ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ATTILIO IMMIRZI, GIUSEPPE ALLEGRA

Studi cristallografici sull'isomero trans del peridrotrifenilene. - II. Struttura cristallina del composto di inclusione contenente il cloroformio

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.1-2, p. 57–71. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_1-2_57_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1967.

Chimica fisica. — Studi cristallografici sull'isomero trans del peridrotrifenilene. – II. Struttura cristallina del composto di inclusione contenente il cloroformio^(*). Nota^(**) di Attilio Immirzi e Giuseppe Allegra, presentata dal Socio G. NATTA.

SUMMARY. — The unit cell of the PHTP—CHCl₃ inclusion compound (a = 25.08 Å; c = 4.78 Å; space group P6₃/m) is three times as big as in the PHTP—n-hydrocarbon series. Patterson considerations allow location of the C atoms; the structure is then refined through Fourier and least-squares methods. The arrangement of the PHTP molecules is essentially analogous to that found in the above mentioned series. The CHCl₃ molecules are included into two kinds of channels having different shapes; their marked anisotropicity suggests a large positional freedom along the channel axis.

PREMESSA.

Nel quadro delle ricerche condotte nel nostro Laboratorio sui composti di inclusione dell'isomero *trans* del peridrotrifenilene (PHTP) [1, 2], abbiamo intrapreso lo studio roentgenografico dell'addotto PHTP–CHCl₃.

In questa Nota, ci proponiamo di fornire maggiori dettagli sulla procedura usata per la risoluzione strutturale e sui relativi risultati.

Dimensioni della cella elementare. Considerazioni preliminari sulla struttura.

Cristalli di forma cilindrica con diametro di $0,3 \div 0,4$ mm. sono stati ottenuti per lento raffreddamento da una soluzione satura di PHTP in cloroformio. Sono stati esaminati ai raggi X usando radiazione Cu-K_a. L'asse del cilindro risulta coincidente con l'asse cristallografico di simmetria esagonale *c*.

Usando la usuale tecnica Weissenberg–equiinclinazione, con valutazione visuale delle intensità, sono stati determinati i fattori di struttura di 312 riflessioni ($h \ k \ i \ l$) con l = 0,1,2 su un totale di 528 riflessioni osservabili. A causa dell'alto valore del fattore termico medio ($B \approx 5,0 \ \text{Å}^2$) non risultano osservabili riflessioni corrispondenti a $d < 0,90 \ \text{Å}$.

I parametri della cella elementare sono riportati in Tabella I. Sulla base della simmetria del reticolo reciproco e della estinzione sistematica delle

^(*) Lavoro eseguito nell'Istituto di Chimica Industriale del Politecnico di Milano e Centro Naz. Chimica delle Macromolecole del C.N.R. sez. I.

^(**) Pervenuta all'Accademia il 22 luglio 1967.

riflessioni (0 0 0 l) con l = 2n + 1, entrambi i gruppi spaziali P63 e P63/m apparivano possibili.

TABELLA I.

Cella elementare dell'addotto PHTP-cloroformio.

 $a = b = 25,08 \pm 0,10 \text{ Å}$ $c = 4,78 \pm 0,02 \text{ Å}$ $\gamma = 120^{0}$ $V = 2604 \pm 21 \text{ Å}^{3}$ $Z_{PHTP} = 6$ $Z_{CHCl_{3}} = 3$ Gruppo spaziale P6₃/m $D_{calc.} = 1,17 \text{ g/cm}^{3}$ $D_{sp.} = 1,14 \text{ g/cm}^{3}$

Come si vede dalla fig. 1, la cella elementare dell'addotto in esame ha un'area quasi esattamente tripla di quella del PHTP-n-eptano [3]. La lunghezza dell'asse esagonale è tuttavia identica nei due casi e ciò porta a concludere che, anche nel caso presente, le molecole di PHTP sono esattamente sovrapposte nella direzione dei loro assi trigonali si simmetria. Inoltre, la distribuzione statistica delle intensità diffratte nello spazio reciproco presenta notevole affinità ad angoli medi di diffrazione ($d = 2 \div 5$ Å). È stata quindi fatta l'ipotesi che (vedi fig. 1) sia possibile generare la struttura in esame (cella b) dalla struttura dell'addotto PHTP-n-eptano (cella a) spostando, presumibilmente di poco, i centri delle molecole di PHTP degli assi ternari ed assumendo che nei canali siano ora incluse molecole di CHCl3. Come conseguenza della minore simmetria strutturale, l'intera molecola di PHTP costituisce parte della unità asimmetrica, dato che, a differenza del caso precedente, non contiene elementi di simmetria cristallografici. È interessante inoltre osservare che, mentre in a) tutti i canali sono cristallograficamente equivalenti, con simmetria esagonale, passando alla struttura b), 1/3 dei canali mantiene la simmetria esagonale, mentre 2/3 dei medesimi assume simmetria ternaria.

