Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Luigi Amerio

Almost-periodic solutions of the equation of Schrödinger type. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 43 (1967), n.3-4, p. 147-153.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1967_8_43_3-4_147_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi matematica. - Almost-periodic solutions of the equation of Schrödinger type ${ }^{(*)}$. Nota $I^{(* *)}$ del Corrisp. Luigi Amerio.

RiASSUnto. - Si assegnano delle condizioni perché l'equazione del tipo di Schrödinger, con operatore e termine noto quasi-periodici, abbia una soluzione quasi-periodica, e delle condizioni perché le autosoluzioni dell'equazione omogenea, con operatore periodico, siano quasi-periodiche.
i.-Introduction and statements. Let X and Y be two complex Hilbert spaces; we assume $\mathrm{X} \subseteq \mathrm{Y}$, separable, dense in Y and with a continuous embedding $\left(\|x\|_{\mathrm{Y}} \leq \sigma\|x\|, \sigma>\mathrm{o}\right.$, where $\|\cdot\|_{\mathrm{Y}},(\cdot, \cdot)_{\mathrm{Y}}$ and $\|\cdot\|,(\cdot, \cdot)$ denote norm and scalar product in Y and X respectively). Put $\mathrm{J}=\{-\infty<$ $<t<+\infty\}$ and $\mathfrak{A}=\mathfrak{L}(\mathrm{X}, \mathrm{X})$: hence \mathfrak{A} denotes the space of linear and bounded operators A , from X to X , with norm $\|\mathrm{A}\|_{\mathfrak{Q}}=\operatorname{Sup}_{\|x\|=1}\|\mathrm{~A} x\|$.

We call "equation of Schrödinger type" the equation [I]

$$
\begin{equation*}
\int_{\mathrm{J}}\left\{i\left(x(t), h^{\prime}(t)\right)_{\mathrm{Y}}+(\mathrm{A}(t) x(t)+f(t), h(t))\right\} d t=\mathrm{o}, \tag{I,I}
\end{equation*}
$$

where the unknown function $x(t)$, the operator $\mathrm{A}(t)$, the known term $f(t)$ and the test function $h(t)$ satisfy the following conditions:
$\left.i_{1}\right) x(t) \in \mathrm{C}(\mathrm{J} ; \mathrm{X})$;
$\left.i_{2}\right) \mathrm{A}(t) \in \mathrm{C}^{1}(\mathrm{~J} ; \mathfrak{A})$, is selfadjoint and verifies the ellipticity condition ($\mathrm{I}, 2$)

$$
(\mathrm{A}(t) x, x) \geq v\|x\|^{2} \quad(v>0)
$$

$\left.i_{3}\right) f(t) \in \mathrm{C}^{1}(\mathrm{~J} ; \mathrm{X})$;
$\left.i_{4}\right) h(t) \in \mathrm{C}(\mathrm{J} ; \mathrm{X}), h^{\prime}(t) \in \mathrm{C}(\mathrm{J} ; \mathrm{Y})$.
$h(t)$ has, in addition, compact support and (1, I) must be true for all test functions $h(t)$.

We denote by $u(t)$ the solutions of the homogeneous equation:

$$
\begin{equation*}
\int_{\mathrm{J}}\left\{i\left(u(t), h^{\prime}(t)\right)_{\mathrm{Y}}+(\mathrm{A}(t) u(t), h(t))\right\} d t=\mathrm{o} . \tag{I,3}
\end{equation*}
$$

