ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

VITTORIO CANTONI

Induction of representations of the generalized Bondi-Metzner group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.1-2, p. 30–37. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_1-2_30_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Fisica matematica.** — Induction of representations of the generalized Bondi-Metzner group ^(*). Nota ^(**) di VITTORIO CANTONI, presentata dal Corrisp. C. CATTANEO.

RIASSUNTO. — Si costruisce una classe di rappresentazioni del gruppo di Bondi-Metzner mediante una generalizzazione del metodo di Wigner [8] per la costruzione delle rappresentazioni unitarie del gruppo di Poincaré. Si dimostra che le rappresentazioni ottenute sono equivalenti, a meno di un sistema di moltiplicatori, alle rappresentazioni unitarie ottenute precedentemente dall'autore [2] con procedimento diverso.

I. INTRODUCTION.—It is possible to characterize a class of "asymptotically flat" space-times, which can be expected to include plausible models for physical situations corresponding to bounded systems emitting gravitational radiation, by assuming, with Bondi-Metzner-van der Burg [I] and Sachs [6], that outside some region with finite spatial cross-section the space-time manifold can be covered by a single system of "generalized polar coordinates" (u, r, θ, φ) such that:

a) the metric takes the form

(I)
$$ds^{2} = -A du^{2} - 2 B du dr + + r^{2} \Big(C d\theta^{2} + 2 D d\theta d\varphi + \frac{\sin^{2} \theta + D^{2}}{C} d\varphi^{2} + E du d\theta + F du d\varphi \Big),$$

where A, B, C, D, E, F are functions of the coordinates, the ranges of the coordinates being $-\infty < u < \infty$, $r_0 \le r < \infty$, $0 \le \theta \le \pi$, $0 \le \varphi \le 2\pi$ and the points P (u, r, θ , o) and P (u, r, θ , 2π) being coincident;

b) for sufficiently large values of r the functions A, B, C, D, E, F can be expanded in power series of r^{-1} , and for $r \to \infty$ (u, θ , φ constant), the limiting form of the metric is

(2)
$$ds^{2} = -du^{2} - 2 \, du \, dr + r^{2} \, (d\theta^{2} + \sin^{2} \theta \, d\varphi^{2}),$$

i.e. the flat-space metric expressed in polar coordinates and in terms of the retarded time u.

It can be shown [6] [7] that to each coordinate transformation preserving the conditions a) and b) there corresponds a well-defined "asymptotic transformation", which can be regarded as a mapping of the cartesian product $R \times S$ of the real line R with the two-dimensional sphere S onto itself. The set of such asymptotic transformations forms a group, which will be denoted

^(*) Lavoro eseguito nell'ambito dell'attività del Gruppo di Ricerca n. 36 del Comitato Nazionale per la Matematica del C.N.R. per l'anno 1966-67.

^(**) Pervenuta all'Accademia il 7 luglio 1967.

by \mathfrak{G} and called, with Sachs, the generalized Bondi-Metzner group (GBM group). If $(\mathfrak{u}, \theta, \phi)$ are regarded as coordinates in R×S, the generic GBM transformation has the form

(3)
$$u' = \frac{u + \alpha (\theta, \varphi)}{K(\theta, \varphi)}$$
, $\theta' = H(\theta, \varphi)$, $\varphi' = I(\theta, \varphi)$,

where α (θ , $\phi)$ is an arbitrary C^2 function on the two-sphere, while H , I and K are subjected to the condition

$$K^2$$
 (H, I) $\cdot (dH^2 + \sin^2 H \cdot dI^2) = d\theta^2 + \sin^2 \theta \cdot d\varphi^2$,

so that H and I represent a conformal mapping of the two-sphere onto itself, and K is given by

(4)
$$\mathbf{K} \left(\boldsymbol{\theta} , \boldsymbol{\varphi} \right) = \sin^{1/2} \boldsymbol{\theta} \cdot \sin^{-1/2} \mathbf{H} \cdot \left[\partial \left(\mathbf{H} , \mathbf{I} \right) / \partial \left(\boldsymbol{\theta} , \boldsymbol{\varphi} \right) \right]^{-1/2}.$$