Una applicazione non convenzionale del metodo Patterson in due dimensioni.

Per determinare la posizione delle molecole di PHTP nella cella, cioè per determinare lo spostamento del centro della molecola dal punto di coordinate (2/3, 0, 0) e la sua orientazione angolare rispetto agli assi, abbiamo effettuato la sintesi di Patterson sulla proiezione *ab* (riflessioni *h k i* 0), dato che la simmetria di tale proiezione non è influenzata dalla scelta fra i due

Fig. 1. – Relazione tra la distribuzione delle molecole di PHTP nel caso dell'addotto PHTP-n-eptano (caso a) e nel caso dell'addotto PHTP-cloroformio (caso b). Nel caso b) i centri delle molecole sono spostati secondo le indicazioni delle freccie; le molecole di n-eptano sono rappresentate con circoli e quelle di cloroformio con tre brevi segmenti ruotati di 120°.

gruppi spaziali P63 e P63/m. I fattori di struttura osservati sono stati divisi per la grandezza $\sqrt{18f_C^2 + 2f_{Cl}^2}$ dove f_C ed f_{Cl} sono i fattori di diffrazione del carbonio e del cloro rispettivamente (Patterson « sharpened »). La mappa risultante deve essere interpretata come la convoluzione della struttura con se stessa [4], quando gli atomi siano concepiti approssimativamente come puntiformi, a meno della vibrazione termica.

Come si vede dalla fig. 2, la convoluzione della molecola di PHTP isolata, assunto un modello molecolare con distanze C—C di 1,54 Å ed angoli

Fig. 2. – Diagramma pesato di convoluzione di una molecola isolata di PHTP con se stessa; gli atomi di carbonio sono assunti puntiformi e quelli di idrogeno sono trascurati. Sono indicati solo i vettori C—C di molteplicità ≥ 5 .

Fig. 3. – Sintesi di Patterson «sharpened» sulla proiezione *ab*; le linee di livello sono segnate in unità arbitrarie.

C—C di 111,5° e trascurando gli atomi di idrogeno, fornisce sei massimi molto forti (molteplicità relativa 10) a 2,53 Å dall'origine (corrispondenti al simbolo I in figura) e altri diciotto massimi a 1,45, 2,90, 4,35 Å di molteplicità 7, 5, 6 rispettivamente (II, III e IV in figura). La posizione di questi massimi, che si rilevano assai chiaramente nella proiezione Patterson (fig. 3), consente di determinare l'angolo di rotazione della molecola rispetto agli assi a e bdella cella elementare. La posizione del centro della molecola si può invece desumere dal forte massimo V prossimo all'asse di simmetria ternaria della proiezione Patterson. Come si vede nella figura 1b), la simmetria ternaria, non cristallografica, delle molecole di PHTP fa si che coppie di molecole, collegate da esse ternario, si possono anche considerare collegate per traslazione ⁽¹⁾.

Fig. 4. – Relazione vettoriale tra lo spostamento del baricentro della molecola di PHTP dal punto (2/3, 0, 0) ed il corrispondente massimo Patterson.

Il corrispondente vettore Patterson ha moltiplicità relativa elevata (18) e la sua posizione consente di valutare facilmente il vettore spostamento del centro delle molecole di PHTP dal punto di coordinate frazionali (x = 2/3, y = 0). Dalla fig. 4, nella quale, per maggior chiarezza, sono rappresentati vettori di spostamento più grandi del reale, si desume facilmente la relazione

(1) Più in generale, si può affermare, come semplice risultato desunto dalla teoria dei gruppi di simmetria, che l'effetto di un operatore di simmetria qualsivoglia, agente su di un sistema che contiene lo stesso operatore disposto parallelamente al primo, è riducibile all'effetto di una o più traslazioni semplici [5]. tra la posizione del massimo Patterson (F') ed il vettore spostamento \mathbf{V}_{AB} del baricentro della molecola di PHTP dalla posizione A (2/3, 0, 0). Sono stati rappresentati senza apice i punti che si riferiscono alla distribuzione dei baricentri delle molecole di PHTP entro la cella e con apice i punti che si riferiscono alla distribuzione dei *vettori* tra i baricentri stessi (spazio Patterson). Si possono immediatamente verificare, dalla figura, le seguenti relazioni:

$$\mathbf{V}_{\mathrm{AB}} + \mathbf{V}_{\mathrm{BC}} - \mathbf{V}_{\mathrm{CD}} = \mathbf{V}_{\mathrm{AD}}$$