(I, I) is the weak form which corresponds, for instance, to the following problem. Let Ω be an open, connected and bounded or unbounded set of the Euclidean space $\mathrm{S}^{m}\left(\zeta=\left\{\zeta_{1}, \cdots, \zeta_{m}\right\}\right)$ and consider the equation:

$$
\begin{align*}
i \frac{\partial x(t, \zeta)}{\partial t}+ & \sum_{j, k}^{1 \cdots m} \frac{\partial}{\partial \zeta_{j}}\left(a_{j k}(t, \zeta) \frac{\partial x(t, \zeta)}{\partial \zeta_{k}}\right)-a(t, \zeta) x(t, \zeta)= \tag{1,4}\\
& =\int_{\Omega} \Phi(t, \zeta, \xi) x(t, \xi) d \xi+f(t, \zeta) \quad(t \in \mathrm{~J}, \zeta \in \Omega)
\end{align*}
$$

(*) Istituto Matematico del Politecnico di Milano. Gruppo di ricerca n. 12 del Comitato Naz. per la Matematica del C.N.R.
(**) Pervenuta all'Accademia il 21 ottobre 1967.

Assume that the coefficients $a_{j k}(t, \zeta), a(t, \zeta)$ are measurable and bounded functions on $\mathrm{J} \times \Omega$ with their partial derivatives with respect to t, and that

$$
\begin{gather*}
a_{j k}(t, \zeta)=\bar{a}_{k j}(t, \zeta) \quad, \sum_{, k}^{1 \cdots m} a_{j k}(t, \zeta) \lambda_{j} \bar{\lambda}_{k} \geq \rho \sum_{1}^{m}\left|\lambda_{j}\right|^{2}, \tag{1,5}\\
a(t, \zeta)>\rho(\rho>0),
\end{gather*}
$$

where $\bar{\alpha}$ denotes the complex conjugate of α.
The second of (1,5) must be valid for all complex values $\lambda_{1}, \cdots, \lambda_{m}$.
Moreover the kernel $\Phi(t, \zeta, \xi)$ is supposed to be, $\forall t \in \mathrm{~J}$, positive semidefinite, selfadjoint and to belong to $\mathrm{L}^{2}(\Omega \times \Omega)$, with its derivative $\Phi_{t}(t, \zeta, \xi)$.

The problem considered consists in finding a solution $x(t, \zeta)$ satisfying the initial condition

$$
\begin{equation*}
x(\mathrm{o}, \zeta)=x_{0}(\zeta) \tag{I,6}
\end{equation*}
$$

and the boundary condition

$$
\begin{equation*}
\left.x(t, \zeta)\right|_{\zeta \in \partial \Omega}=0 \tag{1,7}
\end{equation*}
$$

We assume now

$$
\mathrm{Y}=\mathrm{L}^{2}(\Omega) \quad, \quad \mathrm{X}=\mathrm{H}_{0}^{1}(\Omega)
$$

with the norms
$(\mathrm{I}, 8) \quad\|x\|=\left\{\int_{\Omega}\left(\sum_{1}^{m}\left|\frac{\partial x(\zeta)}{\partial \zeta_{j}}\right|^{2}+|x(\zeta)|^{2}\right) d \zeta\right\}^{1 / 2}=\left\{\sum_{1}^{m}\left\|\frac{\partial x}{\partial \zeta_{j}}\right\|_{\mathrm{V}}^{2}+\|x\|_{\mathrm{Y}}^{2}\right\}^{1 / 2}$.
Hence the embedding of X in Y is continuous.
It results

$$
\begin{aligned}
&(\mathrm{A}(t) x, x)=\int_{\dot{\Omega}}\left\{\sum_{j, k}^{1 \cdots m} a_{j k}(t, \zeta) \frac{\partial x(\zeta)}{\partial \zeta} \frac{\partial \bar{x}(\zeta)}{\partial \zeta}+a(t, \zeta) x(\zeta) \bar{x}(\zeta)\right\} d \zeta+ \\
&+\int_{\Omega} \int_{\Omega} \Phi(t, \zeta, \xi) x(\xi) \bar{x}(\zeta) d \xi d \zeta
\end{aligned}
$$

