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Fisica matematica. — /nduction of representations of the genera-
lized Bondi—Metzner group ©. Nota ™ di Virrorio CANTONI, presen-
tata dal Corrisp. C. CATTANEO.

RIASSUNTO. — Si costruisce una classe di rappresentazioni del gruppo di Bondi-Metzner
mediante una generalizzazione del metodo di Wigner [8] per la costruzione delle rappresenta-
zioni unitarie del gruppo di Poincaré. Si dimostra che le rappresentazioni ottenute sono equi-
valenti, a meno di un sistema di moltiplicatori, alle rappresentazioni unitarie ottenute prece-
dentemente dall’autore [2] con procedimento diverso.

I. INTRODUCTION.—It is possible to characterize a class of “asymp-
totically flat ” space-times, which can be expected to include plausible
models for physical situations corresponding to bounded systems emitting
gravitational radiation, by assuming, with Bondi-Metzner-van der Burg [1]
and Sachs [6], that outside some region with finite spatial cross-section the
space-time manifold can be covered by a single system of  generalized polar
coordinates "’ (% ,7r, 0, ¢) such that:

a) the metric takes the form

(1) ds® = — Adu?—2Bdudr+
+72(Cdt® + 2D d0dp + 028+ D® so | B dudd + Fdudo),
P = % P

where A,B,C,D,E,F are functions of the coordinates, the ranges of
the coordinates being — oo <% < oo, ry<r<oo, 0<0<m o<o<2mw
and the points P (#,»,0,0) and P (%,’ 7,0, 2m) being coincident;

b) for sufficiently large values of 7 the functions A,B,C,D,E,F can
be expanded in power series of »~1, and for » — oc (2,0, ¢ constant), the
limiting form of the metric is

(2) ds® = —du® — 2 du dr + 2 (d62 4 sin2 6 do?),

i.e. the flat-space metric expressed in polar coordinates and in terms of the
retarded time #.

It can be shown [6] [7] that to each coordinate transformation preserving
the conditions a) and b) there corresponds a well-defined “ asymptotic trans-
formation ”, which can be regarded as a mapping of the cartesian product
R XS of the real line R with the two-dimensional sphere S onto itself. The
set of such asymptotic transformations forms a group, which will be denoted

(¥) Lavoro eseguito nell’ambito dell’attivitda del Gruppo di Ricerca n. 36 del Comitato
Nazionale per la Matematica del C.N.R. per ’anno 1966-67.
(*¥¥) Pervenuta all’Accademia il 7 luglio 1967. )
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by € and called, with Sachs, the generalized Bondi-Metzner group (GBM

group). If (#,0,¢) are regarded as coordinates in R XS, the generic GBM
transformation has the form

r_ u+a®,9) [ I
(3) %—W , U=H(®,9 , ¢=1(,09),
where a (0, ¢) is an arbitrary C2? function on the two-sphere, while H , I and
K are subjected to the condition

K2 (H, I)-(4H2 4 sin2 H-J12) = 46% + sin2 0-dg?,

so that H and I represent a conformal mapping of the two-sphere onto itself,
and K is given by

«4) K®,¢)=sint20.sin"12H-[o (H, )/a(0, ¢)]~ V2

It can be shown [7] that the subgroup £ of § obtained by putting « = o
is isomorphic, with the homogeneous orthochronous Lorentz group, while
the subgroup & of & obtained by restricting « to the form

(5) a(0,9) =—a’ 4 alsin 0 cos ¢ + @®sin 0 sin ¢ -+ a3 cos 0,

(a% al, a?, a® constants) is isomorphic with the inhomogeneous orthochronous
Lorentz group (Poincaré group). The transformations obtained by putting
H=10,1=¢ are called “supertranslations ’’  and constitute an abelian
normal subgroup {s} of §; the translations are special supertranslations
satisfying = condition (5), and constitute a four-parameter abelian normal
subgroup {¢} of G. The generic GBM transformation (3) can be regarded
as the product of the supertranslation defined by the function «, denoted
by (I, «), followed by the ’’ homogeneous Lorentz transformation ’’ defined
by H and I, and denoted by (A, 0): it will be denoted by (A, «), so that
(A,2)=(A,0) (I,a.

It has been shown in a previous paper [2] that with any element
(A, o) €8 and any pair of values (8, ¢) of the angular coordinates one can
associate a well defined element (A, ag,) € 8, referred to as “the inhomo-
geneous Lorentz transformation asymptotically tangent to (A, «) in the ray
direction (0, ¢) ”, (briefly AT (0, ¢) to (A, )); an element of & is completely
determined by the set of its AT transformations, and the latter can be exploi-
ted to construct, from each unitary representation of &, a unitary represen-
tation of .