 $\mathbf{V}_{\mathrm{E'F'}} = \mathbf{V}_{\mathrm{AD}} - \mathbf{V}_{\mathrm{BC}} = \mathbf{V}_{\mathrm{AB}} - \mathbf{V}_{\mathrm{DC}}$.

Poiché, per ragioni di simmetria, l'angolo tra $\mathbf{V}_{AB} \in \mathbf{V}_{DC}$ è di 120° ed inoltre $|\mathbf{V}_{AB}| = |\mathbf{V}_{DC}|$ (vedi il diagramma riportato in basso a sinistra della fig. 4, in scala dilatata), si possono immediatamente ricostruire i vettori $\mathbf{V}_{AB} \in \mathbf{V}_{DC}$ noto $\mathbf{V}_{E'F'}$. In particolare si ha

$$|\mathbf{V}_{AB}| = |\mathbf{V}_{DC}| = \frac{|\mathbf{V}_{E'F'}|}{\gamma_3^-}$$

Primo raffinamento strutturale con metodi Fourier e di tentativo.

Fissata così la posizione del baricentro della molecola abbiamo eseguito un calcolo preliminare dei fattori di struttura nella proiezione ($h \ k \ i \ o$), senza considerare le molecole di cloroformio. Nella successiva sintesi di Fourier è risultata evidente la indicazione della presenza delle molecole di CHCl₃ in prossimità degli assi ternari e dell'asse esagonale. Abbiamo quindi introdotto nel calcolo i relativi contributi utilizzando un modello molecolare con angoli e distanze attesi ed orientando le molecole secondo le indicazioni Fourier. Così procedendo per iterazioni successive abbiamo ottenuto la proiezione della densità elettronica rappresentata in fig. 5.

Per quanto riguarda la scelta tra i gruppi spaziali P63 (nº 173) e P63/m (nº 176) [6], impossibile sulla base della sola proiezione (*a b*), abbiamo dovuto ricorrere all'esame delle riflessioni (*h k i l*) con $l \neq 0$. Il gruppo P63/m impone la presenza simultanea nel cristallo di molecole enantiomorfe collegate da piani di simmetria perpendicolari all'asse esagonale (molecole vicarianti), in analogia alla struttura statistica dimostrata nel caso degli addotti isomorfi col PHTP-*n*-eptano [3].

E stato eseguito, nei due casi, il calcolo dei fattori di struttura delle riflessioni con indici $(h \ k \ i \ 1)$ ed $(h \ k \ i \ 2)$ trascurando il contributo delle molecole di CHCl₃; dal confronto con i dati sperimentali, è stata possibile la scelta non ambigua del gruppo spaziale P6₃/m; anche in questo caso il piano medio delle molecole vicarianti coincide col piano di simmetria cristallografico.

La localizzazione delle molecole di CHCl₃ nella direzione dell'asse c è stata effettuata in una prima fase per tentativi: è stato in questo modo ottenuto un indice di disaccordo tra fattori di struttura osservati e calcolati pari a 0,20.

A. IMMIRZI e G. ALLEGRA, Studi cristallografici sull'isomero trans, ecc.

63

Raffinamento strutturale definitivo.

Per una più precisa determinazione della struttura, soprattutto in riferimento alle molecole di CHCl₃ che apparivano affette da elevato fattore termico, e quindi, probabilmente, non perfettamente localizzate, abbiamo quindi eseguito un procedimento di raffinamento strutturale col metodo dei minimi quadrati. Allo scopo di ridurre il numero dei parametri strutturali indipendenti, abbiamo ritenuto fissa la conformazione molecolare della molecola di PHTP e il suo asse parallelo all'asse trigonale della cella; inoltre, il piano medio della molecola è stato fissato a quota z = 1/4.

Con questa procedura, affinando con fattori termici isotropi, ed assegnando un fattore termico unico per tutti gli atomi del PHTP, abbiamo ottenuto un fattore di disaccordo di 0,16 dopo 5 cicli di calcolo. I parametri atomici finali sono riportati in Tabella II mentre nella Tabella III sono riportati i corrispondenti fattori di struttura osservati e calcolati.