It can be shown [7] that the subgroup \mathfrak{L} of \mathfrak{G} obtained by putting $\alpha = 0$ is isomorphic, with the homogeneous orthochronous Lorentz group, while the subgroup \mathfrak{G} of \mathfrak{G} obtained by restricting α to the form

(5)
$$\alpha(\theta, \varphi) = -a^0 + a^1 \sin \theta \cos \varphi + a^2 \sin \theta \sin \varphi + a^3 \cos \theta$$
,

 $(a^0, a^1, a^2, a^3 \text{ constants})$ is isomorphic with the inhomogeneous orthochronous Lorentz group (Poincaré group). The transformations obtained by putting $H = \theta$, $I = \varphi$ are called "supertranslations" and constitute an abelian normal subgroup $\{s\}$ of \mathfrak{S} ; the translations are special supertranslations satisfying condition (5), and constitute a four-parameter abelian normal subgroup $\{t\}$ of G. The generic GBM transformation (3) can be regarded as the product of the supertranslation defined by the function α , denoted by (I, α), followed by the "homogeneous Lorentz transformation" defined by H and I, and denoted by (Λ , α): it will be denoted by (Λ , α), so that (Λ , α) = (Λ , α) (I, α).

It has been shown in a previous paper [2] that with any element $(\Lambda, \alpha) \in \mathfrak{S}$ and any pair of values (θ, φ) of the angular coordinates one can associate a well defined element $(\Lambda, a_{\theta\varphi}) \in \mathfrak{S}$, referred to as "the inhomogeneous Lorentz transformation asymptotically tangent to (Λ, α) in the ray direction (θ, φ) ", (briefly AT (θ, φ) to (Λ, α)); an element of \mathfrak{S} is completely determined by the set of its AT transformations, and the latter can be exploited to construct, from each unitary representation of \mathfrak{S} , a unitary representation of \mathfrak{S} .

In this paper it is shown that the same representations of \mathcal{G} can be obtained by an alternative procedure which is a generalization of Wigner's method for the construction of the unitary representations of \mathcal{S} , [4] [8]. The representations of \mathcal{S} and \mathcal{G} , respectively, associated with a given "momentum vector" and a given representation of the corresponding "little group", are shown to be such that the latter can be obtained from the former, up to a system of multipliers, by the procedure described in ref. [2].

2. INDUCED REPRESENTATIONS [4].—Let G be a group of transformations, assumed to act transitively on a space M. Denote by \mathring{p} a fixed element of M, and by G_0 the isotropy group of G at \mathring{p} , i.e. the subgroup of G constituted of all the elements h such that $h\mathring{p} = \mathring{p}$. It is well-known that M can be identified with the homogeneous space G/G_0 : in fact, the generic left coset $\bar{g} G_0$, $(\bar{g} \in G)$, can be associated with the element $p = g' \mathring{p}$, $(g' \in \bar{g} G_0)$, which is clearly independent from the particular choice of g' in the coset; conversely, on account of the assumed transitivity of G on M, each element p of M can be obtained from \mathring{p} by acting on it with some element $\bar{g} \in G$, or with any other element of the coset $\bar{g} G_0$, so that one has a one-to-one correspondence between elements of M and elements of G/G_0 ; moreover, such a correspondence is preserved by the action of G, i.e. $g_2(g_1 G_0) \stackrel{\text{def}}{=} (g_2 g_1) G_0$ corresponds to $g_2 p$ whenever $g_1 G_0$ corresponds to p.

Consider a linear representation σ of G_0 : denote by U the representation space, and by $\sigma(h)$ the operator corresponding to the element h of G_0 . The aim is to construct, starting from σ , a linear representation ρ of G acting on a suitably defined representation space \hat{U} .