and ($\mathrm{I}, 2$) is satisfied.
Assume now that the derivatives, with respect to t, of the coefficients $a_{j k}(t, \zeta), a(t, \zeta)$ are continuous, as functions of t, uniformly with respect to $\zeta \in \Omega$; assume moreover that, $\forall t \in \mathrm{~J}$ and $|\tau| \leq \mathrm{I}$, it results

$$
\left|\Phi_{t}(t+\tau, \zeta, \xi)\right| \leq \psi(t, \zeta, \xi) \in \mathrm{L}^{2}(\Omega \times \Omega)
$$

and

$$
\lim _{\tau \rightarrow 0} \int_{\Omega} \int_{\Omega}\left|\Phi_{t}(t+\tau, \zeta, \xi)-\Phi_{t}(t, \zeta, \xi)\right|^{2} d \xi d \zeta=0
$$

Then it is

$$
\begin{aligned}
&\left(\mathrm{A}^{\prime}(t) x, x\right)=\int_{\Omega}\left\{\sum_{j, k}^{1 \cdots m} \frac{\partial a_{j k}(t, \zeta)}{\partial t} \frac{\partial x(\zeta)}{\partial \zeta_{k}} \frac{\partial \bar{x}(\zeta)}{\partial \zeta_{j}}+\frac{\partial a(t, \zeta)}{\partial t} x(\zeta) \bar{x}(\zeta)\right\} d \zeta+ \\
&+\int_{\Omega} \int_{\Omega} \Phi_{t}(t, \zeta, \xi) x(\xi) \bar{x}(\zeta) d \xi d \zeta
\end{aligned}
$$

and the operators $\mathrm{A}(t), \mathrm{A}^{\prime}(t)$ are \mathfrak{A}-continuous.
Setting $x(t)=\{x(t, \zeta) ; \zeta \in \Omega\}, f(t)=\{f(t, \zeta) ; \zeta \in \Omega\}$, we obtain the weak form (I, I) of our problem: the solution $x(t)$ must satisfy the initial condition $x(0)=\left\{x_{0}(\zeta) ; \zeta \in \Omega\right\}$.

Let us now recall the fundamental formulas, valid for the solutions of (I, I) and ($\mathrm{I}, 3$):
a) $\frac{d}{d t}\|x(t)\|_{\mathrm{Y}}^{2}=2 \mathfrak{I}(f(t), x(t))$,
b) $\frac{d}{d t}\{(\mathrm{~A}(t) x(t), x(t))+2 \mathfrak{R}(f(t), x(t))\}=\left(\mathrm{A}^{\prime}(t) x(t), x(t)\right)+$ $+2 \mathfrak{R}\left(f^{\prime}(t), x(t)\right)$,
$\left.a^{\prime}\right)\|u(t)\|_{\mathrm{Y}}=\|u(\mathrm{o})\|_{\mathrm{Y}}$,
b^{\prime}) (if $\left.\mathrm{A}(t)=\mathrm{I}\right)\|u(t)\|=\|u(\mathrm{o})\|$.
a^{\prime}) and b^{\prime}) mean that two principles of conservation of norm hold: for the Y-norm the principle is always true, for the X -norm it is true if $\mathrm{A}(t)=\mathrm{I}$ (to which case we can always reduce our problem, by ($\mathrm{I}, 2$), if $\mathrm{A}(t)=$ const.).

The initial value problem, $x(\mathrm{O})=x_{0}$, for (I, I), has one and only one solution, $x(t), \forall x_{0} \in \mathrm{X}$; moreover $x(t)$ depends continuously on x_{0} and $f(t)$: precisely, \forall interval - $\mathrm{T} \leq t \leq \mathrm{T}$,

$$
\begin{equation*}
\|x(t)\| \leq \mathrm{M}_{\mathrm{T}}\left\{\left\|x_{0}\right\|+\|f(\mathrm{o})\|+\int_{-\mathrm{T}}^{\mathrm{T}}\left\|f^{\prime}(\eta)\right\| d \eta\right\} \tag{1,9}
\end{equation*}
$$