TABELLA II.

<u> </u>		<i>(</i> , , , , , , , , , , , , , , , , , , ,		C 7.
I novannate	0	tattor	tormara	timala
Coorainaic	c	Juilori	101 111111	nnau.
		./		./

	x/a	у/в	z/c	${\rm B}\langle {\rm \AA}^2\rangle$
С(1)	0,0698	0,8514	0,3044	4,22
C(2)	0,1012	0,8155	0,1956	4,22
C(3)	0,0653	0,7483	0,3044	4,22
C(4)	0,0968	0,7124	0,1956	4,22
C(5)	0,1640	0,7438	0,3044	4,22
C(6)	0,1954	0,7080	0,1956	4,22
C(7)	0,1596	0,6407	0,3044	4,22
C(8)	0,0923	0,6093	0,1956	4,22
C(9)	0,0609	0,6452	0,3044	4,22
С(10)	0,0063	0,6137	0,1956	4,22
С(11)	-0,0422	0,5465	0,3044	4,22
C(12)	—0,1094	0,5151	0,1956	4,22
C(13)	—0, 1409	0,5509	0,3044	4,22
C(14)	-0,1050	0,6182	0,1956	4,22
C(15)	-0,0378	0,6493	0,3044	4,22
C(16)	0,0019	0,7168	0,1956	4,22
C(17)	0,0333	0,7527	0,3044	4,22
C(18)	-0,0025	0,8199	0,1956	4,22
Cl(1)	0,3364	0,7281	0,8571	13,17
C'(I)	0,3333	o,6666	0,9801	13,17
C''(I)	0,3333	0,6666	0,7341	13,17
Cl(2)	0,0014	0,9419	-0,1165	13,47
C'(2)	0,0000	0,0000	0,0065	13,47
C''(2)	0,0000	0,0000	-0,2395	13,47

TABELLA III.

Fattori di struttura osservati e calcolati per il composto di inclusione PHTP-cloroformio.

I valori di F_o ed F_c sono moltiplicati per 10. Per le riflessioni non osservate, indicate con un asterisco, F_o è stato assunto pari alla metà del minimo osservabile.

$h k l F_0$	Fc	h b I	F,	Fa	h b I	F	F
	± (10	т с		Г ₀	Гc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9990 \\ - 38 \\ - 50 \\ 1285 \\ - 10 \\ 47 \\ 117 \\ 287 \\ - 773 \\ 426 \\ 374 \\ 7 \\ 64 \\ 5 \\ 53 \\ 13 \\ 42 \\ 132 \\ 82 \\ - 124 \\ 293 \\ 168 \\ 1093 \\ - 112 \\ 293 \\ 168 \\ 1093 \\ - 112 \\ 293 \\ 168 \\ 1093 \\ - 122 \\ 293 \\ 168 \\ 1093 \\ - 124 \\ 289 \\ - 27 \\ 157 \\ 108 \\ 74 \\ 172 \\ - 787 \\ - 544 \\ 289 \\ - 27 \\ 157 \\ 108 \\ 74 \\ 172 \\ - 26 \\ - 37 \\ - 240 \\ - 184 \\ 479 \\ 306 \\ 171 \\ - 602 \\ 238 \\ - 215 \\ - 81 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 228\\ * & 61\\ * & 61\\ * & 59\\ 167\\ 273\\ * & 30\\ * & 32\\ 469\\ 76\\ 359\\ * & 44\\ 131\\ * & 97\\ * & 58\\ * & 61\\ 137\\ * & 58\\ * & 61\\ 137\\ * & 60\\ 866\\ 177\\ 111\\ 620\\ 65\\ 357\\ 114\\ 92\\ * & 56\\ 100\\ * & 60\\ * & 61\\ * & 58\\ 80\\ 192\\ 667\\ 167\\ 320\\ 96\\ 183\\ 119\\ * & 56\\ 312\\ \end{array}$	$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} * & 61 \\ * & 61 \\ * & 59 \\ 58 \\ 246 \\ 119 \\ 373 \\ 191 \\ 120 \\ 108 \\ 125 \\ * & 53 \\ * & 56 \\ * & 59 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ * & 61 \\ 220 \\ 247 \\ * & 43 \\ 85 \\ 127 \\ 114 \\ * & 56 \\ * & 59 \\ 659 \\ 122 \\ * & 61 \\ 135 \\ 601 \\ 220 \\ 243 \\ 79 \\ 97 \\ 184 \\ * & 53 \\ * & 55 \\ 272 \\ * & 60 \\ 243 \\ 293 \\ * & 58 \\ 625 \\ 503 \\ 204 \\ 190 \\ \end{array}$	$\begin{array}{c} 34\\ -28\\ 23\\ -39\\ 26\\ 264\\ -159\\ -402\\ 244\\ -140\\ -110\\ -145\\ -96\\ 93\\ -20\\ 34\\ -103\\ -27\\ -49\\ -151\\ -567\\ 248\\ -66\\ -70\\ 161\\ -120\\ -272\\ 531\\ -533\\ -85\\ -27\\ 531\\ -533\\ -85\\ -27\\ 531\\ -358\\ 189\\ 181\\ 86\\ -119\\ -164\\ 78\\ -77\\ -358\\ 183\\ 220\\ -309\\ 154\\ -13\\ 568\\ -452\\ -226\\ \end{array}$

