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RENDICONTI

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali
Ferte 1967 (Settembre—Ottobre)

NOTE DI SOCI

(Ogni Nota porta a pie’ di pagina la data di arrivo o di presentazione).

Matematica. — Exceptional singularities of an algebroid surface
and therr reduction. Nota ™ del Socio Straniero Oscar Zariskr 9.

R1assUNTO. — In lavori precedenti I’Autore ha definito il concetto di singolaritd
eccezionale di una superficie algebrica o algebroide F e ha dato un procedimento canonico
per la risoluzione delle singolaritd di F nel caso in cui F & priva di singolaritd eccezionali.
In questa Nota il processo dello scioglimento delle singolarita della F viene completato.
L’Autore da, cio¢, un procedimento canonico per la riduzione del massimo ¢(F) delle molte-
plicitd dei punti singolari eccezionali della F (i quali sono sempre in numero finito).

INTRODUCTION. We deal with a (not necessarily irreducible) algebraic or
algebroid surface F, defined over an algebraically closed ground field £ of
characteristic zero and having the property that locally, at each of its closed
points, F can be embedded in the affine 3—space over £ (we shall often refer
to this property of F by saying that F is an ‘“ embedded surface ). If F is
algebroid, we are dealing only with the local case, i.e., we assume that F is
the spectrum of a complete equidimensional local ring o, of Krull dimension 2,
having 4 as field of representatives and free from nilpotent elements (other
than zero). In the algebroid case, therefore, F has only one closed point
(represented by the maximal ideal m of p); this point will be referred to ‘as
the center of F.

In [5] we have defined the concept of eguisingularity on F. If W is an
irreducible singular curve of F and Q is a point of W, we know what is
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meant by saying that F is equisingular, at Q, along W. We recall from [5]
that equisingularity of F at Q, along W, implies that (1) F is equimultiple,
at Q, along W, and that (2) Q is a simple point of the total singular curve
S of F (S = union of the irreducible singular curves of F).

Definition: A simple point Q of S such that ¥ is equisingular, at Q, along
the irreducible component of S passing through Q, is said to be a singular point
of dimensionality type 1. AU other singular points of F are called exceptional
singular points.

The set of exceptional singularities of F consists therefore of the following
points of F: (1) the Zsolated singularities of F (i.e., the singular points which
do not lie on singular curves); (2) all the singular points of the total singular
curve S of F; (3) certain simple points of S. That the set of exceptional
singularities of F is finite follows from Theorem 4.4, part (&), of [5], or also
from Theorem 5.2, (the Jacobian criterion of equisingularity) of [5]. If F is
algebroid then the center O of F is the only possible exceptional singularity
of F (since the generic point of any irreducible component W of the singular
curve S is not an exceptional singularity).

We have indicated in [3] (Note I, Proposition 5) and have proved in [3]
(Theorem 7.4 and Corollary 7.5) that if F has no exceptional singularities,
then the normalization F of F is non-singular and is obtainable from F by
a finite sequence of monoidal transformations T,: F;; 1 —F;, ¢ =o0,1,---,N;
Fo = F; Fxy1 = F), such that each F, is free from exceptional singulari-
ties and the center of each T, is an irreducible singular curve of F;.

For the convenience of the reader we shall state now in some detail the
precise facts which underlie the cited theorem 7.4 and which have been brought
out in our paper [5] for any embedded surface.