where M_{T} is independent on x_{0} and $f(t)$.
In what follows, when we say that a function $z(t)$ is bounded, or uniformly continuous (u.c.), or uniformly weakly continuous (u.w.c.), we always mean that this occurs on the whole interval J. The range of $z(t)$ will be indicated by $\mathrm{R}_{z(t)}$. Moreover, we shall add the notation of the space where $z(t)$ takes its values, with the exception of the X space: hence $z(t)$ bounded, or u.c., or u.w.c., or almost-periodic (a.p.), or weakly almost-periodic (w.a.p.) means $z(t) \mathrm{X}$-bounded or X -u.c., or X -u.w.c., or X -a.p., or X-w.a.p.

In this paper, we study equations (I, I) and $\cdot(\mathrm{I}, 3)$ with the essential aim to give conditions for the existence of one a.p. solution of (I, I), if $\mathrm{A}(t)$ and $f(t)$ are a.p., and for the existence of a.p. eigensolutions of $(\mathrm{I}, 3)$, if $\mathrm{A}(t)$ is periodic.

For the first equation we are in the same order of ideas of a preceding paper [2] (concerning the extension of Favard's theorems to abstract equa-
tions): we may note, however, that the statements concerning equation (I, I) result notable wider, because of the peculiar properties of such equation.

Let us add that, for studying equation ($\mathrm{I}, 3$), we shall use a generalisation of Bochner's fundamental criterion of almost-periodicity (cfr. observation III, at the end of this \S).

Let us give now the following definitions.
Let $z(t)$ be a bounded function and put:

$$
\begin{equation*}
\varphi(z ; v, \tau)=\operatorname{Sup}_{\mathrm{J}}|(z(t+\tau)-z(t), v)| \quad(\forall v \in \mathrm{X}, \tau \in \mathrm{~J}) \tag{I,IO}
\end{equation*}
$$

Let Γ_{z} be the set (obviously convex) of all solutions $x(t)$, bounded and such that

$$
\begin{equation*}
\varphi(x ; v, \tau) \leq \varphi(z ; v, \tau) \quad(\forall v \in \mathrm{X}, \tau \in \mathrm{~J}) . \tag{I,I2}
\end{equation*}
$$

Let us enunciate now the statements which will be proved in the following §§ 2, 3, 4 .
I. Minimax theorem.-Let us assume that there exists a bounded solution, $z(t)$ (that is Γ_{z} is not empty).

Then, if
($\mathrm{I}, \mathrm{I} 3$)

$$
\tilde{\mu}=\operatorname{Inf}_{\Gamma_{z}} \mu(x)
$$

there exists, in Γ_{z}, one and only one solution, $\tilde{x}(t)$, such that

$$
\begin{equation*}
\mu(\stackrel{\rightharpoonup}{x})=\tilde{\mu} . \tag{I,I4}
\end{equation*}
$$

Whe shall call $\tilde{x}(t)$ the minimal solution, in Γ_{z}.
Corollary.-A (t) and $f(t)$ periodic, with period $\omega \Rightarrow \tilde{x}(t)$ periodic, with period ω.
II. Almost-periodicity theorem.-Let us assume that:

1) the operators $\mathrm{A}(t), \mathrm{A}^{\prime}(t)$ are $\mathfrak{A}-a . p$;
2) the functions $f(t), f^{\prime}(t)$ are a.p.;
3) there exists a solution, $z(t)$, bounded and u.w.c.

Then the minimal solutions, $\tilde{x}(t)$, is w.a.p. and $\mathrm{Y}-a . p$. Moreover, if $z(t)$, bounded, is u.c., then $\dot{x}(t)$ is a.p.

Let us now enunciate an ALMOST-PERIODICITY THEOREM FOR THE EIGENSOLUTIONS $u(t)$:
III.-Let us assume that:
I) the operator $\mathrm{A}(t)$ is periodic;
2) the embedding of X in Y is compact.