5. — RENDICONTI 1967, Vol. XLIII, fasc. 1-2.

Segue: TABELLA III.

h k l	Fo	$\mathbf{F}_{\mathbf{c}}$	h k l	Fo	Fc	h k l	Fo	Fc
$\begin{array}{c} 5 & 9 & 0 \\ 6 & 9 & 0 \\ 7 & 9 & 0 \\ 11 & 9 & 0 \\ 12 & 9 & 0 \\ 13 & 9 & 0 \\ 1 & 10 & 0 \\ 2 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 10 & 0 \\ 1 & 11 & 0 \\ 1 & 0 \\ 1 & 11 & 0 \\ 1 & $	* 51 * 53 79 * 58 133 507 126 * 59 129 669 * 49 * 52 150 702 166 298 161 277 * 54 127 323 * 61 277 * 54 277 * 54 277 * 54 277 * 59 104 * 59 102 * 59 100 * 61 100 * 61 1000 * 61 100 * 61 100 * 61 100 * 50 *	$\begin{array}{c} 82\\ -23\\ 101\\ -29\\ -190\\ -463\\ -306\\ -257\\ -42\\ -135\\ -642\\ 70\\ 29\\ -91\\ 45\\ -13\\ 427\\ -228\\ 151\\ -681\\ -186\\ 253\\ 143\\ -228\\ 151\\ -681\\ -186\\ 253\\ 143\\ -235\\ 303\\ -235\\ 303\\ 42\\ 112\\ 5\\ -86\\ -13\\ -235\\ 303\\ 42\\ 112\\ 5\\ -86\\ -13\\ -235\\ 303\\ -235\\ 303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -235\\ -303\\ -34\\ -88\\ -36\\ -88\\ -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} * \ 60 \\ * \ 61 \\ * \ 6$	$\begin{array}{c} - & \mathbf{i} \\ - & \mathbf{i} \\ - & \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \\ \mathbf{j} \\ - & \mathbf{j} \\ \mathbf{i} \\ \mathbf{j} \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 55\\ 120\\ 296\\ 108\\ 262\\ 381\\ 147\\ 57\\ 836\\ 839\\ 56\\ 842\\ 843\\ 843\\ 532\\ 222\\ 286\\ 330\\ 999\\ 226\\ 228\\ 86\\ 330\\ 999\\ 226\\ 228\\ 86\\ 330\\ 999\\ 226\\ 86\\ 843\\ 843\\ 843\\ 843\\ 843\\ 843\\ 843\\ 843$	$\begin{array}{c} -144 \\ -104 \\ -289 \\ -149 \\ 240 \\ -334 \\ -134 \\ 55 \\ -4 \\ -30 \\ 51 \\ -30 \\ -134 \\ -30 \\ -134 \\ -30 \\ -314 \\ -30 \\ -314 \\ -30 \\ -314 \\ -30 \\ -314 \\ -30 \\ -314 \\ -30 \\ -314 \\ -30 \\ -314 \\ -314 \\ -30 \\ -314 \\$

Segue: TABELLA III.