Define \hat{U} as the set of all maps $\hat{\Phi}: g \to \hat{\Phi}(g)$ of G into U which satisfy the condition

(6)
$$\Phi(gh) = \sigma(h^{-1}) \Phi(g)$$

for all $g \in G$ and all $h \in G_0$. In order to assign one of such maps it is sufficient to assign arbitrarily the vector $\hat{\Phi}(e) \in U$ corresponding to the identity of G, (then (6) determines $\hat{\Phi}(h)$ for all $h \in G_0$), and to assign, for each left coset $p = \bar{g} G_0$, an arbitrary vector $\hat{\Phi}(\bar{g}) \in U$ corresponding to a fixed representative \bar{g} of the coset, (then (6) determines $\hat{\Phi}(g)$ for any other element $g \in \bar{g} G_0$). The space \hat{U} can be regarded as a linear space with the following definition of addition and multiplication with scalars:

$$a\hat{\Phi} + b\hat{\psi}: g
ightarrow a\hat{\Phi}(g) + b\hat{\psi}(g),$$

and it is immediately verified that $a\hat{\Phi} + b\hat{\psi}$ actually belongs to \hat{U} , (i.e. satisfies (6)), whenever $\hat{\Phi}$ and $\hat{\psi}$ belong to \hat{U} .

The linear representation ρ of \mathfrak{G} , acting on the vector space \hat{U} , can be defined as follows:

(7)
$$\rho(g_0) \hat{\Phi} : g \to \hat{\Phi}(g_0^{-1}g) \quad , \quad (g_0, g \in \mathbf{G} ; \hat{\Phi} \in \hat{\mathbf{U}}).$$

The mapping $\hat{\Psi} \equiv \rho(g_0) \hat{\Phi}$ of G into U satisfies (6) and therefore belongs to \hat{U} , since one has:

$$\hat{\Psi}(gh) = \hat{\Phi}(g_0^{-1}gh) = \sigma(h^{-1}) \hat{\Phi}(g_0^{-1}g) = \sigma(h^{-1}) \hat{\Psi}(g).$$

It is also easily verified that the transformations ρ are linear, and that $\rho(g_1 g_0) = \rho(g_1) \rho(g_0)$.

 ρ is called the representation of G induced by σ .

Since the assignment of a mapping of G into U satisfying (6) is equivalent to the assignment of an arbitrary mapping of a set $\{\bar{g}\}$ of representatives of the left cosets of G₀ into U, for a fixed choice of the set $\{\bar{g}\}$ one can associate with each element $\hat{\Phi} \in \hat{U}$ the mapping of M into U defined by

$$\Phi: p \to \Phi(\bar{g}) \quad , \quad (p = \bar{g} \, \mathcal{G}_0).$$

With the help of the mappings Φ one can establish a one-to-one correspondence between the elements of \hat{U} and the cross-sections of the product bundle $M \times U$ of M with U, (M being the base space and U the fibre). In fact, with the element $\hat{\Phi} \in \hat{U}$ one can associate the cross-section $\hat{\Phi}^*$ defined by

(8)
$$\hat{\Phi}^*: p \to \hat{\Phi}^*(p) \stackrel{\text{def}}{=} p \times \Phi(p) \equiv p \times \hat{\Phi}(\bar{g}).$$

Since U is a vector space, $M \times U$ is a vector bundle, so that the space \hat{U}^* of its cross-sections has a natural linear structure, and it is an immediate consequence of (8) that the correspondence just defined between \hat{U} and \hat{U}^* is an isomorfism between vector spaces. Therefore one can define a representation ρ^* of G, equivalent to the representation ρ and acting on the representation space \hat{U}^* . Since the action of $\rho(g_0)$ on an element $\hat{\Phi} \in \hat{U}$ is given by (7), $\rho^*(g_0)$ must transform the generic element $\hat{\Phi}^* \in \hat{U}^*$ into the element $\hat{\psi}^* \in \hat{U}^*$ such that

