Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Vittorio Cantoni

Induction of representations of the generalized Bondi-Metzner group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 43 (1967), n.1-2, p. 30-37.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1967_8_43_1-2_30_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Fisica matematica. - Induction of representations of the generalized Bondi-Metzner group ${ }^{(*)}$. Nota ${ }^{\left({ }^{(*)}\right)}$ di Vittorio Cantoni, presentata dal Corrisp. C. Cattaneo.

RiASSUNTo. - Si costruisce una classe di rappresentazioni del gruppo di Bondi-Metzner mediante una generalizzazione del metodo di Wigner [8] per la costruzione delle rappresentazioni unitarie del gruppo di Poincaré. Si dimostra che le rappresentazioni ottenute sono equivalenti, a meno di un sistema di moltiplicatori, alle rappresentazioni unitarie ottenute precedentemente dall'autore [2] con procedimento diverso.
I. Introduction.-It is possible to characterize a class of "asymptotically flat" space-times, which can be expected to include plausible models for physical situations corresponding to bounded systems emitting gravitational radiation, by assuming, with Bondi-Metzner-van der Burg [I] and Sachs [6], that outside some region with finite spatial cross-section the space-time manifold can be covered by a single system of " generalized polar coordinates " (u, r, θ, φ) such that:
a) the metric takes the form

$$
\begin{gather*}
d s^{2}=-\mathrm{A} d u^{2}-2 \mathrm{~B} d u d r+ \tag{I}\\
+r^{2}\left(\mathrm{C} d \theta^{2}+2 \mathrm{D} d \theta d \varphi+\frac{\sin ^{2} \theta+\mathrm{D}^{2}}{\mathrm{C}} d \varphi^{2}+\mathrm{E} d u d \theta+\mathrm{F} d u d \varphi\right)
\end{gather*}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are functions of the coordinates, the ranges of the coordinates being $-\infty<u<\infty, r_{0} \leq r<\infty, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \varphi \leq 2 \pi$ and the points $\mathrm{P}(u, r, \theta, 0)$ and $\mathrm{P}(u, r, \theta, 2 \pi)$ being coincident;
b) for sufficiently large values of r the functions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ can be expanded in power series of r^{-1}, and for $r \rightarrow \infty(u, \theta, \varphi$ constant), the limiting form of the metric is

$$
\begin{equation*}
d s^{2}=-d u^{2}-2 d u d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \tag{2}
\end{equation*}
$$

i.e. the flat-space metric expressed in polar coordinates and in terms of the retarded time u.

It can be shown [6] [7] that to each coordinate transformation preserving the conditions a) and b) there corresponds a well-defined " asymptotic transformation ", which can be regarded as a mapping of the cartesian product $\mathrm{R} \times \mathrm{S}$ of the real line R with the two-dimensional sphere S onto itself. The set of such asymptotic transformations forms a group, which will be denoted
(*) Lavoro eseguito nell'ambito dell'attività del Gruppo di Ricerca n. 36 del Comitato Nazionale per la Matematica del C.N.R. per l'anno 1966-67.

by \mathcal{G} and called, with Sachs, the generalized Bondi-Metzner group (GBM group). If (u, θ, φ) are regarded as coordinates in $\mathrm{R} \times \mathrm{S}$, the generic GBM transformation has the form

$$
\begin{equation*}
u^{\prime}=\frac{u+\alpha(\theta, \varphi)}{\mathrm{K}(\theta, \varphi)} \quad, \quad \theta^{\prime}=\mathrm{H}(\theta, \varphi) \quad, \quad \varphi^{\prime}=\mathrm{I}(\theta, \varphi) \tag{3}
\end{equation*}
$$

where $\alpha(\theta, \varphi)$ is an arbitrary C^{2} function on the two-sphere, while H, I and K are subjected to the condition

$$
\mathrm{K}^{2}(\mathrm{H}, \mathrm{I}) \cdot\left(d \mathrm{H}^{2}+\sin ^{2} \mathrm{H} \cdot d \mathrm{I}^{2}\right)=d \theta^{2}+\sin ^{2} \theta \cdot d \varphi^{2},
$$

so that H and I represent a conformal mapping of the two-sphere onto itself, and K is given by

$$
\begin{equation*}
\mathrm{K}(\theta, \varphi)=\sin ^{1 / 2} \theta \cdot \sin ^{-1 / 2} \mathrm{H} \cdot[\partial(\mathrm{H}, \mathrm{I}) / \partial(\theta, \varphi)]^{-1 / 2} \tag{4}
\end{equation*}
$$