			1			1		
h k l	Fo	F_{c}	h k l	Fo	Fc	h k l	Fo	$\mathbf{F_{c}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} - 34 \\ 63 \\ -201 \\ -47 \\ -31 \\ 49 \\ -57 \\ -59 \\ -45 \\ 18 \\ -176 \\ 74 \\ 210 \\ -324 \\ -172 \\ 46 \\ -173 \\ -324 \\ -172 \\ 46 \\ -173 \\ -31 \\ -21 \\ 39 \\ 67 \\ -5 \\ -6 \\ -94 \\ 15 \\ -5 \\ -53 \\ -147 \\ 120 \\ -403 \\ -63 \\ 24 \\ 258 \\ 7 \\ -62 \\ -62 \\ -117 \\ -127 \\ 118 \\ 20 \\ 6 \\ 382 \\ 251 \\ -337 \\ -24 \\ 72 \\ -203 \\ -15 \\ 6 \\ 173 \\ 71 \\ 94 \\ 440 \\ 100 \\ 54 \\ -61 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 794\\ *& 32\\ *& 36\\ *& 37\\ && 36\\ *& 36\\ && 43\\ && 40\\ && 43\\ && 42\\ && 4$	$\begin{array}{c} 596\\ -& 26\\ -& 74\\ -& 70\\ -& 60\\ 33\\ -& 5\\ 46\\ -& 38\\ -& 695\\ 35^2\\ -& 136\\ -& 9\\ -& 322\\ -& 136\\ -& 9\\ -& 322\\ -& 136\\ -& 9\\ -& 33\\ -& 33\\ -& 38\\ -& 91\\ -& 152\\ -& 212\\ -& 6\\ -& 147\\ -& 38\\ -& 43\\ -& 255\\ -& 47\\ -& 39\\ -& 43\\ -& 44\\ -& 45\\ -& 75\\ -& 81\\ -& 38\\ -& 99\\ -& 120\\ -& 68\\ -& 120\\ -& 68\\ -& 18\\ -& 44\\ -& 68\\ -& 18\\ -& 68\\ -& 44\\ -& 18\\ -& 68\\ -& 44\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 18\\ -& 68\\ -& 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} {}^{I}\\ {}^{I}\\ {}^{I}\\ {}^{I}\\ {}^{I}\\ {}^{29}\\ {}^{-29}\\ {}^{-1}\\ {}^{37}\\ {}^{-7}\\ {}^{34}\\ {}^{-29}\\ {}^{-1}\\ {}^{37}\\ {}^{-7}\\ {}^{-34}\\ {}^{-29}\\ {}^{-1}\\ {}^{-6}\\ {}^{-6}\\ {}^{-4}\\ {}^{-1}\\ {}^{-1}\\ {}^{-2}\\ {}^{-2}\\ {}^{-1}\\ {}^{-6}\\ {}^{-1}\\ {}^{-1}\\ {}^{-1}\\ {}^{-2}\\ {}^{-1}\\ {}^{-$

Segue: TABELLA III.