(@) Each irreducible component W of the total singular curve of S
of F determines an eguivalence class C (F, W) of singularities of embedded
(i.e., plane) algebroid curves (in the sense of our paper [4]), with the property
that if Q is any point of W which is not an exceptional singularity of F,
and if G is any non-singular algebroid surface (in the affine 3-space in which F
1s locally embedded at Q) which is transversal to the curve W, at Q, then
the section of F with G is an algebroid cxrve I' (i.e., has no multiple compo-
nents) and this curve I' has at Q) a singularity w/hick belongs to the equivalence
class C (F, W). :

(6) Let G (F, W), CF,W),---,C, (F, W) be the set of equiva-
lence classes (of algebroid plane curves) which represent the quadratic trans-
form of C (F, W). Here m is the number of distinct tangent lines of any
member I' of the class C (F, W), so that the quadratic transform I' of I’
splits therefore, into s algebroid curves I'y, I'y,---, I},, having distinct
centers 01, Og, -+, 0,, and C; (F, W) is the equivalence class determined
by I';.  (We note that the # classes C, (F, W) need not be distinct). Let F’
be the transform of F by the monoidal transformation T :F — F, with
center W, and let W’ be the proper transform of W on F’ (whence W’ is a
curve, which may be reducible, and each irreducible component of W’
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corresponds to W). Let Q be, as above, any point of W which is not an
exceptional singularity of F. Then the following is true: (1) the total transform
of Q on F’ consists exactly of points Q1 ,Q3,--+,Q,,, and these points
lie on W’;  (2) each point Q; is a simple point of W', and if W; is the
irreducible component of W’ which contains Q; then F' is equisingular
at Q;, along W; (the 7 curves W; need not be distinct); (3) for a suitable
ordering of the indices we have C(F',W))=C;(F, W) ¢ =1,2,---, m);
more explicity, if I' is as in (¢) and T, T3, -, I}, are as in (6), then T is
a section of F’, transversal to W} at Q;.

(¢) Let F* denote the surface obtained from F by deleting all the ex-
ceptional smgularttleS of F. From the fact that TH{Q} is a finite set for
any point Q on F* follows that if we get F* = 771 (F" }, then F'™* is dominated
by the normalization of F* (and is the monoidal transtorm of F*, with
center W F*). Furthermore, also F'* is free from exceptional singularities.
In view of the relations C (¥, W) =C;(F,W) (G(=1,2, - , 72) noted
in (4), and since any plane algebroid curve can be desmgulanzed by a finite
number of successive quadratic transformations, it follows.that by a finite
number of successive monoidal transformations, centered at singular curves,
we obtain the normalization F* of F* and that F* is non-singular.

In particular, if F has no exceptional singularities, then F* = F, F* — T,
Thus, in the absence of exceptional singularities, the problem of reductlon
of singularities if F is essentially a problem in dimension 1: the reduction
process consists of and runs parallel to the reduction of the singularities
of the curve sections of F which are transversal to the total singular curve S
of F. Itis for this reason that we say that in this case all the singularities of F*
are of dimensionality type 1.- The situation is particularly illuminating in
the case in which F is a complex-analytic surface. In this case it can be
proved (see Whitney [2], § 11-12, and our forthcoming paper [6], § 7) that
if Q and W are as in (4) and we regard F* as imbedded in affine As, locally
at Q, in such a way that W is a line in As, then the natural vector bundle
structure of Ag, over W as base space, induces on F¥, in the neighborhood
of Q, the structure of fibre bundle over W, the fibre being any curve in the
equivalence class C (F,W).

In the general case, F may have exceptional singularities. The reduction
of sihgularities of F can thus be made to depend on the elimination of the
exceptional singularities of the surface. The object of this paper is to exhibit
an essentially canonical procedure for the elimination of the exceptional
singularities of F.

§ 1. REDUCTION TO *‘ QUASI-ORDINARY >’ MULTIPLE POINTS.

By a permzsszble transformation of F we shall mean a birational regular
map T:F —F of one of the following types:
(1) A locally quadratic transformation whose center is an exceptional
singular point of F.
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(2) A monoidal transformation whose center is an irreducible singular
curve I' of F, provided I' has the following two properties: (2 a) if I' is #—fold
for F, every point of I' is m—fold for F; (2 6) the only singularities of T" are
ordinary double points.