Then every bounded eigensolution, $u(t)$, is w.a.p. and $\mathrm{Y}-a . p$. If $u(t)$ is bounded and u.c., then $u(t)$ is a.p.

Theorem III gives an extension to equation ($\mathrm{I}, 3$), with periodic operator, of an interesting property of the solutions of linear ordinary homogeneous systems, with periodic coefficients: bounded solution of such systems are in fact a.p., since, by a classical theorem of Liapunov, any periodic system can be reduced to one with constant coefficients, by means of a linear periodic non singular transformation.

Observation I.-If A $(t)=\mathrm{I}$, then the hypothesis of (weak or strong) uniform continuity of the bounded solution $z(t)$, or $u(t)$, can be eliminated (cfr. §§ 3, 4).

Observation II.-By (I, II) it follows that $z(t)$ u.w.c. $\Rightarrow \check{x}(t)$ u.w.c.
Setting, moreover,

$$
\begin{equation*}
\varphi(x ; \tau)=\operatorname{Sup}_{\mathrm{J}}\|x(t+\tau)-x(t)\| \tag{1,15}
\end{equation*}
$$

we have, by (I, II),

$$
\begin{equation*}
\varphi(x ; \tau) \leq \varphi(z ; \tau) . \tag{I,I6}
\end{equation*}
$$

Hence $z(t)$ u.c. $\Rightarrow \stackrel{x}{x}(t)$ u.c.
Observation III.-For proving theorem III we shall use the following generalisation of Bochner's criterion. For clarity's sake, let us recall, at first, the way for obtaining such criterion.

Let B be a Banach space, and let K be the Banach space of all continuous and bounded functions $f(t)$, from J to $\mathrm{B}\left(\mathrm{K}=\mathrm{C}(\mathrm{J} ; \mathrm{B}) \cap \mathrm{L}^{\infty}(\mathrm{J} ; \mathrm{B})\right)$, with norm corresponding to uniform convergence: if f is the point of K which corresponds to the function $f(t)$, it will therefore be

$$
\begin{equation*}
\tilde{f}=\{f(t) ; t \in \mathrm{~J}\} \quad, \quad\|\tilde{f}\|_{\mathrm{K}}=\operatorname{Sup}_{\mathrm{J}}\|f(t)\|_{\mathrm{B}} \tag{1,17}
\end{equation*}
$$

Let us now consider, together with $f(t)$, the set of the translates $f(t+s)$, $\forall s \in \mathrm{~J}$. If $\tilde{f}(s)=\{f(t+s) ; t \in \mathrm{~J}\}$ we have defined an application, that we shall call Bochner's transform, $s \rightarrow \vec{f}(s)$, from J to K ; furthermore $\vec{f}(0)=\vec{f}$.

The range $R_{\vec{f}(s)}$ of Bochner's transform has the following properties.
a) $\mathrm{R}_{\vec{f}(s)}$ is a spherical line: in fact

$$
\begin{equation*}
\|\tilde{f}(s)\|_{\mathrm{K}}=\operatorname{Sup}_{\mathrm{J}}\|f(t+s)\|_{\mathrm{B}}=\operatorname{Sup}_{\mathrm{J}}\|f(t)\|_{\mathrm{B}}=\|\tilde{f}(\mathrm{o})\|_{\mathrm{K}} \tag{I,I8}
\end{equation*}
$$