h	k l	Fo	F_{c}	h k l	Fo	Fc	h k l	Fo	Fc
$\begin{array}{c} 14 \\ 156 \\ 17 \\ 18 \\ 9 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	0 2		$\begin{array}{c} 2\\ 35\\ -& 1\\ -& 16\\ -& 34\\ -& 40\\ -& 38\\ 4\\ -& 198\\ -& 9\\ -& 21\\ 220\\ -& 125\\ 173\\ 222\\ -& 24\\ 233\\ 220\\ -& 125\\ 173\\ 222\\ -& 24\\ -& 38\\ 18\\ 24\\ -& 53\\ 115\\ 247\\ -& 143\\ -& 36\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 131\\ -& 59\\ -& 57\\ 134\\ -& 38\\ 15\\ -& 11\\ -& 26\\ -& 57\\ 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 10\\ -& 20\\ -& 12\\ -& 12\\ -& 10\\ -& 12\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& 12\\ -& 10\\ -& $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} * & 48 \\ 1 & 31 \\ * & 27 \\ 1 & 68 \\ 67 \\ * & 35 \\ * & 39 \\ * & 43 \\ * & 48 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 44 \\ * & 46 \\ * & 44 \\ * & 46 \\ $	$\begin{array}{c} & 30 \\ & -155 \\ & 41 \\ & 4 \\ & 154 \\ & -88 \\ & -80 \\ & -2 \\ & -37 \\ & -30 \\ & 4 \\ & -13 \\ & -30 \\ & -44 \\ & -7 \\ & -44 \\ & -163 \\ & -31 \\ & -27 \\ & -44 \\ & -163 \\ & -31 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -21 \\ & -27 \\ & -27 \\ & -21 \\ & -27 \\ & -27 \\ & -27 \\ & -21 \\ & -27 \\ & -27 \\ & -27 \\ & -21 \\ & -27 \\ & -27 \\ & -21 \\ & -27 \\ & -27 \\ & -27 \\ & -27 \\ & -21 \\ & -27 \\ & -2$	II72I272I37II472I572I822823824825826821182128213821482157282398210821182129213921492151021610217102181021110211102111021111211112111121111211112111121111212223122111121222131221412215112161121712218112191121111211112122<	$\begin{array}{c} 298 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 48 \\ * \ 42 \\ * \ 48 \\ * \ 41 \\ * \ 37 \\ * \ 48 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 44 \\ * \ 45 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 43 \\ * \ 46 \\ * \ 47 \\ * \ 48 \\ * \ 43 \\ * \ 46 \\ * \ 47 \\ * \ 48 \\ * \ 43 \\ * \ 45 \\ * \ 48 \\ * \ 43 \\ * \ 45 \\ * \ 48 \\ * \ 45 \\$	$\begin{array}{c} -250\\ 31\\ 9\\ -18\\ -63\\ -185\\ -108\\ -123\\ 3\\ 17\\ 29\\ -21\\ 15\\ 169\\ -100\\ -121\\ 171\\ -93\\ 0\\ -232\\ 189\\ 47\\ 56\\ -16\\ -1\\ -55\\ 8\\ 78\\ 242\\ 142\\ 124\\ 33\\ 46\\ 236\\ -14\\ 124\\ 33\\ 46\\ 236\\ -14\\ 124\\ 33\\ 46\\ 236\\ -14\\ 124\\ 33\\ 46\\ 236\\ -14\\ 124\\ 33\\ 46\\ 236\\ -14\\ 16\\ -55\\ 8\\ 78\\ 242\\ 124\\ 33\\ 46\\ 236\\ -14\\ 16\\ -35\\ -7\\ 30\\ -141\\ 16\\ -35\\ -7\\ 30\\ -141\\ 16\\ -35\\ -35\\ -30\\ -141\\ 16\\ -35\\ -35\\ -30\\ -141\\ 16\\ -35\\ -35\\ -30\\ -141\\ 16\\ -35\\ -35\\ -30\\ -141\\ 16\\ -35\\ -35\\ -32\\ -32\\ -32\\ -32\\ -32\\ -32\\ -32\\ -32$

Segue: TABELLA III.										
h k l	Fo	F_{c}	h k l	Fo	$\mathbf{F}_{\mathbf{c}}$	h k l	Fo	F_{c}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 46 * 47 * 48 * 48 * 48 * 48 * 43 * 43 * 44 * 45 * 46 * 47 * 48 * 48 * 48 * 48 * 48	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 45 * 46 * 47 * 48 * 48 * 48 * 48 * 48 * 48 * 47 * 47 * 47 * 48 * 48 * 48 * 48 * 48 * 48 * 48 * 48	$ \begin{array}{c} 2 \\ 55 \\ 64 \\ 0 \\ -22 \\ -12 \\ 13 \\ 45 \\ 5 \\ 7 \\ -36 \\ -6 \\ 3 \\ -16 \\ -31 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 48 * 48 * 48 * 48 * 48 * 48 * 48 * 48	$ \begin{array}{c} - & 2 \\ & 22 \\ - & 1 \\ & 1 \\ - & 2 \\ & 10 \\ - & 3 \\ - & 29 \\ - & 13 \\ & 14 \\ - & 16 \\ & 34 \\ & 189 \\ & 52 \\ & 7 \\ \end{array} $		

Con tali parametri, le proiezioni delle distanze C—Cl sul piano *a b* sono risultate pari a 1,47 Å per la molecola disposta sull'asse ternario e di 1,34 Å per quella sull'asse esagonale, contro un valore atteso di 1,66 Å (calcolato assumendo la distanza C—Cl di 1,75 Å e l'angolo Cl— \widehat{C} —Cl pari a 110°); questa differenza va probabilmente attribuita ad un effetto di disordine statistico, oltre che di agitazione termica, della molecola di CHCl₃.

Abbiamo infine effettuato alcuni cicli di affinamento con fattori termici anisotropi per i soli atomi di cloro; con questa procedura, è stato possibile migliorare l'indice di disaccordo per le riflessioni con $l \neq 0$ di qualche unità per cento, ottenendo per le componenti B₁₁ e B₂₂ dei fattori termici valori non lontani da quelli ottenuti col raffinamento isotropo (in media 20 Å²) ma valori estremamente alti per B₃₃ (170 ± 50 Å² per le molecole disposte nei canali a simmetria esagonale 50 ± 15 Å per quelle situate nei canali ternari). Benché tali valori abnormi non possano evidentemente essere giustificati solo con l'oscillazione termica, essi a nostro giudizio stanno ad indicare l'esistenza di un elevato disordine nella disposizione delle molecole di cloroformio lungo l'asse dei canali; dall'esame dei dati sembra inoltre che tale disordine sia significativamente più elevato nel caso delle molecole disposte nei canali a simmetria esagonale.