It is quite harmless to allow I' to have ordinary double points, because
it is easy to see that if O is an ordinary double point of I'" and if O is also
m—fold for F (in accordance with condition (2 @)), then the monoidal trans-
formation T : F' — F, with center I, is Jocally, at O, the product Ty Ty of
two permissible monoidal transformations

Ti:FB—-F , Te:F —F,

centered at regular algebroid curves. Namely, if Iy and I's are the two branches
of I at O, then Ty is centered at I'1, while Ty is centered at the Ty L transform
Fg’l of F2 @,

We note the following consequence: for any point P of I' (including the
point P = O) the set T™'{P} is finite, and hence F’ is dominated by the
normalization of F (see [5], Proposition 7.2).

We denote by e (F) the maximum of the multiplicities of the exceptional
singular points of I, and we set s = ¢ (F). The object of the rest of this paper
will be to show that by a finite number of permissible transformations it is
possible to transform F into a surface F such that ¢ (F) <<e (F). This will achieve
the object stated at the end of the introduction. The actual permissible transfor-
mations which we shall have to use in order to reduce the numerical character
e (F) will always have s—fold center (s = ¢ (F)). We note that if T: F—F
is a permissible transformation and if F* is the surface obtained from F
after deleting the exceptional singularities of F, then the inverse image of F*
on F’ is dominated by the normalization of F* (see Introduction). Therefore,
the non—singular transform Fy of F which our reduction process will ultimately
lead us to, will be such that the inverse image of F* on Fy is the normal-
ization of F¥*.

Definition 1.1.- A singular point P of F is called' quasi-ordinary if there
exist local transversal parameters xy x5 of P on F suck that the critical algebroid
curve N, ., associated with these parameters has an ordinary double point ?).

(1) Proof. With F embedded in As, locally at O, we may assume that I' is defined
by the equations xy = z = o. Since I' is m—fold, the local equation of F is of the form

m
Y Ai(x,y,2) 2"y 2" 7" = o, where the A; are power series in x, ¥,z Since O is also
=0

m—fold, we must have Ay (0, 0,0)==0. By the Weierstrass preparation theorem we may
then assume that Ay (x, ¥,2) is 1. If D denotes the local ring of O on F, then it follows
that z/xzy is integral over v, and hence, locally at O, the T~ '~transform of F is Spec 0 [z/xy].

We set F1 = Spec 0 [z/x],21 = % , D1 = the local ring of the point O1:x =y =21 =0

of Fi. Then I'i is the branch x =2z=o0,I%,1 is the regular arc y =z = o0, and
F’ = Spec 0y [z1/y]. Note that both I2,1 and O; are z—fold for Fi.

(2) For the definition of local transversal parameters and of Ag,x,, see [5], definition
2.3 and the end of section 2.
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Note that a quasi-ordinary point is necessarily an exceptional singularity,
in view of [5], Theorem j5.2.

The first step of our reduction process will result from the following:

Proposition 1.2. By successive locally quadratic transformations, center-
ed at exceptional s—fold points, it is possible to obtain a transform Fi of F such
that either ¢ (F1) <s, or e (F1) = s and all exceptional s—fold points of F1 are
quast-ordinary.

Proof: Let P be an exceptional singular point of F, of multiplicity s.
Let T:F —F be the locally quadratic transformation of F, with center P.
Let P’ be any point of F" which corresponds to P. We fix a system of local
coordinates x; , x5 ,2 at P such that x;,x, are transversal parameters at P.
The local equation of F at P is then of the form

(I) f(xlw”(sz)=ZJ+A1<X1>952>3:_1—l‘"‘“l'As(xhxz):O,

where A; (%1, x5), is a power series whose initial form is of degree >i7. Let
D (x1, x5) be the discriminant of f with respect to 2. From (1) it follows at

once that %, % cannot be simultaneously zero at P’. Hence either j—i , xil
or 2 £ belong to the local ring b’ of P’ on F'. Let, say, == , — belong to o’
P o . ) ) 71 1] 71 )