$\beta \mathrm{R}_{\vec{f}(s)}$ is described in such a way that the "principle of conservation of distances" holds: in fact, by ($\mathrm{I}, 18$),
$(\mathrm{I}, \mathrm{I} 9) \quad\|\vec{f}(s+\tau)-\vec{f}(s)\|_{\mathrm{K}}=\|\vec{f}(\tau)-\vec{f}(\mathrm{o})\|_{\mathrm{K}}=\operatorname{Sup}_{\mathrm{J}}\|f(t+\tau)-f(t)\|_{\mathrm{B}} ;$
ү) $f(t)$ a.p. $\Longleftrightarrow \vec{f}(s)$ a.p., with the same ε-almost-periods.
α), β) and γ) are obvious. Very deep is property
ס) $\vec{f}(s)$ a.p. $\Leftrightarrow \mathrm{R}_{\vec{f}(s)}$ relatively compact (r.c.).
By γ) and δ) we deduce Bochner's criterion: $f(t)$ a.p. $\Longleftrightarrow R_{\vec{f}(s)}$ r.c.
Let us now prove the following generalisation of δ):
12. - RENDICONTI 1967, Vol. XLIII, fasc. 3-4.
$\left.\delta^{\prime}\right) \vec{f}(s)$ a.p. \Leftrightarrow there exists a relatively dense sequence $\left\{s_{n}\right\}$ such that the sequence $\left\{\tilde{f}\left(s_{n}\right)\right\}$ is r.c.
(For instance, $f(t)$ is a.p. if the sequence $\{\vec{f}(n)\} \quad(n=0, \pm \mathrm{I}, \pm 2, \cdots)$ is r.c.).
The condition is obviously necessary, since $f(t)$ a.p. \Rightarrow any sequence $\left\{\vec{f}\left(s_{n}\right)\right\}$ r.c.

Let us now prove that the condition is sufficient. For that, we shall prove, at first, that, $\forall \varepsilon>0$, the set $\{\tau\}_{\varepsilon}$, of the ε-a.p., is relatively dense (r.d.).

Since $\left\{\vec{f}\left(s_{n}\right)\right\}$ is r.c., there exist k values (depending on $\left.\varepsilon\right): \vec{f}\left(s_{1,0}\right), \cdots, \vec{f}\left(s_{k, 0}\right)$, such that it results, $\forall n$,

$$
\tilde{f}\left(s_{n}\right) \in \bigcup_{j}^{1 \cdots k}\left(\tilde{f}\left(s_{j, 0}\right), \varepsilon\right)
$$

(where (\vec{f}, ε) denotes the open sphere with centre \vec{f} and radius ε).
Let us now divide the sequence $\left\{\vec{f}\left(s_{n}\right)\right\}$ into k subsequences $\left\{\vec{f}\left(s_{j, n}\right)\right\}$ such that, $\forall j$,

$$
\begin{equation*}
\left\|\vec{f}\left(s_{j, n}\right)-\vec{f}\left(s_{j, 0}\right)\right\|_{\mathrm{K}}<\varepsilon, \tag{1,20}
\end{equation*}
$$

that is, by ($\mathrm{I}, 19$),

$$
\begin{equation*}
\left\|\stackrel{\rightharpoonup}{f}\left(s_{j, n}-s_{j, 0}\right)-\vec{f}(0)\right\|_{\mathrm{K}}<\varepsilon . \tag{I,2I}
\end{equation*}
$$

Hence, by ($\mathrm{I}, \mathrm{I} 9$),

$$
\begin{equation*}
\tau_{j, n}=s_{j, n}-s_{j, 0} \tag{1,22}
\end{equation*}
$$

is an ε-a.p.
Let us now prove that $\bigcup_{j}^{1 \cdots k}\left\{\tau_{j, n}\right\}$ is a r.d. sequence. Let $d>0$ be an inclusion length for the r.d. sequence $\left\{s_{n}\right\}$ and put

$$
\begin{gather*}
m=\min _{1 \leq j \leq k}\left\{-s_{j, 0}\right\} \quad, \quad \mathrm{M}=\max _{1 \leq j \leq k}\left\{-s_{j, 0}\right\}, \tag{1,23}\\
l=\mathrm{M}-m+d \tag{1,24}
\end{gather*}
$$

