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Analisi matematica. — A/lnost-periodic solutions of the equation
of Schridinger type ®. Nota 1 del Corrisp. Luict AMERIO.

RIASSUNTO. — Si assegnano delle condizioni perché I’equazione del tipo di Schrodinger,
con operatore e termine noto quasi-periodici, abbia una soluzione quasi-periodica, e delle
condizioni perché le autosoluzioni dell’equazione omogenea, con operatore periodico, siano
quasi—periodiche.

I.—INTRODUCTION AND STATEMENTS. Let X and Y be two complex
Hilbert spaces; we assume X C Y, separable, dense in Y and with a con-
tinuous embedding (|x|y < o|x|, 6 >0, where |-|,,(-,-)y and | -], (-,-)
denote norm and scalar product in Y and X respectively). Put ] = {— o0 <
<t< 4 oo} and & =2 (X, X): hence & denotes the space of linear and

bounded operators A, from X to X, with norm [Alg = Sup |Ax|.

=
the equation [1]

(1,1) f{z' @, F @)y + A OO +F @, @)}y de=o,
J

bR

We call ¢ equation of Schridinger type

where the wunknown function x(t), the operator A(¢), the known term f(f) and
the ftest function % (f) satisfy the following conditions:
i) x(®)€C(J;X);
i5) A(H)eCL(]; Q), is selfadjoint and verifies the ellipticity condition
(1,2) A@x, ) =v|x]? (v >o0);
i) f(B)EC(J; X);
i) k(D €C (T X), K (1) €C (T Y),
A (¢) has, in addition, compact support and (1,1) must be true for all
test functions /% (2).
We denote by u(#) the solutions of the Aomogencous equation:

(1.3) f (@@, h By + AOu@), k@) di=o.
J

(1,1) is the weak form which corresponds, for instance, to the following
problem. Let Q be an open, connected and bounded or unbounded set of the
Euclidean space S C: {C, -, ¢,}) and consider the equation:

(1.4 + E 2 (0 0 EE ) —a @, 02, 0 =

8xz‘§

:J(I)(t,C,E)x(t,E)d&—l—f(i,C) (te], CeQ)

(*) Istituto Matematico del Politecnico di Milano. Gruppo di ricerca n. 12 del Comitato
Naz. per la Matematica del C.N.R.
(**) Pervenuta all’Accademia il 21 ottobre 1967.
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Assume that the coefficients @ (¢,%), @ (¢,{) are measurable and bounded
functions on J X € with their partial derivatives with respect to # and that

1--m m
(1,5) (6,0 =dy(t,0 Ekaﬁ<z,c>x,-i,}zp;,.u,-|2,

a<t’:>>9(9>o>’

where & denotes the complex conjugate of a.
The second of (1,5) must be valid for all complex values 2y,---,%,.
Moreover the kernel ® (z,7,%) is supposed to be, V¢ € J, positive semide-
finite, selfadjoint and to belong to L2 (Qx Q), with its derivative @, (z, ¢, £).
The problem considered consists in finding a solution x (¢, {) satisfying
the snitial condition

1,6 20, 0=x00 e
and the boundary condition
(1,7) x(t,0lten =0 (te].

We assume now
Y=1(Q , X=H(Q
with the norms

1/2 12

. ([N |2 P2 <N ‘
o) o=} [(5]50 e or)af = |5 |2+ 1k
o
Hence the embedding of X in Y is continuous.
It results
1 em _
@Or =13 60,050 ZO 40,0207 O+
JUar o ,

Q

N YRR TIOE T T
/]

and (1,2) is satisfied.

Assume now that the derivatives, with respect to # of the coefficients
ay (¢,%),a(t, ) are continuous, as functions of #, uniformly with respect to
L €Q; assume moreover that, Vz€J and |7|< 1, it results

| @, ¢+ 7,8,8)] <V, ¢, el Qx Q)

and

T—>0

lim ff]'@,(t—{——r,C,£)~®t(f,c,£)\2d£d?;=o.,
Q Q



LUIGI AMERIO, Almost-periodic solutions of the equation, ecc. 149

Then it is

1. m e A
<A@xwﬁ4}29%56%$“§9+”$Qx®x®d@%
Tk A ] )
Q

+/[«bt(z,c,z)x(i)f(@a’idl,

QG

and the operators A (¢), A’ (#) are &-continuous.

Setting x (1) ={x(¢,0);L€Q}, f(&)={/(,0);L€Q}, we obtain the
weak form (1,1) of our problem: the solution x (£) must satisfy the initial
condition x (0) = {x, ({); { € Q}.