. X z . .
and let, say, @ and & be the m’'-residues of —x—z o where m’ is the maximal
1 1

ideal of o’. Upon replacing x5 and z by xy — ax; and z — bx; respectively,
we may assume that a =4 = o. If we set then

’ ro_ X2 ’ r4
X1 =M ’ Xg = — ’ g = —,

1 x1
then x; , x5, & will be local coordinates at P’, and we will have A, (a1, x1 x3) =

= a1 A; (21, %), where Aj(x;,x3) is a power series in xj, 3. We set
@) F (X, X, Z) =2+ A (X, X 2 ALK, X,
wherice
fX, XXy, X Z2) = X F (X, X, Z).

Then
(3) f’<xi,xé,2,)=O
is a local equation of F’, at P’ (and necessarily, A;(o,0) =0, since
f (0,0,0)=o0). ,

Suppose now that the multiplicity of P’ for F’ is still s (by (2), it cannot
be greater than s). Then two things must happen simultaneously: (1) Z'= o
must be an s—fold root of the polynomial /' (0,0,Z’), i.e,, we must have
A; (Q ,0)=o0, for ¢=1,2,---,5; (2) x1,x must be transversal local
parameters at P’. The discriminant D’ (x}, x3) of F’, with respec to ¢, is
related to the discriminant D (x; , x5) of f, with respect to z, by the following
equation:

)] D (xll , 11 .?C,2> = 2"V D’ (xll , xlg)
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If then A;;,x; is the local critical curve of F  at P, associated with the
parameters xy, 73, then it follows from (4) that A;;,x; is contained in the
total transform of A, ., under the quadratic transformation centered at the
center x; = x; =0 of A, ,, .

Since the number of exceptional s—fold points of F' which correspond
to P is finite, and since it is known that after a finite number of locally quad-
ratic transformations we get a total transform of A, . having only ordinary
double points, the proposition is proved.

From now on we shall assume that all the exceptional singularities of F,
of highest multiplicity s, are quasi-ordinary singularities of F.

§ 2. ANALYSIS OF QUASI-ORDINARY MULTIPLE POINTS.

Let P be a quasi-ordinary s—fold point of F, where s = ¢ (F), and let,
then, x; and x, be local transversal parameters at P such that the local critical
curve A, ., has an ordinary double point at the origin x; = x, = o. By a
biholomorphic transformation of the local parameters x; , x5 we can arrange
that A, ., consists of the lines x; = 0 and x, = 0. It is then well known ®
(the ground field # being algebraically closed and of characteristic zero)
that each of the s roots z, of the defining equation (1) of F is a fractional
power series in x; , xy:

(5) Za = Qo (Z]_ ) xz) s Pa <O ) O) =0,

where by a fractional power series in x;, x, we mean a power séries in x; , x,
with rational, non-negative exponents, having bounded denominators.

By a fractional monomial we shall mean a monomial x{* x5 where o,
and oy are rational, non—negative numbers. Given two fractional monomials
M, , M,, with M, = x{* x}7% ( = 1, 2), we say that M, divides M, if o, . < o
for j=1, 2, in other words: if the quotient My|M; is a fractional monomial.
Since the discriminant D (x;, x5) of f (%, x5;Z) is, by assumption, of the
form i #3" € (%1, xp), where 7, and #, are positive integers and e (xy , x5)
is a unit in the power series ring £ [[x;, %], it follows that we have

(6) za—zﬁ:MaBsaﬁ(xl,xz), ocj:ﬁ ;o a,B=1,2, -5,

where M, is a fractional monomial in x; , x, and € (%1, %) is a fractional
power series such that €,5 (0,0)==0. Let M be the common divisor of the
s (s=1)[2 monomials M,g:

Y
M = a1 257,

where 2y and Ay are therefore non-negative rational numbers,

(3) See, for instance, Abhyankar [1], Theorem 3.
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Proposition 2.1. There exists an integral power series g (xy,x) such
that for each o = 1,2, ---,5 we have