(9)
$$\hat{\psi}^{*}(p) \equiv p \times \hat{\psi}(\bar{g}) = p \times [\rho(g_{0}) \hat{\Phi}](\bar{g}) = p \times \hat{\Phi}(g_{0}^{-1}\bar{g}) =$$
$$= p \times \hat{\Phi}(\overline{g_{0}^{-1}g} h_{g_{0},p}^{-1}) = p \times \sigma(h_{g_{0},p}) \hat{\Phi}(\overline{g_{0}^{-1}g}) =$$
$$= p \times \sigma(h_{g_{0},p}) \Phi(g_{0}^{-1}p)$$

where $\overline{g_0^{-1}g}$ is the representative of the coset $g_0^{-1}\overline{g}G_0$, $h_{g_0,p}$ is the element of G_0 such that $g_0^{-1}\overline{g} = \overline{g_0^{-1}g}h_{g_0,p}^{-1}$, and (6) has been taken into account.

Whenever two representations ρ_1^* and ρ_2^* of G act on the same representation space \hat{U}^* , (the space of cross-sections of the bundle $M \times U$), and there exists a set $\{m_{g,p}\}$ of linear transformations whose generic element depends on g and p, acting on the fibre over p, and such that

$$(\rho_2^*(g) \Phi^*)(p) = m_{g,p}(\rho_1^*(g) \Phi^*)(p)$$

for all $g \in G$, $p \in M$ and $\hat{\Phi}^* \in \hat{U}^*$, the two representations ρ_1^* and ρ_2^* will be said to coincide *up to the system of multipliers* $\{m_{g,p}\}$. (In particular, it is not hard to see that two distinct choices of the set $\{\bar{g}\}$ of representatives of the left cosets lead to two representations which coincide up to a system of multipliers).

3. THE REPRESENTATIONS OF THE GROUPS *S* AND *S* ASSOCIATED WITH A GIVEN MOMENTUM VECTOR AND A GIVEN REPRESENTATION OF THE "LITTLE GROUP ".—The application of the method just described to the construction

^{3. -} RENDICONTI 1967, Vol. XLIII, fasc. 1-2.

of a representation of any specific group G requires:

a) the interpretation of G as a transitive group of transformations on some space M;

b) the determination of a representation of the isotropy group G_0 of G at any point \hat{p} of M; (on account of the transitivity of action of G on M, the isotropy group is the same at all points of M, up to isomorphisms).

In the case of the inhomogeneous orthochronous Lorentz group, $(G \equiv \mathscr{F})$, M is defined as the set of all vectors $\mathbf{p} = (p_0, p_1, p_2, p_3)$ in Minkowski space which can be obtained from a given *momentum vector* \mathbf{p} by means of an homogeneous orthochronous Lorentz transformation (thus, all the vectors \mathbf{p} of M have the same norm, and the same orientation in time whenever they are timelike or null). The homogeneous orthochronous Lorentz group \mathscr{L} acts transitively on M, the action $\mathbf{p} \to \mathbf{A}\mathbf{p}$ of an element $\mathbf{A} \in \mathscr{L}$ on $\mathbf{p} \in \mathbf{M}$ being defined in the obvious way. If the action of any translation on M is taken to be the identity transformation, then \mathscr{F} also acts transitively on M, and the action of the generic element $(\mathbf{A}, a) \in \mathscr{F}$, (i.e. the translation defined by the four-vector \mathbf{a} followed by the homogeneous transformation \mathbf{A}), is the same as the action of its homogeneous part alone. The isotropy subgroup \mathscr{F}_0 of \mathscr{F} at \mathbf{p} is the product of the isotropy subgroup \mathscr{L}_0 of \mathscr{L} at \mathbf{p} (the "little group" corresponding to the momentum vector \mathbf{p}), with the subgroup $\{t\}$ of translations.