Let us now recall the fundamental formulas, valid for the solutions of

(1,1) and (1,3):
@) @O =29 (f®), z@),

H S {A@Dr@, v @)+ 28 (F©0), 2 )} = A () x @),z (&) +
F2R(F (), % (),
&) @l = 1 Oy,
¥) G AW =D]ud]=|u 0.
d')and &) mean that fwo principles of conservation of norm hold: for the
Y—norm the principle is always true, for the X—morm it is true i A@)=1
(to which case we can always reduce our problem, by (1,2), if A (#) = const.).
The initial value problem, x (0) = x,, for (1,1), has one and only one solu-
tion, x(t),Vx,€X; moreover x (¢f) depends contimuously on x, and f(2):
precisely, N interval —T <<t << T, ‘

(19) v @ <M {l0] + 17 @)1+ [17 )] o]

where My is independent on x, and f (7).

In what follows, when we say that a function z(#) is bounded, or
uniformly continuous (u.c.), or uniformly weakly continuous (uw.c.), we
always mean that this occurs on the whole interval J. The range of z(¥)
will be indicated by R,y. Moreover, we shall add the notation of the space
where z(f) takes its values, with the exception of the X space: hence z ()
bounded, or u.c., or u.w.c., or almost-periodic (a.p.), or weakly almost-periodic
(w.a.p.) means z(#) X-bounded or X-u.c.,, or X-uw.c., or X-a.p., or
X-w.a.p.

In this paper, we study equations (1,1) and:(1,3) with the essential aim
to give conditions for the existence of one a.p. solution of (1,1), if A (#) and
J/(#) are a.p., and for the existence of a.p. eigensolutions of (1,3), if A(®)is
periodic.

For the first equation we are in the same order of ideas of a preceding
paper [2] (concerning the extension of Favard’s theorems to abstract equa-
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tions): we may note, however, that the statements concerning equation (I,I)
result notable wider, because of the peculiar properties of such equation.

Let us add that, for studying equation (1,3), we shall use a generalisation
of Bochner’s fundamental criterion of almost-periodicity (cfr. observation III,
at the end of this §).

Let us give now the following definitions.

Let 2 (#) be a bounded function and put:

(1,10) b (&) = Sup |2 O],

(1,11) cp(z;v,‘r):Sljlp[(z(z‘—}—T)———-z(t),v)] VveX ,t€e]).

Let I', be the set (obviously convex) of all solutions x (l‘>, bounded and
such that

(1,12) p(x;v,71)<o(z;v,T) (VoeX ,t€]).

Let us enunciate now the statements which will be proved in the following
§§ 2, 3, 4

I. MINIMAX THEOREM.—Let us assume that therve exists a bounded solution,
2 (#) (that is T, is not empty).

Then, if

(1,13) i=Infu(@),

there exists, in U,, one and only one solution, x (¢), such that
(1,14) w(® = {.
Whe shall call % (¢) the ménimal solution, in T,. ‘
COROLLARY.—A (£) and f(¢) periodic, with period o= % (t) periodic, with
period o.
II. ALMOST-PERIODICITY THEOREM.—Let us assume that:
1) the operators A (t),A'(t) are —a.p.;
2) the functions f () ,f'(t) are a.p.;
3) there exists a solution, z(t), bounded and u.w.c.
Then the minimal solutions, % (¢), is w.a.p. and Y—a.p. Moreover, if z(2),

bounded, is wu.c., then % (£) is a.p.
Let us now enunciate an ALMOST-PERIODICITY THEOREM FOR THE EIGEN-

SOLUTIONS % (2):
111.—Let us assume that.
1) the operator A (t) is periodic;
2) the embedding of X in Y is compact.

Then every bounded eigensolution, u (), is w.a.p. and Y-a.p.
If u(?) is bounded and wu.c., then u (f) is a.p.
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Theorem III gives an extension to equation (1,3), with periodic operator,
of an interesting property of the solutions of linear ordinary homogeneous
systems, with periodic coefficients: bounded solution of such systems are in
fact a.p., since, by a classical theorem of Liapunov, any periodic system
can be reduced to one with constant coefficients, by means of a linear periodic
non singular transformation.

Observation I—If A (£) = 1, then the hypothesis of (weak or strong) uniform
continuity of the bounded solution = (t), or u (t), can be eliminated (cfr. §§ 3, 4).
Observation I1—By (1,11) it follows that z (¢) w.w.c.= % (¢) nw.c.

Setting, moreover,

(1,15) ®(; ) =Sup |x(+—x@)] (xe])
we have, by (1,11),
(1,16) ¢x;7) <e(e;m.

Hence z (¢) u.c.= x (£) w.c.