(7) Zq — & (xl ) xz) + xiu x%g Ga (xl ) .Xg),

where Gy (21, xg) 15 a fractional power series and where for each index o there
exists an index B such that G, (0,0)=]=Gg (0,0). Furthermore, we have

(8) )\1 “l— 7\2 g I.
Proof: From the identity
(9) Map op + Mpy epy + Mya ya = 0

which holds for any three indices a«, @, y, follows that either M,; divides
Mg, or Mg, divides Myg. As a consequence, for any fixed « it is true that
the s — 1 monomial M,; are completely ordered by the divisibility relation.

If, then, we set, M, = highest common divisor of the Mpg@B=1,2,"-s5;
B == ), then M, is one of the monomials M, and we have, furthermore,
that xi“‘ x%z is the highest common divisor of M;, My ,---, M,.

We assert that My = My =---= M,. For, let, say, M; = My, and

let o, B be two distinct indices, different from 1; assume also that, say, « == 2.
We have that My, divides My,. From the identity (9) follows that if, say,
Mgg divides My, , then Mg also divides M. Hence M; (= M;,) divides Ma,,,
for all «==2 (including « = 1, since My, =M,;). Hence M; divides M,.
Similarly, My must divide My. Hence M; = My, and similarly M; = M,
fora =2,3, -+,

We go back to the power series ¢, (¥;,%,) in (5) and we denote by
& (1, x9) the sum of those terms of ¢; (#;, #) which are not divisible by
2t 5. Thus, we can write

Ay A
5 =4 <xl ) xZ) + xll x22 Gl. (.xl ’ Xz),

where Gy (¥, %y) is a fractional power series. We have, for each o= 1:
2o=21+ (zg—21) =g (21, %) + b Gy (w1, 23) + Mg18q,1 (#1, x5). Since
xi“‘ xy* divides M, 1, this last expression of z, is indeed of the form (7).
For fixed « we have g, —z2 = 21 25 (G, (21, x9) — Gp (21, x3)). Since we
know that for some B we must have My = M, = 21" 2%, it follows from 6)
that for that particular 8 (whose value depends on «) we must have
G (2, , %9) — Gg (%1, %) = &og (¥, ¥), Whence G, (0, 0)==Gj (0, 0).

To prove that g (x1, ) is an zntegral power series, assume the contrary.
Let

il U
P1 (xl ) xZ) = E Ciy xlm J\fé m: <£z'j € é)
2,7
and let " 2¥”™ be a monomial, not divisible by 21 % such that Cpy = O,

and assume that at least one of the exponents p/m , ¢/m is not an integer.
It o denotes a primitive ™ root of unity and @, é are arbitrary integers,
then the power series

TORPRR P o
7
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represents one of the conjugates of z and is therefore equal to one of the
power series @, (%1, %) (@ =1,2,---,5). Let d be the highest common
divisor of p and g. We choose the integers @ and & so as to have ap + bg =
Since & == 0 (mod ) it follows that the coefficient ¢,, w? of the monomlal
2" 24" is different from ¢p- Hence U (x1,x3) = @y (21, %5), with a==1,
and the monomial x{”” x§™ actually occurs in the power series @, (% , %) —

— ¢ (%1, %5). Therefore Mla must d1v1de 4" 24", and hence-a fortiori-

. . "
2 x5 must divide 27 2 " (since a7 = =M, =My =---=M,). This is
in contradiction with our choice of the monomial 2" 2/'”.

Finally, to prove (8), we observe that

(10) flninn,2) =TT 2 g (i, m) =

= 1:[1 (Z —g (%1, 2) — 21" 25" G, (%1, x9)).