If $\overline{\sigma}$ denotes a linear representation of the little group, acting on a complex vector space U, then the mapping

(10)
$$\sigma: (\Lambda_0, a) \to \exp(i \mathbf{a} \cdot \check{\mathbf{p}}) \cdot \bar{\sigma} (\Lambda_0),$$

 $(\Lambda_0 \in L_0; \boldsymbol{a} \cdot \boldsymbol{\dot{p}} \equiv a^i \, \boldsymbol{\dot{p}}_i)$, is a linear representation of \mathscr{G}_0 , acting on U, and the corresponding induced representation ρ (or ρ^*) of \mathscr{G} can be constructed. The corresponding representation space will be denoted by $\hat{U}_{\mathscr{G}}$ (or $\hat{U}_{\mathscr{G}}^*$). It can be shown that with this procedure all the irreducible unitary representations of \mathscr{G} can be obtained, starting from all possible momentum vectors and all possible unitary representations of the corresponding little groups.

Without changing the definition of M, consider now the GBM group $(G \equiv \mathfrak{S})$, and define the action of any supertranslation (I, α) as the identity transformation. Then \mathfrak{S} acts transitively on M, the action of its generic element (Λ, α) being the same as the action of the transformation $\Lambda \in \mathfrak{L}$ alone. Denote by \mathfrak{G}_0 the product $\mathfrak{L}_0 \{s\}$ of the little group \mathfrak{L} : with the super-translation subgroup $\{s\}$, so that \mathfrak{G}_0 is the isotropy group of \mathfrak{S} at \mathbf{p} . If $\overline{\sigma}$ is a representation of \mathfrak{L}_0 , the mapping

(II)
$$\tilde{\sigma}: h \equiv (\Lambda_0, \alpha) \rightarrow \tilde{\sigma}(h) \equiv \exp\left(i a_{\Lambda_0^{-1}p} \cdot \hat{p}\right) \sigma(\Lambda_0),$$

 $(\Lambda_0 \in \mathcal{L}, \alpha \in \{s\})$, where \boldsymbol{a}_p denotes the vector of the translation AT (θ, φ) to (I, α) , (see ref. [2]), defines a linear representation of \mathfrak{G}_0 acting on the

tensor product $V = F \otimes U$ of the space F of all C² functions on the sphere with the representation space U of $\overline{\sigma}$, the action of $\overset{\circ}{\sigma}(h)$ on V being such that

(12)
$$\tilde{\sigma}(h) f(\theta, \varphi) \otimes \varphi = \exp(i \mathbf{a}_{\Lambda_0^{-1} \rho} \cdot \hat{\mathbf{p}}) f(\Lambda_0^{-1} \theta, \Lambda_0^{-1} \varphi) \otimes \overline{\sigma}(\Lambda_0) \varphi,$$

 $(f \in F, \varphi \in U, \hbar \equiv (\Lambda_0, \alpha) \in \mathcal{G}_0)$. Hence one can construct the representation $\tilde{\rho}$ (or $\tilde{\rho}^*$) of \mathcal{G} induced by $\tilde{\sigma}$. The corresponding representation space will be denoted by $\hat{U}_{\mathcal{G}}$, (or $\hat{U}_{\mathcal{G}}^*$).

4. RELATION BETWEEN THE REPRESENTATIONS ρ^* AND $\tilde{\rho}^*$.—It will now be shown that whenever the representations ρ^* and $\tilde{\rho}^*$ of S and S respectively are constructed from the same momentum vector $\overset{\circ}{p}$ and the same representation $\overline{\sigma}$ of the corresponding little group Ω_0 , $\tilde{\rho}^*$ coincides, up to a system of multipliers, with the representation of G obtained from ρ^* by the procedure described in reference [2].

Consider, first, the representation ρ^* . Denote by $\{\varphi_{\zeta}\}$ a basis in U; (it is convenient to regard ζ as a discrete index, as in fact it is whenever \mathring{p} is timelike, in which case the little group is the three-dimensional rotation group. However the assumption that ζ be discrete is not essential). With respect to this basis the generic element of U is described by a real-valued function $f(\zeta)$; a cross-section Φ_{\Im}^* of the product bundle $M \times U$ is therefore described by a function $f(\rho, \zeta)$ of ζ and the three independent components (p_1, p_2, p_3) of p. The operator $\rho^*(a)$ corresponding to the translation a defined by the vector a transforms the cross-section $\hat{\Phi}_{\Im}^* \in \hat{U}_{\Im}^*$, according to (9) and (10), into the cross-section $\hat{\psi}_{\Im}^*$ such that