It can be shown [7] that the subgroup \mathcal{Q} of \mathfrak{G} obtained by putting $\alpha=0$ is isomorphic, with the homogeneous orthochronous Lorentz group, while the subgroup \mathfrak{B} of \mathfrak{G} obtained by restricting α to the form

$$
\begin{equation*}
\alpha(\theta, \varphi)=-a^{0}+a^{1} \sin \theta \cos \varphi+a^{2} \sin \theta \sin \varphi+a^{3} \cos \theta, \tag{5}
\end{equation*}
$$

($a^{0}, a^{1}, a^{2}, a^{3}$ constants) is isomorphic with the inhomogeneous orthochronous Lorentz group (Poincaré group). The transformations obtained by putting $\mathrm{H}=\theta, \mathrm{I}=\varphi$ are called "supertranslations" and constitute an abelian normal subgroup $\{s\}$ of \mathfrak{G}; the translations are special supertranslations satisfying condition (5), and constitute a four-parameter abelian normal subgroup $\{t\}$ of G. The generic GBM transformation (3) can be regarded as the product of the supertranslation defined by the function α, denoted by (I, α), followed by the " homogeneous Lorentz transformation" defined by H and I , and denoted by (Λ, o) : it will be denoted by (Λ, α), so that $(\Lambda, \alpha)=(\Lambda, o)(I, \alpha)$.

It has been shown in a previous paper [2] that with any element $(\Lambda, \alpha) \in \mathcal{G}$ and any pair of values (θ, φ) of the angular coordinates one can associate a well defined element $\left(\Lambda, a_{\theta \varphi}\right) \in \mathscr{B}$, referred to as "the inhomogeneous Lorentz transformation asymptotically tangent to (Λ, α) in the ray direction (θ, φ) '", (briefly AT (θ, φ) to (Λ, α)); an element of \mathcal{G} is completely determined by the set of its AT transformations, and the latter can be exploited to construct, from each unitary representation of \mathscr{B}, a unitary representation of \mathfrak{G}.

In this paper it is shown that the same representations of \mathfrak{G} can be obtained by an alternative procedure which is a generalization of Wigner's method for the construction of the unitary representations of \mathscr{B}, [4] [8]. The representations of \mathfrak{g} and \mathfrak{G}, respectively, associated with a given " momentum vector " and a given representation of the corresponding " little group ", are shown to be such that the latter can be obtained from the former, up to a system of multipliers, by the procedure described in ref. [2].
2. Induced representations [4].-Let G be a group of transformations, assumed to act transitively on a space M. Denote by $\not p$ a fixed element of M , and by G_{0} the isotropy group of G at $\not \dot{p}$, i.e. the subgroup of G constituted of all the elements h such that $h \dot{p}=\varnothing$. It is well-known that M can be identified with the homogeneous space $\mathrm{G} / \mathrm{G}_{0}$: in fact, the generic left coset $\bar{g} \mathrm{G}_{0},(\bar{g} \in \mathrm{G})$, can be associated with the element $p=g^{\prime}{ }^{\circ},\left(g^{\prime} \in \bar{g} \mathrm{G}_{0}\right)$, which is clearly independent from the particular choice of g^{\prime} in the coset; conversely, on account of the assumed transitivity of G on M , each element p of M can be obtained from \neq by acting on it with some element $\bar{g} \in \mathrm{G}$, or with any other element of the coset $\bar{g} \mathrm{G}_{0}$, so that one has a one-to-one correspondence between elements of M and elements of G / G_{0}; moreover, such a correspondence is preserved by the action of G, i.e. $g_{2}\left(g_{1} \mathrm{G}_{0}\right) \xlongequal{\text { def }}\left(g_{2} g_{1}\right) \mathrm{G}_{0}$ corresponds to $g_{2}{ }^{\prime \prime} p$ whenever $g_{1} \mathrm{G}_{0}$ corresponds to p.

Consider a linear representation σ of G_{0} : denote by U the representation space, and by $\sigma(h)$ the operator corresponding to the element h of G_{0}. The aim is to construct, starting from σ, a linear representation ρ of G acting on a suitably defined representation space \hat{U}.