Since the origin P is an s—field point of F, the terms of least degree in f must
be of degree s. Now each of the s factors Z — ¢, (¥, , x,) contains terms of
degree 1 (for istance, the term Z). Hence, in each of these factors the terms
of lowest degree must be of degree 1. Now, every term in g (x;,xp) is of
degree = 1 (since the relation f (0, 0,0) = o implies g (0, 0) = 0). Hence,
for each ®=1,2, -, it is true that in the fractional power series
21 25 Gy (%1, %) the terms of lowest degree must be of degree = 1. From
the fact that G, (0,0)==Gg (0,0) for some pair of indices «, B, follows
that G, (0,0)==o0 for some index «. This implies that A 4+ A, = 1, and
completes the proof.

Proposition 2.2. Let P be a quasi-ordinary s—field point of ¥ and let (1)
be the local equation of F at P, where we assume that x, , x4 are local transversal
Dparameters and that the critical curve N, ., consists of the two lines x; = o
and xy = 0. Let U; (i =1, 2) denote the (locally) irreducible algebroid curve
through P, defined by the equations

(11) iz, =0 Z—I‘M:O

Then 'y and Us are the only possible locally irreducible s—fold curves of F through P,
and U; is s—fold for F if and only if \; = 1. Furthermore, if W is any irreducible
s-fold curve of ¥ passing through P (whence the local component of W at P is
either one of the curves Iy, Ty or their union) and if the monoidal tra%sformaz‘zon
T : ¥'—F with center W has the property that the (necessamly Sinite) set T~ {P}
contains a point P’ which is still s—fold for ¥, then T “(PY="P and P, if
exceptional for ¥', is a quasi—ordinary szngulamz‘y of F'.

Proof: Let m be the projection of F onto the (x; , #,)-plane defined gener-
ically by m (%, %3,2) = (x1,x). Let I' be an irreducible algebroid curve
on F through P which is singular for F. Then = (I') must be contained in
A, . ; in other words, I' is contained in one of the planes x; = 0, x5 = 0.
Let, say, x; = o on I'. The generic point of I' has then coordinates X; = o,
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Xy =& ,Z = ¥, where £ is a trascendental over 2 and where { is a root of
the polynomial f(0,%,Z) in Z. If I‘ is s—fold, then ¢ must be an s—fold of
this polynomial (which has degree s in Z). Hence, in this case, we must have

f(0,8,2) = (Z— ¥y, showing that {=— 225 15 other words, T
is necessarily the curve I't defined in (11).
Aq (f‘f1 ) ¥3)

Upon replacing z by z 4 we may assume that A; (%, x,) is
zero and that consequently I'; is the line x; = 2 = o. This change of z affects
only the power series g (x;,x,) in (7), but not the integers A, A,.
Assume that I't, say, is indeed s—fold for F. Each term of the power series
f(xy,%5,Z) must then be of degree = s in x;, Z. Using the factorization (Io) of f
we deduce that each of the s fractional power series g (xy, x3)-+ 21" %5* G, (¥1, )
must be free from terms of degree <1 in x;. Since g(x;,x,) is an
integral power series and 2; + Ay = 1, it follows that }; = 1. Conversely,
assume that A; = 1. Then each factor Z — ¢, (x1, xp) in (10) is of degree
=1in xy,Z —g (%1, 49). Hence the curve I' defined by ;=7 — g (x; , x5)==0

is s—fold for F. This implies that g(o,%) = — 225 " and thus

g (0, &) =0 (since we have assumed that A; (x1, x;) is zero). Hence g (x; , x3)
is divisible by x;, and consequently the curve I' coincides with the curve
I'y : x4y = 2 = o, which is thus s—fold for F.

Let now W and T : F'— F be as in the proposition. If W consists, lo-
cally at P, of both curves I'y and I'y , T is a product of two monoidal transfor-
mations with locally irreducible s—fold curves as center. Hence, to complete
the proof of the proposition, it is sufficient to consider the case in which W
is locally irreducible at P, say W =TIy :x; =z = 0. We know that in this
case g (x1, xg) is divisible by x; and that 2; = 1. Hence z/x; is an integral
function of x; , x5, showing that if P’ is any point of T™'{P} then z/x1 be-
longs to the local ring of P" on F'.