In this paper it is shown that the same representations of § can be
obtained by an alternative procedure which is a generalization of Wigner’s
method for the construction of the unitary representations of &, [4] [8].
The representations of & and 8, respectively, associated with a given “ momen-
tum vector ”’ and a given representation of the corresponding “ little group ”,
are shown to be such that the latter can be obtained from the former, up to
a system of multipliers, by the procedure described in ref. [2].



32 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLIII — Ferie 1967

-2. INDUCED REPRESENTATIONS [4].—Let G be a group of transformations,
assumed to act transitively on. a space M Denote by p a fixed element of
M, and by Gy the isotropy group of G at p, i.e. the subgroup of G constituted
of all the elements % such that 4p = p. It is well-known that M can be
identified with the homogeneous space G/Gy: in fact, the generic left coset
£Gg, (g €G), can be associated with the element p = g’} , (g' € g Gy),
which is clearly independent from the particular choice of g’ in the coset;
conversely, on account of the assumed transitivity of G on M, each element
# of M can be obtained from $ by acting on it with some element g € G, or
with any other element of the coset £ Gy, so that one has a one-to-one corre-
spondence between elements of M and elements of -G/Gy; moreover, such a

correspondence is preserved by the action of G, i.e. g, (g GO)E—eff(gz ) Gy
corresponds to gy p whenever g; Gy corresponds to p.

Consider a linear representation & of G,: denote by U the representation
space, and by o (4) the operator corresponding to the element % of G,. The
aim is to construct, starting from o, a linear representation p of G acting
on a suitably defined representation space U.

Define U as the set of all maps ®: g — & (¢) of G into U which satisfy
the condition

(6) ® (gh) = o (1) D ()

for all g €G and all Z€Gy. In order to assign one of such maps it is suffi-
cient to assign arbitrarily the vector ® (¢) €U corresponding to the identity
of G, (then (6) determines ® (/z) for all % € Gy), and to assign, for each left
coset p = £ Gy, an arbitrary vector ® (&) €U corresponding to a fixed repre-
sentative £ of the coset, (then (6) determines 0] (g) for any other element
g €£Gg). The space U can be regarded as a linear space with the following
definition of addition and multiplication with scalars:

a® 4 8} : g ad (o) + b (&),

and it is immediately verified that a® + & actually belongs to U, (i.e. satis-
fies (6)), whenever ® and { bélong to U.

The linear representation p of 'S, acting on the vector space U, can be
defined as follows:

) p(g)P:ig>D(e7le) . (g,,£€G; D).

The mapping glja; e (go) ® of G into U satisfies (6) and therefore belongs
to U, since one has:

b (gh) = @ (g7 6h) = o () D (g718) = o (b)) § (o).

It-isalso easily verified that the transformations p are linear, and that

¢ (£120) = ¢ (&1) ¢ (£0)-
¢ is called the representation of G induced by .
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Since the assignment of a mapping of G into U satisfying (6) is equiv-
alent to the assignment of an arbitrary mapping of a set {Z} of representa-
tives of the left cosets of Gy into U, for a fixed choice of the set {Z} one can
associate with each element ® € U the mapping of M into U defined by

0:p>d@ , (p=2Gy.

With the help of the mappings ® one can establish a one-to-one corre-
spondence between the elements of U and the cross-sections of the product
bundle M XU of M with U, (M being the base space and U the fibre). In
fact, with the element ® € U one can associate the cross-section ®* defined by

©) B*:ip >0 (5) Zpx 0 (p) = px b (2).

Since U is a vector space, M XU is a vector bundle, so that the space
U* of its cross-sections has a natural linear structure, and it is an immediate
consequence of (8) that the correspondence just defined between U and U*
is an isomorfism between vector spaces. Therefore one can define a representa-
tion p* of G, equivalent to the representation p and acting on the representa-
tion space U*. Since the action of o (go) on an element ® € U is given by D
¢* (o) must transform the generic element ®* € U* into the element {* e U*
such that

(©) $*(0) = px$ (&) = px[e (g) B1 (&) = px b (g712) =
=X (gyTg i) = pxa(h, ) B (g;Tg) =
= pxc(h, ) O (g5 p)

where gi! g is the representative of the coset g1 &Gy, 4, , is the element of

G, such that g;lg = gé*l gh; !, and (6) has been taken into account.