(13)
$$\hat{\Psi}^{*}_{\mathfrak{F}}(\boldsymbol{p}) = \boldsymbol{p} \times \hat{\Phi}_{\mathfrak{F}}(a^{-1}\bar{g}) = \boldsymbol{p} \times \hat{\Phi}_{\mathfrak{F}}(\bar{g}\,\bar{g}^{-1}\,a^{-1}\bar{g}) =$$
$$= \boldsymbol{p} \times \sigma\,(\bar{g}^{-1}\,a\bar{g})\,\hat{\Phi}_{\mathfrak{F}}(\bar{g}) = \boldsymbol{p} \times \exp\,(i\,\boldsymbol{\Lambda}^{-1}\,\boldsymbol{a}\cdot\boldsymbol{\mathring{p}})\,\hat{\Phi}_{\mathfrak{F}}(\bar{g}) =$$
$$= \boldsymbol{p} \times \exp\,(i\,\boldsymbol{a}\cdot\boldsymbol{p})\,\hat{\Phi}_{\mathfrak{F}}(\bar{g}),$$

where Λ denotes the homogeneous part of the inhomogeneous transformation \overline{g} , and the fact that $\overline{g}^{-1} a \overline{g}$ is the translation represented by the vector $\Lambda^{-1} a$ has been taken into account. Clearly the function f' which represents $\hat{\psi}^*_{\mathfrak{F}}$ is given by $f'(p, \zeta) = \exp(i \mathbf{a} \cdot \mathbf{p}) f(p, \zeta)$. Similarly, the operator $\rho^*(\Lambda)$ corresponding to a homogeneous Lorentz transformation Λ transforms $\hat{\Phi}^*_{\mathfrak{F}}$, according to (9), into the cross-section $\hat{\psi}^*_{\mathfrak{F}}$ such that

$$\psi_{\Im}^{*}(\mathbf{p}) = \mathbf{p} \times \mathcal{Q}(\Lambda, p) \Phi_{\Im}(\Lambda^{-1}\mathbf{p}),$$

where $Q(\Lambda, p)$ is a linear transformation of U depending on Λ and p, so that the function f' associated with $\hat{\psi}^*_{\Re}$ has the form

(14)
$$f'(p, \zeta) = \sum_{\eta} Q(\Lambda, p)_{\zeta\eta} f(\Lambda^{-1}p, \eta),$$

where $Q(\Lambda, p)_{\zeta\eta}$ is the matrix of the transformation $Q(\Lambda, p)$ in the basis $\{\varphi_{\zeta}\}$.

Consider now the representation $\tilde{\rho}^*$. The representation space V of $\tilde{\sigma}$ admits the basis $\{\mathbf{Y}_{lm} \otimes \varphi_{\zeta}\}$, where the Y_{lm} 's denote the associated Legendre polynomials, and the generic element of V is described by a function $f(\zeta, l, m)$. A cross-section $\hat{\Phi}_{\mathfrak{g}}^* \in \hat{U}_{\mathfrak{g}}^*$ can be associated with a function $f(\varphi, \zeta, l, m)$, or, equivalently, with the function $f(\varphi, \zeta; \theta, \varphi) \equiv \sum_{l,m} f(\varphi, \zeta, l, m) \mathbf{Y}_{lm}(\theta, \varphi)$ which can be regarded as defining a continuous mapping

$$(\theta \text{ , } \phi) \rightarrow \hat{\Phi}_{\mathfrak{S}}^{*}\left(\theta \text{ , } \phi\right) \quad \text{ , } \quad (\hat{\Phi}_{\mathfrak{S}}^{*}\left(\theta \text{ , } \phi\right) \in \hat{U}_{\mathfrak{F}}^{*}),$$

of the sphere into the space of cross-sections of the bundle $M \times U$: this shows that the representation space of $\tilde{\rho}^*$ is identical with the representation space $\tilde{\mathfrak{X}}$ described in ref. [2], provided that the representation \mathfrak{T} of \mathfrak{S} on which the construction of $\tilde{\mathfrak{T}}$ is based is taken to be identical wich ρ^* .