A set of local coordinates at P’ (i.e., a basis of the maximal ideal of the

local ring of P’) is then given by xy, x5, ', where 2’ = f« — ¢ and ¢ is the
1

constant term ¢, of one of the fractional power series

g (w1, xo)[ey + 21 2y Gy (21, %9).

Now, if we set f(xy,x9, 21 (&4 ) =21 f (x1,%5,2), and if we assume
that P’ is an s—fold point of F’, then o must be an s—fold root of the poly-
nomial f/* (0, 0,Z") (which has degree s in Z'). It follows that in this case
all the ¢, are equal to ¢, showing that T™' {P} consists of the single point

= (0,0,0). Since P’ is s—fold for F’ and since o is an s—fold root of
f'(0,0,Z"), it follows that x;,x, are local transversal parameters of P’
on F' (f(x1,x5,Z") = 0 being a local equation of F' at P"). If D (x;, %)
and D’(xy , xp) are respectively the discriminants of f (¥ , 25, Z) (Wlth respect
to Z) and of f’ (%1, x5, Z") (with respect to Z’), then we have

s6=D
D=ux* D.
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This shows that the critical curve A ., of F' (at P) is contained in A, ,,,
i.e, is contained in the union of the two lines x; = 0, x, = 0. Hence, if P’
is an exceptional singularity, A; ., is the set of both lines x; = 0, %, = 0,
and thus P’ is a quasi-ordinary multiple point of F’. This completes the
proof of the proposition.

COROLLARY 2.3. If all the exceptional singularities of ¥, of highest multi-
plicity s (= e (V) are quasi-ordinary, then any monoidal transformation of F
whose center is an s—fold curve W of F is permissible.

For, in the first place, no point of W can have multiplicity greater than
s for F, for in the contrary case any such point would be an exceptional
singularity of F, contrary to the assumption that s = ¢ (F). In the second
place, if P is a singular point of W, then P is necessarily an exceptional
singularity of F, and since P has highest multiplicity s it is quasi ordinary,
and thus, by the preceding proposition, P can only be an ordinary double
point of W.

Definition 2.4. A singular point P of ¥, of multiplicity s, is said to be
strictly exceptional if P does not lie on any s—fold curve of F.

COROLLARY 2.5. A gquasi-ordinary multiple point P of F is strictly excep-
tional if and only if M <1 and ha < 1.

This is a direct consequence of Proposition 2.2.

Proposition 2.6. Let P be a strictly exceptional, quasi-ordinary multiple
point of ¥, of multiplicity s (= e (F)), let N\(P) =N + Xs and let T:F —F
be the locally quadratic transformation of ¥ with center P. If W (P) > 1 then
T ! {P} contains at most two points which have multiplicity s for F'; if P’
is one of these points then P’ is quasi-ordinary, strictly exceptional and
A (P <A (P).

Proof: Let P’ be any point of T™! {P}. Since xy, x5 are local transversal
parameters at P, we may assume (see proof of Proposition 1.2) that xy/x; and
z[x1 belong to the local ring of P’ on F’ and that, consequently, there exists

constants @, 6 in £ such that xy, x5 = —f—i —a and & = Xi — & generate the
1

maximal ideal of the local ring of P’. We may replace z by z 4 g (%, x5)
and we may therefore assume that g (x;, x,) is zero. Then we will have

8

f’ (%1, x; , Z/) = H [Z' + b ——xi""”“’”l (x’z - a)’”” Gg (21, 21 (x; + a)],

o=1

where f (v, 22,2 = 21 f (21, %1 (%2 4+ @) , 20 (Z' + 8)), and f (1, 73,7) =0
is the local equation of F' at P’

