point $x \in E$ if and only of there exists $A \in S.O.$ (E) such that $x \in A \subset M$.

By Theorem 3, it follows that a set M is a semi-neighborhood of a point $x \in E$ if and only if -x + M is a semi-neighborhood of $O \in E$; in other words, the semi-neighborhood system at x is the translates by x of members of the semi-neighborhood system at O.

Let F be a linear topological subspace of a linear topological space E. Let E/F be the linear topological quotient space and let Q be the quotient map Q(x) = x + F which is linear, continuous and open. Then the proof of the following theorem requires only a direct application of the preceding results and Theorem 2.

THEOREM 4.—A function T on E/F into a topological space G is semi-continuous (semi-open) if and only if the composition $T \circ Q$ is semi-continuous (semi-open).

Theorem 5.—If T is a semi-continuous linear transformation from a topological linear space E_1 to a topological linear space E_2 , then T is continuous.

Proof.—It is sufficient to show that T is continuous at O. If T is linear, then T(O) = O. Let U be any open set about O in E_2 . As in [2, p. 34] there exists an open set V which is circled and such that $O \in V$ and $V+V \subset U$. Since T is semi-continuous, there is a semi-open set A such that $O \in A$ and $T[A] \subset V$. Since A is a non-empty semi-open set, it must have non-empty interior A^i . Let $x \in A^i$. Then $O \in -x + A^i$ which is open. However, $T[-x + A^i] = -T(x) + T[A^i] \subset -T(x) + V$ and $-T(x) \in V$ since $T(x) \in V$ and V is circled. Therefore, $T[-x + A^i] \subset V + V \subset U$ and T is continuous.

COROLLARY.—If f is a semi-continuous functional on a linear topological space, then f is continuous.

Since a transformation T on the quotient space E/F is linear if and only if the composition $T\circ Q$ is linear, it follows, by Theorem 4 and Theorem 5, that T is continuous if $T\circ Q$ is linear and semi-continuous.

REFERENCES.

- [1] D. R. Anderson and J. A. Jensen, Semi-continuity on Topological Spaces, Will appear in «Accademia Nazionale dei Lincei».
- [2] J. L. KELLEY and I. NAMIOKA, Linear Topological Spaces (Princeton, New Jersey 1963).