Observation II1I.-—For proving theorem III we shall use the following
generalisation of Bochner’s criterion. For clarity’s sake, let us recall, at first,
the way for obtaining such criterion.

Let B be a Banach space, and let K be the Banach space of all continuous
and bounded functions f(t), from ] to B (K C(J;B)NOL*(J; B)), with
norm corresponding to uniform convergence: if f is the point of K which corre-
sponds to the function f(¢), it will therefore be

(1,17) F={@;tely , k= Sup |/ @)l

Let us now consider, together with f (#), the set of the translates f (£ 4 ),
vse]J. If f(&) {f(@+ s);2€]} we have defined an application, that
we shall call Bochner's transform, s — f(s), from ] to K; furthermore
F) =/

The range Rfs(s) of Bochner’s transform has the following properties.

o) R Fo 15 @ Spherical line: in fact

(1,18) £ )l = Sup f e+ 9= Sup 17 @ls = 1/©@lg;

B) Ry, o5 described in such a way that the ‘ principle of conservation
of a’zsz‘ames /zolds: in fact, by (1,18),

(L19)  F G+ —F Ol =1/ ® —Ff0O)lk= Sup /(¢4 —/ Ol

V) F@ ap. ==>f (8) a.p., with the same e—almost-periods.
o), B) and y) are obvious. Very deep is property
3) F(s) ap.«=>R 5o Telatively compact (r.c.).

By v) and 3) we deduce Bochner’s criterion: f(¢) a.p. «= R

7o
Let us now prove the following generalisation of 8):

12. — RENDICONTTI 1967, Vol. XLIII, fasc. 34,
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3 F (5) a-p. == there exists a relatively dense sequence {s,} such that
the sequence { 7 (sp)} s 7.c.

(For instance, f(#) is a.p. if the sequence {f(n)} (m=o0,£1,42,---)is r.c.).

The condition is obviously necessary, since f(¢) a.p. = any sequence
{50} re.

Let us now prove that the condition is sufficient. For that, we shall
prove, at first, that, Ve > o, the set {7}, of the e-a.p., is relatively
dense (r.d.).

Since { £ (s,)} is r.c., there exist £ values (depending on €): f(s1.0),- - -, fs(skyo),
such that it results, V7,

© 1.k
S (sa) € Y (f (55,0, 9)

where (f, ) denotes the open sphere w1th centre f and radius ).
P p!

Let us now divide the sequence { f(s,,)} into £ subsequences {f (s,,,,)}
such that, V7,

(1,20) |]f(3j,n> —“J?@}-,O) lk <e,
that is, by (1,19),
(1,21) 17 G5 — 5,0 —F Ol <

Hence, by (1,19),
(1,22) T = Sjm T 57,0
is an e-a.p.
1..-3 .
Let us now prove that U {,,} is a r.d. sequence. Let & >0 be an

inclusion length for the r.d. s]equence {s.} and put

(1,23) m=min {—s,} , M= max{ S0}
1</<# 1<j<#

(1,24) I=M-—m-+4d.

Consider an interval ¢ 'a -+ /, a arbitrary. The interval @ — m !
a —m -+ d contains one point, s;,,,,, at least, of {s,}: hence, by (1,23),

a—m+m < S50 —Sj0 <a—m-+d+M,
that is, by (1,22),
aSTfn”l Sﬂ—l—l

and the thesis is proved.
We have now to prove that £ (s) is continuous, that is, by (1,19), that
J @) is u.c.
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Setting A = {—d <n < d}, let Z=C(A; B) be the space of all functions
z (n) continuous from A to B: hence

(I’ZS) ‘g:{z (”));Y)EA} ’ llznz:mi'x "Z<71)HB°
Put 2z, = {f(n + s,) ; n € A) and observe that, since

“ By~ By ”z = ”f(&t) _—fs@m) ll‘K ’

the sequence {z,} is, as {f(s,,) }, rc.
Since f(#) is continuous, it follows that the functions f (v 4-s,) are equally-

continuous on A: hence to every ¢> o there corresponds 3, 0 << 893% ,

such that

,I)l’,nu eA , ‘,’)/I_nll < 85 ﬁ“f(n’ + ‘Yn)—f(n” + S">HB <e, V7.

d —

Taken an arbitrary 7 € J, there exists s_ €] — —
» 2

I 7 -+ % ; therefore
i=mn+ s, with lvﬂg—;é Suppose now |7—1[ <3, and set #=mn+s_:
it results |n| <4, and |n—n|= |t—1| < 3. It follows

fO—fDly =10+ s)—Ffln+ sy <e.

Hence f(¢) is u.c. and 3') is proved.
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