Define \hat{U} as the set of all maps $\hat{\Phi}: g \rightarrow \hat{\Phi}(g)$ of G into U which satisfy the condition

$$
\begin{equation*}
\hat{\Phi}(g h)=\sigma\left(h^{-1}\right) \hat{\Phi}(g) \tag{6}
\end{equation*}
$$

for all $g \in G$ and all $h \in \mathrm{G}_{0}$. In order to assign one of such maps it is sufficient to assign arbitrarily the vector $\hat{\Phi}(e) \in U$ corresponding to the identity of G, (then (6) determines $\hat{\Phi}(h)$ for all $h \in \mathrm{G}_{0}$), and to assign, for each left coset $p=\bar{g} \mathrm{G}_{0}$, an arbitrary vector $\hat{\Phi}(\bar{g}) \in \mathrm{U}$ corresponding to a fixed representative \bar{g} of the coset, (then (6) determines $\hat{\Phi}(g)$ for any other element $g \in \bar{g} \mathrm{G}_{0}$). The space $\hat{\mathrm{U}}$ can be regarded as a linear space with the following definition of addition and multiplication with scalars:

$$
a \hat{\Phi}+b \hat{\psi}: g \rightarrow a \hat{\Phi}(g)+b \hat{\psi}(g),
$$

and it is immediately verified that $a \hat{\Phi}+b \hat{\psi}$ actually belongs to \hat{U}, (i.e. satisfies (6)), whenever $\hat{\Phi}$ and $\hat{\psi}$ belong to \hat{U}.

The linear representation ρ of \mathcal{G}, acting on the vector space \hat{U}, can be defined as follows:

$$
\begin{equation*}
\rho\left(g_{0}\right) \hat{\Phi}: g \rightarrow \hat{\Phi}\left(g_{0}^{-1} g\right) \quad, \quad\left(g_{0}, g \in \mathrm{G} ; \hat{\Phi} \in \hat{U}\right) \tag{7}
\end{equation*}
$$

The mapping $\hat{\psi} \equiv \rho\left(g_{0}\right) \hat{\Phi}$ of G into U satisfies (6) and therefore belongs to \hat{U}, since one has:

$$
\hat{\psi}(g h)=\hat{\Phi}\left(g_{0}^{-1} g h\right)=\sigma\left(h^{-1}\right) \hat{\Phi}\left(g_{0}^{-1} g\right)=\sigma\left(h^{-1}\right) \hat{\psi}(g) .
$$

It is also easily verified that the transformations ρ are linear, and that $\rho\left(g_{1} g_{0}\right)=\rho\left(g_{1}\right) \rho\left(g_{0}\right)$.
ρ is called the representation of G induced by σ.

Since the assignment of a mapping of G into U satisfying (6) is equivalent to the assignment of an arbitrary mapping of a set $\{\bar{g}\}$ of representatives of the left cosets of G_{0} into U , for a fixed choice of the set $\{\bar{g}\}$ one can associate with each element $\hat{\Phi} \in \hat{U}$ the mapping of M into U defined by

$$
\Phi: p \rightarrow \hat{\Phi}(\bar{g}) \quad, \quad\left(p=\bar{g} \mathrm{G}_{0}\right)
$$

With the help of the mappings Φ one can establish a one-to-one correspondence between the elements of \hat{U} and the cross-sections of the product bundle $\mathrm{M} \times \mathrm{U}$ of M with U , (M being the base space and U the fibre). In fact, with the element $\hat{\Phi} \in \hat{U}$ one can associate the cross-section $\hat{\Phi}^{*}$ defined by

$$
\begin{equation*}
\hat{\Phi}^{*}: p \rightarrow \hat{\Phi}^{*}(p) \stackrel{\text { def }}{=} p \times \Phi(p) \equiv p \times \hat{\Phi}(\bar{g}) \tag{8}
\end{equation*}
$$