Impacchettamento molecolare.

Nella fig. 6 è riportata la proiezione dell'impacchettamento molecolare dell'addotto in esame lungo l'asse c e sono indicate le distanze intermolecolari di contatto più significative $C \cdots C$ e $C \cdots Cl$.

Esse appaiono prossime ai valori limiti dati dalla somma dei rispettivi raggi di Van der Waals, assumendo, in accordo con la letteratura [7], un valore di 2,0 Å per il raggio degli atomi di carbonio schermati tetraedricamente da atomi di idrogeno e di 1,7 Å per gli atomi di cloro. La minima distanza dall'asse esagonale degli atomi di carbonio delle molecole di PHTP risulta 4,51 Å contro un valore di 4,08 Å in corrispondenza dell'asse ternario. Ricordiamo a questo proposito che nelle strutture cristalline della serie isomorfa PHTP-*n*-idrocarburi la corrispondente distanza è di circa 4,45 Å.

Fig. 6. – Impacchettamento molecolare in proiezione lungo c. Sono indicate le minime distanze intermolecolari $C \cdots C$ e $C \cdots Cl$.

Nella stessa serie è compreso l'addotto PHTP—CHCl₄, in cui tale distanza è probabilmente poco superiore (~ 0.08 Å) [3]. Lo spazio disponibile allo interno dei canali esagonali dell'addotto in esame è quindi prossimo a quello che si riscontra nel caso del PHTP—CCl₄, in cui le molecole incluse presentano una periodicità lungo l'asse dei canali non coerente con quella delle molecole ospitanti. Ci si potrebbe pertanto attendere che, anche nel caso in esame, le molecole di CHCl₃ possano essere disposte a vari livelli lungo gli assi dei canali esagonali; è interessante osservare che tale possibilità è in certo modo confermata dall'alto valore della componente B₃₃ del fattore termico degli atomi di cloro di queste molecole (ved. pag. 69). La stessa componente, per le molecole di CHCl₃ incluse nei canali a simmetria ternaria, è invece significativamente più piccola, in accordo col minore diametro dei canali stessi, che obbliga le molecole incluse a disporsi a ben determinati livelli entro la cella elementare.

Da un esame cristallografico non dettagliato, la struttura del composto di inclusione PHTP-etere *n*-propilico è risultata dello stesso tipo di quella dell'addotto con CHCl₃; anche in quel caso, tuttavia, il rapporto molecolare PHTP/molecole incluse è risultato di tipo razionale semplice (4/1), con un periodo di ripetizione delle molecole di etere lungo l'asse dei canali pari a $c \times 2 = 9,56$ Å. È da concludere, perciò, e la conclusione risulta confermata dallo studio dei composti di inclusione del PHTP con cicloesano e diossano [8], che nei casi in cui esistono rapporti molecolari razionali la struttura tende ad assumere una maggiore complessità rispetto a quella osservata nelle serie isomorfa dell'addotto PHTP-*n*-eptano.

BIBLIOGRAFIA.

- [1] M. FARINA, G. ALLEGRA, G. NATTA, « J. Am. Chem. Soc. », 86, 516 (1964).
- [2] G. ALLEGRA, M. FARINA, A. IMMIRZI, A. COLOMBO, U. ROSSI, R. BROGGI, G. NATTA, « J. Chem. Soc. », lavoro in corso di stampa.
- [3] A. COLOMBO, G. ALLEGRA, Nota I di questa serie.
- [4] H. LIPSON, C. A. TAYLOR, Fourier Transforms and X-ray Diffraction; G. Bell and Sons, London (1958), cap. IV.
- [5] M. J. BUERGER, « Elementary Crystallography », J. Wiley & Sons, New York 1956, cap. 7.
- [6] Intern. Tables for X-Ray Cryst. (Vol. I); The Intern. Union of Cryst., Birmingham (1952).
- [7] L. PAULING, The Nature of the Chemical Bond; Cornell University Press, Ithaca (N.Y.) (1960), cap. VII, pag. 260.
- [8] A. IMMIRZI, G. ALLEGRA, Nota III di questa serie.