Whenever two representations p} and ¥ of G act on the same repre-
sentation space U¥*, (the space of cross-sections of the bundle M xU), and
there exists a set {,,,} of linear transformations whose generic element

depends on g and p, acting on the fibre over p, and such that
(o3 (8) D% (2) = m, , (6} (&) D) (9)

for all g€G, p € M and ®* € U*, the two representations p] and p; will be
said to coincide up to the system of multipliers {m, ,}. (In particular, it is
not hard to see that two distinct choices of the set {£} of representatives of
the left cosets lead to two representatlons which coincide up to a system of
multipliers).

3. THE REPRESENTATIONS OF THE GROUPS & AND & ASSOCIATED WITH
A GIVEN MOMENTUM VECTOR AND A GIVEN REPRESENTATION OF THE ‘ LITTLE
GROUP "".—The application of the method just described to the construction

3. — RENDICONTI 1967, Vol. XLIII, fasc. 1-2.
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of a representation of any specific group G requires:

a) the interpretation of G as a transitive group of transformations
on some space M;

b) the deterrmnatlon of a representation of the isotropy group Gg of
G at any point $ of M; (on account of the transitivity of action of G on M,
the isotropy group is the same at all points of M, up to isomorphisms).

In the case of the inhomogeneous orthochronous Lorentz group, (G = §),
M is defined as the set of all vectors p = (pq, p1, P2, P3) m Minkowski
space which can be obtained from a given momentum vector p by means
of an homogeneous orthochronous Lorentz transformation (thus, all the
vectors p of M have the same norm, and the same orientation in time when-
ever they are timelike or null). The homogeneous orthochronous Lorentz
group £ acts transitively on M, the action p —> Ap of an element A € £ on
p €M being defined in the obvious way. If the action of any translation
on M is taken to be the identity transformation, then & also acts transitively
on M, and the action of the generic element (A, @) € 8, (i.e. the translation
defined by the four-vector a followed by the homogeneous transformation
A), is the same as the action of its homogeneous part alone. The isotropy
subgroup &, of & at p is the product of the isotropy subgroup £y of £ at
p (the “little group ” corresponding to the momentum vector p), with the
subgroup {#} of translations.

If & denotes a linear representation of the little group, acting on a
complex vector space U, then the mapping

(10) 6: (Mg, a)—>exp (Za-p)-5 (Ag),

(Ap€lgy; ap = a 105,'-), is a linear representation of &, acting on U, and
the corresponding induced representation p (or p¥) of & can be constructed.
The corresponding representation space will be denoted by 0@ (or U'g»)
It can be shown that with this procedure all the irreducible unitary repre-
sentations of & can be obtained, starting from all possible momentum
vectors and all possible unitary representations of the corresponding little
groups.

Without changing the definition of M, consider now the GBM group
(G = 9), and define the action of any supertranslation (I, «) as the identity
transformation. Then § acts transitively on M, the action of its generic
element (A, «) being the same as the action of the transformation A €¢
alone. Denote by §, the product £y {s} of the little group £: with the super-
translation subgroup {s}, so that §, is the isotropy group of ¢ at p. If
is a representation of £y, the mapping

(11) &3}55(A0y0€>—>3<ﬁ)EeXP<Z'aA0_1P-5)G<A0)a

(Ag €L, a€{s}), where a, denotes the vector of the translation AT (6, ¢)
to (1, a), (see ref. [2]), defines a linear representation of §, acting on the



VITTORIO CANTONI, [nduction of representations of the generalized, ecc. 35

tensor product V.= F @ U of the space F of all C? functions on the sphere
with the representation space U of s, the action of & (%) on V being such that

(12) 5 SO, ) ©¢=cxplia . 5)f (A0, A" 9)@F (Ao,

(f€F,9€U, /% = (A, ) €%). Hence one can construct the representa-
tion p (or p*) of § induced by 5. The corresponding representation space
will be denoted by Ug, (or Ug).

s

4. RELATION BETWEEN THE REPRESENTATIONS p* AND 3*—It will
now be shown that wkenever the representations o cma’ o* of 8 and @ vespectively
are constructed Jrom the same momentum vector p and the same represen-
tation o of the corresponding little group 9 , 3* coincides, up to a system of multi-
Dliers, with the representation of G obtained from o* by the procedure described
in referemce [2].