Since U is a vector space, $M \times U$ is a vector bundle, so that the space \hat{U}^{*} of its cross-sections has a natural linear structure, and it is an immediate consequence of (8) that the correspondence just defined between \hat{U} and \hat{U}^{*} is an isomorfism between vector spaces. Therefore one can define a representation ρ^{*} of G, equivalent to the representation ρ and acting on the representation space \hat{U}^{*}. Since the action of $\rho\left(g_{0}\right)$ on an element $\hat{\Phi} \in \hat{U}$ is given by (7), $\rho^{*}\left(g_{0}\right)$ must transform the generic element $\hat{\Phi}^{*} \in \hat{\mathrm{U}}^{*}$ into the element $\hat{\psi}^{*} \in \hat{\mathrm{U}}^{*}$ such that

$$
\begin{align*}
\hat{\psi}^{*}(p) & \equiv p \times \hat{\psi}(\bar{g})=p \times\left[\rho\left(g_{0}\right) \hat{\Phi}\right](\bar{g})=p \times \hat{\Phi}\left(g_{0}^{-1} \bar{g}\right)= \tag{9}\\
& =p \times \hat{\Phi}\left(\overline{g_{0}^{-1} g} h_{g_{0}, p}^{-1}\right)=p \times \sigma\left(h_{g_{0}, p}\right) \hat{\Phi}\left(\overline{g_{0}^{-1} g}\right)= \\
& =p \times \sigma\left(h_{g_{0}, p}\right) \Phi\left(g_{0}^{-1} p\right)
\end{align*}
$$

where $\overline{g_{0}^{-1} g}$ is the representative of the coset $g_{0}^{-1} \bar{g} \mathrm{G}_{0}, h_{g_{0}, p}$ is the element of G_{0} such that $g_{0}^{-1} \bar{g}=\overline{g_{0}^{-1} g} h_{g_{0}, p}^{-1}$, and (6) has been taken into account.

Whenever two representations ρ_{1}^{*} and ρ_{2}^{*} of G act on the same representation space \hat{U}^{*}, (the space of cross-sections of the bundle $M \times U$), and there exists a set $\left\{m_{g, p}\right\}$ of linear transformations whose generic element depends on g and p, acting on the fibre over p, and such that

$$
\left(\rho_{2}^{*}(g) \hat{\Phi}^{*}\right)(p)=m_{g, p}\left(\rho_{1}^{*}(g) \hat{\Phi}^{*}\right)(p)
$$

for all $g \in G, p \in \mathrm{M}$ and $\hat{\Phi}^{*} \in \hat{\mathrm{U}}^{*}$, the two representations ρ_{1}^{*} and ρ_{2}^{*} will be said to coincide $u p$ to the system of multipliers $\left\{m_{g, p}\right\}$. (In particular, it is not hard to see that two distinct choices of the set $\{\bar{g}\}$ of representatives of the left cosets lead to two representations which coincide up to a system of multipliers).
3. The representations of the groups \mathfrak{B} and \mathfrak{G} associated with a given momentum vector and a given representation of the " little GROUP ".-The application of the method just described to the construction
of a representation of any specific group G requires:
a) the interpretation of G as a transitive group of transformations on some space M ;
b) the determination of a representation of the isotropy group G_{0} of G at any point $\stackrel{\rho}{\rho}$ of M ; (on account of the transitivity of action of G on M , the isotropy group is the same at all points of M, up to isomorphisms).

In the case of the inhomogeneous orthochronous Lorentz group, $(\mathrm{G} \equiv \mathfrak{J})$, M is defined as the set of all vectors $\boldsymbol{p}=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ in Minkowski space which can be obtained from a given momentum vector $\dot{\boldsymbol{p}}$ by means of an homogeneous orthochronous Lorentz transformation (thus, all the vectors \boldsymbol{p} of M have the same norm, and the same orientation in time whenever they are timelike or null). The homogeneous orthochronous Lorentz group \mathcal{L} acts transitively on M, the action $\boldsymbol{p} \rightarrow \boldsymbol{\Lambda} \boldsymbol{p}$ of an element $\Lambda \in \mathcal{L}$ on $\boldsymbol{p} \in \mathrm{M}$ being defined in the obvious way. If the action of any translation on M is taken to be the identity transformation, then \mathscr{P} also acts transitively on M , and the action of the generic element $(\Lambda, a) \in \mathscr{B}$, (i.e. the translation defined by the four-vector \boldsymbol{a} followed by the homogeneous transformation Λ), is the same as the action of its homogeneous part alone. The isotropy subgroup \mathscr{B}_{0} of \mathscr{B} at $\dot{\boldsymbol{p}}$ is the product of the isotropy subgroup \mathscr{R}_{0} of \mathscr{L} at $\stackrel{\boldsymbol{p}}{ }$ (the " little group" corresponding to the momentum vector $\stackrel{\circ}{\boldsymbol{p}}$), with the subgroup $\{t\}$ of translations.