According to (9) and (11), taking the linearity of σ into account, one has, for a supertranslation $\zeta \equiv (1, \alpha)$:

$$\begin{aligned} (\boldsymbol{\rho}^{*}(\boldsymbol{s}) \ \hat{\boldsymbol{\Phi}}_{\mathfrak{G}}^{*})(\boldsymbol{p}) &= \boldsymbol{p} \times \hat{\boldsymbol{\Phi}}_{\mathfrak{G}}(\boldsymbol{s}^{-1} \boldsymbol{\bar{g}}) = \boldsymbol{p} \times \hat{\boldsymbol{\Phi}}_{\mathfrak{G}}(\boldsymbol{\bar{g}} \boldsymbol{\bar{g}}^{-1} \boldsymbol{s}^{-1} \boldsymbol{\bar{g}}) = \\ &= \boldsymbol{p} \times \tilde{\boldsymbol{\sigma}}(\boldsymbol{\bar{g}}^{-1} \boldsymbol{s} \boldsymbol{\bar{g}}) \ \hat{\boldsymbol{\Phi}}_{\mathfrak{G}}(\boldsymbol{\bar{g}}) = \boldsymbol{p} \times \sum_{\boldsymbol{\zeta}} \left\{ [\exp\left(i \, \boldsymbol{\Lambda}^{-1} \, \boldsymbol{a}_{\mathrm{P}} \cdot \boldsymbol{\hat{p}}\right) \cdot \right. \\ &\left. \cdot f\left(\boldsymbol{p},\boldsymbol{\zeta}\,;\,\boldsymbol{\theta}\,,\boldsymbol{\varphi}\right) \right] \otimes \boldsymbol{\varphi}_{\boldsymbol{\zeta}} \right\} = \boldsymbol{p} \times \sum_{\boldsymbol{\zeta}} \left\{ \exp\left(i \, \boldsymbol{a}_{\mathrm{P}} \cdot \boldsymbol{p}\right) f\left(\boldsymbol{p}\,,\boldsymbol{\zeta}\,;\,\boldsymbol{\theta}\,,\boldsymbol{\varphi}\right) \otimes \boldsymbol{\varphi}_{\boldsymbol{\zeta}} \right\} \end{aligned}$$

where Λ denotes the homogeneous part of the GBM transformation \overline{g} representing the left coset associated with p, and the fact that $\overline{g}^{-1} a_{\rm P} \overline{g}$ is the translation represented by the vector $\Lambda^{-1} a_{\rm P}$ has been taken into account. Regarding $\tilde{\rho}^*(s) \hat{\Phi}_{\mathfrak{G}}^*$ as a map of the sphere into $\hat{U}_{\mathfrak{G}}^*$, the last result can be read as follows:

$$\tilde{\rho}^{*}(s) \ \hat{\Phi}^{*}_{\mathfrak{G}}: (\theta, \varphi) \rightarrow \exp\left(i \, \boldsymbol{a}_{\mathrm{P}} \cdot \boldsymbol{p}\right) \ \hat{\Phi}^{*}_{\mathfrak{G}}(\theta, \varphi) \equiv \rho^{*}\left(\boldsymbol{a}_{\mathrm{P}}\right) \ \hat{\Phi}^{*}_{\mathfrak{G}}(\theta, \varphi).$$

This shows that, for supertranslations, the operators of the representation $\tilde{\mathcal{T}}$ described in ref. [2] are identical with the corresponding operators of $\tilde{\rho}^*$, provided that \mathcal{T} is taken to be identical with ρ^* .