Each of the s factors on the right hand side contains terms of degree 1
(for instance Z"), and if A; 4 A, =1 and « is an index such that G, (0, 0) 5= o,
then it is true that the associated factor contains a term of degree /Zess than 1,
-namely the term x* G, (0,0) (since, by Corollary 2.5, we have Xy < I).
Hence in this case, f* contains terms of degree less than s, and P’ is of multi-
plicity less than s.
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Assume now that Ay 4+ 23 > 1. For P’ to be an s—fold point of F’ it is
necessary that Z'=o0 be an s—fold root of /' (0,0,Z"). Now, f (0,0,Z") =
= (Z' + by (since &y + 2y >1). Hence we must have 6 =o0. We assert
that also @ =o. For, were @ = ==0, then for the index « such that G, (0, 0) == 0
the associated factor 7 — 7“"”‘“_1( - a) Gy (%1, 21 (xg—l— a)) would con-
tain the term 1™ 14" G, (0, 0) of degree less than 1 (since 33 <1 and
A < 1), and P’ could not be s—fold. Thus both & and & are zero. What
we have shown is that there are only two points of T™' {P} which could
possibly be s—fold points of F’, namely the points in which either xy/x; and
zlxy or x1fxy and z[xs have zero residues.

If P’ is such a point which is s—fold for F’, and if say, % :_12 and
1

7= —;- have zero residues at P’, then we find (as in the proof of Proposition 1.2)
1

that the local critical curve A;vxé of F' at P’ is contained in the union of the
two lines x; = 0, 23 = 0. Since P’ is s—fold but does not lie on any s—fold
curve (as P does not lie on any s—fold curve and as no irreducible component
of T7'{P} is s—fold for F), it follows that P’ is a strictly exceptional, quasi-

ordinary multiple point of F'. Furthermore, if we set 2 =% then we find

1
that

2o —25 = 21" 2y [Gy (wy, 2y ) — G (%1, 1 %9)] = Mg €op (21, #2),
with €4 (0,0)5=0. Since for some «,B we have G, (0)—Gp (0) <=0,

it follows that the hlghest common d1v1sor of the monomlal Maﬁ is
aprthel ok Thus M =2 +2A—1,%=2 and A(P)= Mg =2+
F+ 2+ Qe—1)=1a{P)+ Aa— 1) <A (P), since Ay < 1.

§ 3. ELIMINATION OF THE QUASI-ORDINARY s—FOLD POINTS (s = ¢(F)).

The proof can now be rapidly concluded. We start with a surface on
which all the exceptional singularities of highest multiplicity s (= ¢ (F)) are
already quasi-ordinary. Our first step is to apply to F a monoidal transfor-
mation T :F — F centered at an irreducible s—fold curve I', provided T’
carries exceptional s—fold points. By Corollary 2.3, such a transformation
is permissible. Jf e(F") is still equal to s, all the exceptional s—fold points
of F' are still quasi-ordinary (Proposition 2.2). If F’ still carries an irreducible
s—fold curve IV which contains exceptional s—fold points, we again apply
a monoidal transformation F’— F’ centered at I'. Since the monoidal trans-
formations used in this step do not blow up any points (F’, F”, etc. are
dominated by the normalization of F), the case in which ¢ (F) = ¢ (F) =---

-;*——e(F(’.)) = ... and each F? contains an exceptional s—fold point
which is not strictly exceptional cannot arise indefinitely. Hence, after a
finite number of steps we will ultimately get a surface Fy for which either
e (Fy) <s or e (F;) = s and all exceptional s—fold points of F; are strictly
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exceptional (this latter case may present itself even before the s—fold curves
of F have been eliminated).

Assume now that already on F we have the situation in which all the
exceptional s—fold points are quasi-ordinary and strictly exceptional. At
this stage we begin to apply locally quadratic transformations centered at
exceptional s—fold points. Proposition 2.6 shows that after a finite number
of such transformations we will get a surface F, such that ¢ (Fy) < s (since
A (P) = 1 at every quasi-ordinary s—fold point).
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