If $\bar{\sigma}$ denotes a linear representation of the little group, acting on a complex vector space U, then the mapping

$$
\begin{equation*}
\sigma:\left(\Lambda_{0}, a\right) \rightarrow \exp (i \boldsymbol{a} \cdot \stackrel{\boldsymbol{p}}{)}) \cdot \bar{\sigma}\left(\Lambda_{0}\right) \tag{io}
\end{equation*}
$$

$\left(\Lambda_{0} \in \mathrm{~L}_{0} ; \boldsymbol{a} \cdot \stackrel{\dot{\boldsymbol{p}}}{ } \equiv a^{i} \dot{p}_{i}\right.$), is a linear representation of \mathscr{B}_{0}, acting on U , and the corresponding induced representation ρ (or ρ^{*}) of \mathfrak{P} can be constructed. The corresponding representation space will be denoted by $\hat{\mathrm{U}}_{\mathscr{B}}$ (or $\hat{\mathrm{U}}_{\mathscr{S}}^{*}$). It can be shown that with this procedure all the irreducible unitary representations of \mathscr{B} can be obtained, starting from all possible momentum vectors and all possible unitary representations of the corresponding little groups.

Without changing the definition of M , consider now the GBM group $(G \equiv \mathfrak{G})$, and define the action of any supertranslation (I, α) as the identity transformation. Then \mathcal{G} acts transitively on M , the action of its generic element (Λ, α) being the same as the action of the transformation $\Lambda \in \mathcal{Z}$ alone. Denote by \mathfrak{G}_{0} the product $\mathcal{S}_{0}\{s\}$ of the little group \mathscr{L} : with the supertranslation subgroup $\{s\}$, so that $\mathfrak{G}_{\mathbf{0}}$ is the isotropy group of \mathfrak{G} at $\boldsymbol{\boldsymbol { p }}$. If $\bar{\sigma}$ is a representation of \mathscr{S}_{0}, the mapping

$$
\begin{equation*}
\tilde{\sigma}: h \equiv\left(\Lambda_{0}, \alpha\right) \rightarrow \tilde{\sigma}(h) \equiv \exp \left(i \boldsymbol{a}_{\Lambda_{0}^{-1} p} \cdot \stackrel{\circ}{\boldsymbol{p}}\right) \sigma\left(\Lambda_{0}\right), \tag{II}
\end{equation*}
$$

$\left(\Lambda_{0} \in \mathcal{R}, \alpha \in\{s\}\right)$, where $\boldsymbol{a}_{\mathrm{P}}$ denotes the vector of the translation AT (θ, φ) to (I, α), (see ref. [2]), defines a linear representation of \mathfrak{G}_{0} acting on the
tensor product $\mathrm{V}=\mathrm{F} \otimes \mathrm{U}$ of the space F of all C^{2} functions on the sphere with the representation space U of $\bar{\sigma}$, the action of $\vec{\sigma}(h)$ on V being such that

$$
\begin{equation*}
\stackrel{\sigma}{\sigma}(h) \cdot f(\theta, \varphi) \otimes \varphi=\exp \left(i \boldsymbol{a}_{\Lambda_{0}^{-1} p} \cdot \circ \cdot \boldsymbol{p}\right) f\left(\Lambda_{0}^{-1} \theta, \Lambda_{0}^{-1} \varphi\right) \otimes \bar{\sigma}\left(\Lambda_{0}\right) \varphi \tag{12}
\end{equation*}
$$

$\left(f \in \mathrm{~F}, \varphi \in \mathrm{U}, h \equiv\left(\Lambda_{0}, \alpha\right) \in \mathcal{G}_{0}\right)$. Hence one can construct the representation $\stackrel{\rho}{\rho}$ (or $\stackrel{\rightharpoonup}{\rho}^{*}$) of \mathfrak{G} induced by $\vec{\sigma}$. The corresponding representation space will be denoted by $\hat{\mathrm{U}}_{\mathcal{G}}$, (or $\hat{\mathrm{U}}_{\mathcal{G}}^{*}$).
4. Relation between the representations ρ^{*} and $\stackrel{\rho}{\rho}^{*}$.-It will now be shown that whenever the representations ρ^{*} and $\tilde{\rho}^{*}$ of \mathfrak{B} and \mathfrak{G} respectively are constructed from the same momentum vector $\dot{\boldsymbol{p}}$ and the same representation $\bar{\sigma}$ of the corresponding little group $\mathfrak{S}_{0}, \stackrel{\rho}{\rho}^{*}$ coincides, up to a system of multipliers, with the representation of G obtained from p^{*} by the procedure described in reference [2].