Consider an interval $a^{-1} a+l, a$ arbitrary. The interval $a-m^{\text {- }}$ $a-m+d$ contains one point, $s_{j_{1}, n_{1}}$, at least, of $\left\{s_{n}\right\}$: hence, by (1,23),

$$
a-m+m \leq s_{j_{1}, n_{1}}-s_{j_{1}, 0} \leq a-m+d+\mathrm{M}
$$

that is, by (1,22),

$$
a \leq \tau_{j_{i}, n_{2}} \leq a+l
$$

and the thesis is proved.
We have now to prove that $\vec{f}(s)$ is continuous, that is, by (1,19), that $f(t)$ is u.c.

Setting $\Delta=\{-d \leq \eta \leq d\}$, let $\mathrm{Z}=\mathrm{C}(\Delta ; \mathrm{B})$ be the space of all functions $z(\eta)$ continuous from Δ to B : hence

$$
\begin{equation*}
z=\{z(\eta) ; \eta \in \Delta\} \quad, \quad\|z\|_{Z}=\max _{\Delta}\|z(\eta)\|_{B} . \tag{1,25}
\end{equation*}
$$

Put $z_{n}=\left\{f\left(\eta+s_{n}\right) ; \eta \in \Delta\right)$ and observe that, since

$$
\left\|z_{n}-z_{m}\right\|_{\mathrm{Z}} \leq\left\|\tilde{f}\left(s_{n}\right)-\tilde{f}\left(s_{m}\right)\right\|_{\mathrm{K}},
$$

the sequence $\left\{z_{n}\right\}$ is, as $\left\{\vec{f}\left(s_{n}\right)\right\}$, r.c.
Since $f(t)$ is continuous, it follows that the functions $f\left(\eta+s_{n}\right)$ are equallycontinuous on Δ : hence to every $\varepsilon>0$ there corresponds δ_{ε}, $0 \leq \delta_{\varepsilon} \leq \frac{d}{2}$, such that

$$
\eta^{\prime}, \eta^{\prime \prime} \in \Delta,\left|\eta^{\prime \prime}-\eta^{\prime}\right| \leq \delta_{\varepsilon} \Rightarrow\left\|f\left(\eta^{\prime}+s_{n}\right)-f\left(\eta^{\prime \prime}+s_{n}\right)\right\|_{\mathrm{B}} \leq \varepsilon, \quad \forall n .
$$

Taken an arbitrary $\bar{t} \in \mathrm{~J}$, there exists $s_{\bar{n}} \in \overline{\bar{l}}-\frac{d}{2}{ }^{-1} \overline{\bar{t}}+\frac{d}{2}$; therefore $\bar{t}=\bar{\eta}+s_{\bar{n}}$, with $|\bar{\eta}| \leq \frac{d}{2}$. Suppose now $|t-\bar{\eta}| \leq \delta_{\varepsilon}$ and set $t=\eta+s_{\bar{n}}$: it results $|\eta| \leq d$, and $|\eta-\bar{\eta}|=|t-\bar{\eta}| \leq \delta_{\varepsilon}$. It follows

$$
\|f(t)-f(\bar{t})\|_{\mathrm{B}}=\left\|f\left(\eta+s_{\bar{n}}\right)-f\left(\eta+s_{\bar{n}}\right)\right\|_{\mathrm{B}} \leq \varepsilon .
$$

Hence $f(t)$ is u.c. and δ^{\prime}) is proved.

References.

[I] Cfr. J. L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris.
[2] L. Amerio, Sulle equazioni differenziali quasi-periodiche astratte, «Ric. di Mat.», 9 (1960). Cfr. also: Solutions presque-périodiques d'équations fonctionnelles dans les espaces de Hilbert, Coll. sur l'Analyse fonctionnelle, Liège (4-6 Mai, 1964); Abstract almost-periodic functions and functional equations, "Boll. U.M.I.», 20 (1965).