Finally, if $\Sigma \in \mathcal{L}$ is a homogeneous Lorentz transformation, one has, from (9)

$$(\mathring{\rho}^{*}(\Sigma) \, \hat{\Phi}^{*}_{\mathfrak{G}})(\mathbf{p}) = \mathbf{p} imes \check{\sigma} (h_{\Sigma, \mathbf{p}}) \, \Phi_{\mathfrak{G}}(\Sigma^{-1} \, \mathbf{p})$$

where $h_{\Sigma,p}$ is an element of G_0 depending on Σ and p, for a given choice of the representatives of the cosets. If the choice of the representatives is the same as for the representation ρ^* of \mathcal{S} , one can write, taking (9), (12) and (14) into account:

$$\begin{split} (\mathring{\rho}^{*}(\Sigma) \ \widehat{\Phi}_{\mathfrak{S}}^{*})(\mathbf{p}) &= \mathbf{p} \times \left[\sum_{\zeta} f(\Sigma^{-1} p, \zeta; \Lambda_{0}^{-1} \theta, \Lambda_{0}^{-1} \varphi) \otimes \overline{\sigma}(h_{\Sigma, p}) \cdot \varphi_{\zeta} \right] = \\ &= \mathbf{p} \times \left[\sum_{\zeta \eta} Q(\Sigma, p)_{\zeta \eta} \operatorname{R}_{\Sigma, p} f(\Sigma^{-1} p, \eta; \Sigma^{-1} \theta, \Sigma^{-1} \varphi) \otimes \varphi_{\zeta} \right], \end{split}$$

where Λ_0 denotes the homogeneous part of the transformation $h_{\Sigma,p}$, and $R_{\Sigma,p}$ is a linear transformation on the space F, depending on Σ and p. Regarding

the elements of \hat{U}_{g}^{*} as mappings of the sphere into \hat{U}_{g}^{*} , the last result can be read as follows:

$$(\tilde{\boldsymbol{\rho}}^{*}\left(\boldsymbol{\Sigma}\right)\,\hat{\boldsymbol{\Phi}}^{*}_{\mathfrak{S}}\left(\boldsymbol{\textit{p}}\right):\left(\boldsymbol{\theta}\;,\,\boldsymbol{\phi}\right)\rightarrow\boldsymbol{\textit{p}}\times\boldsymbol{R}_{\boldsymbol{\Sigma},\boldsymbol{\textit{p}}}\,\boldsymbol{\rho}^{*}\left(\boldsymbol{\Sigma}\right)\,\hat{\boldsymbol{\Phi}}^{*}_{\mathfrak{S}}\left(\boldsymbol{\Lambda}^{-1}\;\boldsymbol{\theta}\;,\,\boldsymbol{\Lambda}^{-1}\;\boldsymbol{\phi}\right).$$

By comparison with the definition of the operators of $\tilde{\mathfrak{C}}$, (ref. [2]), it is immediately seen that the restrictions of $\tilde{\rho}^*$ and $\tilde{\mathfrak{C}}$ to \mathfrak{L} coincide, up to a system of multipliers, whenever the representation \mathfrak{T} of \mathfrak{S} is taken to be identical with ρ^* . On account of the previous results, the same is true for the whole representations $\tilde{\rho}^*$ and $\tilde{\mathfrak{C}}$ of \mathfrak{S} .

Indirectly, this shows that the linear representations of \mathfrak{G} obtained from *unitary* representations of the little group can always be transformed, by suitable choices of multipliers, into *unitary* representations of \mathfrak{G} .

The irreducible components of the latter representations are determined in reference [3].

References.

- [1] H. BONDI, M. G. J. VAN DER BURG, A. W. K. METZNER, "Proc. Roy. Soc." (London) A 269, 21 (1962).
- [2] V. CANTONI, « J. Math. Phys. », 7, 1361 (1966).
- [3] V. CANTONI, « J. Math. Phys », (to be published).
- [4] R. HERMANN, Lie Groups for Physicists (Benjamin 1966).
- [5] G. W. MACKEY, The theory of group representations (Univ. of Chicago, 1955).
- [6] R. K. SACHS, « Proc. Roy. Soc. » (London), A 270, 103 (1962).
- [7] R. K. SACHS, « Phys. Rev. », 128, 2851 (1962).
- [8] E. WIGNER, «Ann. Math.», 40, 149 (1939).