Consider, first, the representation ρ^{*}. Denote by $\left\{\boldsymbol{\varphi}_{\zeta}\right\}$ a basis in U; (it is convenient to regard ζ as a discrete index, as in fact it is whenever \AA is timelike, in which case the little group is the three-dimensional rotation group. However the assumption that ζ be discrete is not essential). With respect to this basis the generic element of U is described by a real-valued function $f(\zeta)$; a cross-section $\Phi_{\mathscr{g}}^{*}$ of the product bundle $\mathrm{M} \times \mathrm{U}$ is therefore described by a function $f(p, \zeta)$ of ζ and the three independent components $\left(p_{1}, p_{2}, p_{3}\right)$ of \boldsymbol{p}. The operator $p^{*}(a)$ corresponding to the translation a defined by the vector \boldsymbol{a} transforms the cross-section $\hat{\Phi}_{\mathscr{J}}^{*} \in \hat{\mathrm{U}}_{\mathscr{J}}^{*}$, according to (9) and (IO), into the cross-section $\hat{\psi}_{\mathcal{S}}^{*}$ such that

$$
\begin{align*}
\hat{\psi}_{\mathscr{B}}^{*}(\boldsymbol{p}) & =\boldsymbol{p} \times \hat{\Phi}_{\mathscr{S}}\left(a^{-\mathbf{1}} \bar{g}\right)=\boldsymbol{p} \times \hat{\Phi}_{\mathscr{S}}\left(\bar{g} \bar{g}^{-1} a^{-1} \bar{g}\right)= \tag{I3}\\
& =\boldsymbol{p} \times \sigma\left(\bar{g}^{-1} a \bar{g}\right) \hat{\Phi}_{\mathscr{B}}(\bar{g})=\boldsymbol{p} \times \exp \left(i \boldsymbol{\Lambda}^{-1} \boldsymbol{a} \cdot \stackrel{\circ}{\boldsymbol{p}}\right) \hat{\Phi}_{\mathscr{J}}(\bar{g})= \\
& =\boldsymbol{p} \times \exp (i \boldsymbol{a} \cdot \boldsymbol{p}) \hat{\Phi}_{\mathscr{J}}(\bar{g}),
\end{align*}
$$

where Λ denotes the homogeneous part of the inhomogeneous transformation \bar{g}, and the fact that $\bar{g}-\mathbf{1} a \bar{g}$ is the translation represented by the vector $\boldsymbol{\Lambda}_{\hat{N}^{-1}} \boldsymbol{a}$ has been taken into account. Clearly the function f^{\prime} which represents $\hat{\psi}_{\mathscr{B}}^{*}$ is given by $f^{\prime}(p, \zeta)=\exp (i \boldsymbol{a} \cdot \boldsymbol{p}) f(p, \zeta)$. Similarly, the operator $\rho^{*}(\Lambda)$ corresponding to a homogeneous Lorentz transformation Λ transforms $\hat{\Phi}_{\mathscr{S}}^{*}$, according to (9), into the cross-section $\hat{\psi}_{\mathcal{G}}^{*}$ such that

$$
\hat{\psi}_{\mathfrak{S}}^{*}(\boldsymbol{p})=\boldsymbol{p} \times Q(\Lambda, p) \Phi_{\mathscr{Z}}\left(\boldsymbol{\Lambda}^{-1} \boldsymbol{p}\right)
$$

where $Q(\Lambda, p)$ is a linear transformation of U depending on Λ and p, so that the function f^{\prime} associated with $\hat{\psi}_{\mathscr{G}}^{*}$ has the form

$$
\begin{equation*}
f^{\prime}(p, \zeta)=\sum_{\eta} Q(\Lambda, p)_{\varsigma \eta} f\left(\Lambda^{-1} p, \eta\right) \tag{I4}
\end{equation*}
$$

where $Q\left(\Lambda, p_{\text {S }}\right.$ is the matrix of the transformation $Q(\Lambda, p)$ in the basis $\left\{\varphi_{\zeta}\right\}$.