Consider, first, the representation p*. Denote by {¢;} a basis in U; (it
is convenient to regard { as a discrete index, as in fact it is whenever p is
timelike, in which case the little group is the three-dimensional rotation
group. However the assumption that { be discrete is not essential). With
respect to this basis the generlc element of U is described by a real-valued
function f (¥); a cross-section <I)o of the product bundle M XU is therefore
described by a function f (p, C) of { and the three independent components
(#1, 02, 23) of p. The operator p* (a) correspondmg to the translation «
defined by the vector a transforms the cross-section (Do €Uy, according to (9)
and (10), into the cross-section %’ such that

(13) U5(p) = px bg (a12) = px g (g la1g) =
= pXo (g 1ag) Og(2) = pxexp (A1 a-p) g () =
= pxexp(/a-p) dg (2),

where A denotes the homogeneous part of the inhomogeneous transformation
Z, and the fact that g-14% is the translation represented by the vector A~la
has been taken into account. Clearly the function f’ which represents ‘-I"gg is

given by f'(p, %) = exp (Za-p) f(p,%). Similarly, the operator p (A) cor-
responding to a homogeneous Lorentz transformation A transforms ®g g, ac-
cording to (9), into the cross-section 4)3 such that

U5 (0) = pXQ (A, ) Dg (A~1p),

where Q (A, p) is a linear transformation of U depending on A and p, so that
the function /' associated with tngg has the form

(14) F, 0= EQ(A Do F(A-1 2, m),

where Q (A, p), is the matrix of the transformation Q (A, #) in the
basis {¢g¢}.
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Consider now the representation p*. The representation space V of &
admits the basis {Y,,® ¢}, where the Y,,’s denote the associated Legendre
polynomials, and the generlc element of V is described by a function f (¢, 7, ).
A cross-section (I)g EUg can be associated with a function f(p,%,7,m),
or, equivalently, with the function 7(p,%;0,¢) = ZE f(p,8, 0, m)Y,, (0,9

which can be regarded as defining a continuous mapping
O =0, 0 , (@:0,¢ €Uy,

of the sphere into the space of cross—sections of the bundle M X U: this shows
that the representation space of p* is identical with the representatlon space
3t described in ref [2], provided that the representation ¢ of & on which the
construction of © is based is taken to be identical wich p*.

According to (9) and (11), taking the linearity of & into account, one has,
for a supertranslation § = (1, ):

(0" () Dg) (p) = px Dg (s—18) = px Bg (75~ 1518) =
=pX5(g158) Dg (8) = p X ; {[exp (A~1ap-$)-
f(2,8;0,9)]@¢c} = p X ;[exp Gap-p)f (5,80, @)@gc]

where A denotes the homogeneous part of the GBM transformation g repre-
senting the left coset associated with p, and the fact that g1 ap g is the trans-
lation represented by the vector A~lap has been taken into account. Re-
garding 5" (s) (135 as a map of the sphere into U'Z:y, the last result can be
read as follows:

5 () D52 (0, 9) —exp (Fap-p) Dg (0, ¢) = ¢* (ap) Dg (0, o).

ThlS shows that, for supertranslations, the operators of the represen-
tation © described in ref. [2] are identical with the corresponding operators
of p* provided that @ is taken to be identical with p*.

Finally, if 2 € £ is a homogeneous Lorentz transformation, one has,
from (9)

(" @) Po) (p) = pX 5 (hs.0) Ps (7" p),

where /s, is an element of G,y depending on X and p, for a given choice of
the representatives of the cosets. If the choice of the representatives is the
same as for the representation p* of &, one can write, taking (9), (12) and (14)
into account: V

(" (=) bg) (£) = p ¥ [;f@*li? G AT 0, AT 9)@T (fs,) 9] =
=pX [%Q (2' :P)i;ﬁ Rz,ﬁf<zflp~:“’) ; 2_1 0 ’ 2_1 (P>®¢t]’

where A denotes the homogeneous part of the transformation Zs 5, and Ry ,
is a linear transformation on the space F, depending on X and p. Regarding
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the elements of f]g as mappings of the sphere into U}, the last result can be
read as follows:

(3" () B9 (8): (0, 9) >pXRs 0" (£) B3 (A0, A" o).

By comparison with the definition of the operators of z, (ref. [2]), it
is immediately seen that the restrictions of p* and € to £ coincide, up to a
system of multipliers, whenever the representation % of § is taken to be
identical with p*. On account of the previous results, the same is true for
the whole representations p* and G of 6. ‘

Indirectly, this shows that the linear representations of § obtained
from wumitary representations of the little group can always be transformed,
by suitable choices of multipliers, into wwitary representations of €.

The irreducible components of the latter representations are determined
in reference [3].
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