Consider now the representation $\stackrel{\rho}{\rho}^{*}$. The representation space V of $\stackrel{\tilde{\sigma}}{ }$ admits the basis $\left\{\mathbf{Y}_{l m} \otimes \varphi_{\zeta}\right\}$, where the $\mathrm{Y}_{l m}$'s denote the associated Legendre polynomials, and the generic element of V is described by a function $f(\zeta, l, m)$. A cross-section $\hat{\Phi}_{\mathcal{G}}^{*} \in \hat{U}_{\mathcal{G}}^{*}$ can be associated with a function $f(p, \zeta, l, m)$, or, equivalently, with the function $f(p, \zeta ; \theta, \varphi) \equiv \sum_{l, m} f(p, \zeta, l, m) \mathbf{Y}_{l m}(\theta, \varphi)$ which can be regarded as defining a continuous mapping

$$
(\theta, \varphi) \rightarrow \hat{\Phi}_{\mathfrak{G}}^{*}(\theta, \varphi) \quad, \quad\left(\hat{\Phi}_{\mathcal{G}}^{*}(\theta, \varphi) \in \hat{\mathrm{U}}_{\mathfrak{g}}^{*}\right)
$$

of the sphere into the space of cross-sections of the bundle $\mathrm{M} \times \mathrm{U}$: this shows that the representation space of $\stackrel{\rightharpoonup}{p}^{*}$ is identical with the representation space \mathscr{H} described in ref. [2], provided that the representation \mathscr{C} of \mathfrak{B} on which the construction of $\stackrel{\tilde{6}}{ }$ is based is taken to be identical wich ρ^{*}.

According to (9) and (I), taking the linearity of $\stackrel{\sim}{\sigma}$ into account, one has, for a supertranslation $\zeta \equiv(\mathrm{I}, \alpha)$:

$$
\begin{aligned}
\left(\rho^{*}(s) \hat{\Phi}_{\mathcal{G}}^{*}\right)(\boldsymbol{p}) & =\boldsymbol{p} \times \hat{\Phi}_{\mathcal{G}}\left(s^{-1} \bar{g}\right)=\boldsymbol{p} \times \hat{\Phi}_{\mathcal{G}}\left(\bar{g} \bar{g}^{-1} s^{-1} \bar{g}\right)= \\
& =\boldsymbol{p} \times \stackrel{\rightharpoonup}{\sigma}\left(\bar{g}^{-1} s \bar{g}\right) \hat{\Phi}_{\mathcal{G}}(\bar{g})=\boldsymbol{p} \times \sum_{\zeta}\left\{\left[\exp \left(i \boldsymbol{\Lambda}^{-1} \boldsymbol{a}_{\mathrm{P}} \cdot \stackrel{\circ}{\boldsymbol{p}}\right)\right.\right. \\
& \left.\cdot f(p, \zeta ; \theta, \varphi)] \otimes \boldsymbol{\varphi}_{\zeta}\right\}=\boldsymbol{p} \times \sum_{\zeta}\left[\exp \left(i \boldsymbol{a}_{\mathrm{P}} \cdot \boldsymbol{p}\right) f(p, \zeta ; \theta, \varphi) \otimes \boldsymbol{q}_{\zeta}\right]
\end{aligned}
$$

where Λ denotes the homogeneous part of the GBM transformation \bar{g} representing the left coset associated with \boldsymbol{p}, and the fact that $\bar{g}^{-1} a_{\mathrm{P}} \bar{g}$ is the translation represented by the vector $\boldsymbol{\Lambda}^{-1} \boldsymbol{a}_{\mathrm{P}}$ has been taken into account. Regarding $\stackrel{\rho}{\rho}^{*}(s) \hat{\Phi}_{\mathcal{G}}^{*}$ as a map of the sphere into $\hat{\mathrm{U}}_{\mathscr{S}}^{*}$, the last result can be read as follows:

$$
\dot{\rho}^{*}(s) \hat{\Phi}_{\mathcal{G}}^{*}:(\theta, \varphi) \rightarrow \exp \left(i \boldsymbol{a}_{\mathrm{P}} \cdot \boldsymbol{p}\right) \hat{\Phi}_{\mathfrak{G}}^{*}(\theta, \varphi) \equiv \rho^{*}\left(\boldsymbol{a}_{\mathrm{P}}\right) \hat{\Phi}_{\mathcal{G}}^{*}(\theta, \varphi) .
$$

This shows that, for supertranslations, the operators of the representation $\widetilde{\mathscr{G}}$ described in ref. [2] are identical with the corresponding operators of $\tilde{\rho}^{*}$, provided that \mathscr{G} is taken to be identical with ρ^{*}.

Finally, if $\Sigma \in \mathcal{R}$ is a homogeneous Lorentz transformation, one has, from (9)

$$
\left(\stackrel{\rho}{\rho}^{*}(\Sigma) \hat{\Phi}_{\mathfrak{G}}^{*}\right)(\boldsymbol{p})=\boldsymbol{p} \times \tilde{\sigma}\left(h_{\Sigma, p}\right) \Phi_{\mathcal{G}}\left(\Sigma^{-1} \boldsymbol{p}\right),
$$

where $h_{\boldsymbol{\Sigma}, p}$ is an element of G_{0} depending on Σ and \boldsymbol{p}, for a given choice of the representatives of the cosets. If the choice of the representatives is the same as for the representation p^{*} of \mathfrak{B}, one can write, taking (9), (I2) and (I4) into account:

$$
\begin{aligned}
& \left(\stackrel{\rightharpoonup}{p}^{*}(\Sigma) \hat{\Phi}_{\mathscr{G}}^{*}\right)(\boldsymbol{p})=\boldsymbol{p} \times\left[\sum_{\zeta} f\left(\Sigma^{-1} p, \zeta ; \Lambda_{0}^{-1} \theta, \Lambda_{0}^{-1} \varphi\right) \otimes \bar{\sigma}\left(h_{\Sigma, p}\right) \cdot \varphi_{\zeta}\right]= \\
& \quad=\boldsymbol{p} \times\left[\sum_{\zeta \eta} Q(\Sigma, p)_{\zeta \eta} R_{\Sigma, p} f\left(\Sigma^{-1} p, \eta ; \Sigma^{-1} \theta, \Sigma^{-1} \varphi\right) \otimes \varphi_{\zeta}\right],
\end{aligned}
$$

where Λ_{0} denotes the homogeneous part of the transformation $h_{\Sigma, p}$, and $\mathrm{R}_{\Sigma, p}$ is a linear transformation on the space F , depending on $\boldsymbol{\Sigma}$ and \boldsymbol{p}. Regarding
the elements of $\hat{\mathrm{U}}_{\mathfrak{G}}^{*}$ as mappings of the sphere into $\hat{\mathrm{U}}_{\mathscr{J}}^{*}$, the last result can be read as follows:

$$
\left(\stackrel{\rho}{\rho}^{*}(\Sigma) \hat{\Phi}_{\mathfrak{G}}^{*}\right)(\boldsymbol{p}):(\theta, \varphi) \rightarrow \boldsymbol{p} \times \mathrm{R}_{\boldsymbol{\Sigma}, p} \rho^{*}(\Sigma) \hat{\Phi}_{\mathcal{G}}^{*}\left(\Lambda^{-1} \theta, \Lambda^{-1} \varphi\right) .
$$

By comparison with the definition of the operators of $\tilde{\mathscr{G}}$, (ref. [2]), it is immediately seen that the restrictions of $\stackrel{\rho}{p}^{*}$ and $\widetilde{\mathscr{G}}$ to \mathcal{L} coincide, up to a system of multipliers, whenever the representation \mathfrak{C} of \mathscr{B} is taken to be identical with ρ^{*}. On account of the previous results, the same is true for the whole representations $\stackrel{\rightharpoonup}{p}^{*}$ and $\stackrel{\mathscr{6}}{ }$ of \mathcal{G}.

Indirectly, this shows that the linear representations of \mathfrak{G} obtained from unitary representations of the little group can always be transformed, by suitable choices of multipliers, into unitary representations of \mathfrak{G}.

The irreducible components of the latter representations are determined in reference [3].

References.

[i] H. Bondi, M. G. J. van der Burg, A. W. K. Metzner, «Proc. Roy. Soc.» (London) A 269, 21 (1962).
[2] V. Cantoni, «J. Math. Phys.», 7, i36i (i966).
[3] V. Cantoni, "J. Math. Phys», (to be published).
[4] R. Hermann, Lie Groups for Physicists (Benjamin 1966).
[5] G. W. Mackey, The theory of group representations (Univ. of Chicago, 1955).
[6] R. K. Sachs, "Proc. Roy. Soc.» (London), A 270, 103 (1962).
[7] R. K. Sachs, "Phys. Rev.», 128, 285 I (1962).
[8] E. Wigner, «Ann. Math.》, 40, 149 (1939).

