ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Maria Teresa Bonardi

Sopra i monoidi cubici di un $S_{3,q}$, con speciale riguardo al caso q=5

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **42** (1967), n.6, p. 792–796. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_6_792_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Sopra i monoidi cubici di un $S_{3,q}$, con speciale riguardo al caso q=5 (*). Nota di Maria Teresa Bonardi, presentata (**) dal Socio B. Segre.

SUMMARY. — Projective characterization of the set of the points lying on a cubic surface with a double point of a Galois space $S_{3,q}$, and some additional remarks for the case q = 5.

- I. G. Tallini ha ottenuto in [5] eleganti caratterizzazioni delle superficie cubiche di $S_{3,q}$ aventi almeno tre punti doppi ed io stessa ho ottenuto in [2] un risultato analogo per le superficie cubiche con due punti doppi. In questa Nota prenderò in considerazione le superficie \mathbb{F}^3 con un solo punto doppio, pervenendo ad un risultato dello stesso tipo. Anche ora, come già per le \mathbb{F}^3 con due punti doppi, presenta speciale interesse il caso q=5 perché una \mathbb{F}^3 di un $S_{3,5}$ con uno oppure con due punti doppi ed avente il massimo numero di punti è esaurita dalle sue rette ed è quindi una rigata cubica priva di retta doppia senza essere necessariamente un cono. Lo stesso fatto non si presenta ad esempio nel caso analogo di una \mathbb{F}^3 di $S_{3,5}$ con 41 punti di cui 4 doppi, le cui 9 rette contengono complessivamente soltanto 37 punti (cfr. [5], Nota II, teorema II).
- 2. Sia F(N) un insieme di N punti di uno spazio lineare $S_{3,q}$ di dimensione 3 ed ordine dispari q>3 ⁽¹⁾ al quale appartenga per intero ogni retta avente in comune con esso almeno quattro punti. Dirò che $Q \in F(N)$ è un punto doppio se ogni retta passante per Q e non appartenente ad F(N) passa al più per un altro punto dell'insieme. Supporrò inoltre che F(N) non contenga né piani né regoli né terne di rette non complanari ed uscenti da un punto che non sia doppio.

Relativamente all'insieme F(N) dimostrerò il seguente:

TEOREMA: Se $N \ge q^2 + 6q + 1$ e se F(N) possiede un solo punto doppio Q ed inoltre ogni retta p dell'insieme passante per Q appartiene a non più di due piani seganti F(N) in terne di rette uscenti da Q, allora F(N) è una superficie cubica ed $N = q^2 + 6q + 1$.

L'ipotesi $N \ge q^2 + 6q + 1$ assicura intanto che F(N) contiene almeno sei rette passanti per Q. Se p è una di esse, un piano contenente p ha in

^(*) Lavoro eseguito nell'ambito dell'attività dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche.

^(**) Nella seduta del 21 giugno 1967.

⁽¹⁾ Per le definizioni e le prime proprietà dei campi di Galois e degli spazi lineari finiti, cfr. [4].

comune con F(N) fuori di p un insieme $\mathfrak{I}(\pi)$ che può essere:

- o) un h-arco ampliabile in un (h+1)-arco con l'aggiunta di Q; sicché o $\leq h \leq q$;
 - 1) una retta;
 - 2) una retta passante per Q ed un punto;
 - 3) due rette di cui una sola per Q;
 - 4) due rette passanti entrambe per Q.

Diremo che π è di tipo m (m=0,1,2,3,4) se $\Im(\pi)$ presenta il caso m. Incominciamo a dimostrare che se l_m è il numero dei piani di tipo m che passano per p risulta:

(1)
$$l_1 = l_2 = l_4 = 0$$
 , $l_3 = 5$, $l_0 = q - 4$.

Si ha intanto $\sum_{i=0}^4 l_i = q+1$ e quindi $N \le (q+1)^2 + l_2 + (q-1) l_3 + q l_4$; ma $N \ge q^2 + 6 q + 1$, dunque:

(2)
$$l_3(q-1) \ge 4q - l_4q - l_2$$
.

Ora osserviamo che:

- a) se $l_4 = 1$ ed $l_2 \le 2$, la (2) porge $l_3 \ge 4$. Siano allora σ_i (i = 1, 2, 3, 4) quattro piani di tipo 3 e per ogni i, sia $\Im(\sigma_i) = a_i \cup b_i$, con a_i e b_i rette di cui la seconda non passante per Q. Se α fosse un piano di tipo 4 ed $\Im(\alpha) = c_1 \cup c_2$, le rette b_1, b_2, b_3 certamente sghembe a due a due (2), segherebbero il piano a_4 c_j (j = 1, 2) in tre punti appartenenti ad una retta t_j ; b_1, b_2, b_3, a_4 sarebbero allora quattro rette del regolo $\{p, t_1, t_2\}$ (3), che apparterrebbe ad F(N), contro una delle ipotesi;
- b) se $l_4=1$ ed $l_2\geq 3$, la (2) dà $l_3\geq 3$; scelti allora tre piani τ_1 , τ_2 , τ_3 di tipo 2 e detta r_i la retta contenuta in $\Im(\tau_i)$ si potrebbe ripetere il ragionamento fatto in a) sostituendo i piani a_4 c_j con due dei piani r_ir_j ;
- c) se $l_4=2$, F(N) non può contenere due rette b_1 e b_2 tra loro sghembe ed appoggiate a p in punti distinti da Q. Altrimenti, detti α_1 ed α_2 i due piani di tipo q e posto $\Im(\alpha_j)=c_j\cup d_j$ (j=1,2) il piano $\gamma=c_1\,c_2$ conterrebbe un'altra retta r di F(N) e similmente il piano $\delta=d_1d_2$ conterrebbe un'altra retta s di F(N); r ed s, entrambe incidenti a b_1 e b_2 , sarebbero tra loro sghembe e quindi segherebbero la retta $\gamma\cap\delta$ in punti distinti tra loro (e da Q). La retta $\gamma\cap\delta$ apparterrebbe ad F(N) che pertanto conterrebbe qualche piano.

Si ha dunque $l_4 = 0$ e di conseguenza $l_3 \ge 4$. Proviamo ora che $l_2 < 4$. Sia – per assurdo – $l_2 \ge 4$ e – per ogni i = 1, 2, 3, 4 – sia ρ_i un piano di tipo 2, f_i la retta di $\Im(\rho_i)$, σ_i un piano di tipo 3, e b_i la retta di $\Im(\sigma_i)$ che non passa per Q. Si vede subito che le quattro rette b_i dovrebbero allora appoggiarsi, oltre che a p, a due rette t_1 , t_2 , contenute una nel

⁽²⁾ Se due delle b_i (ad esempio b_1 e b_2) fossero incidenti, F(N) conterrebbe il piano da esse individuato, oppure un piano passante per Q: per convincersene basta pensare alle intersezioni del piano b_1b_2 con le rette di F(N) uscenti da Q.

⁽³⁾ Ora e nel seguito indico con $\{a, b, c\}$ il regolo avente a, b, c come direttrici.

piano f_1f_2 e l'altra in f_3f_4 , sghembe tra loro e con p. Ne seguirebbe: $\{t_1, t_2, p\} \subset F(N)$; contro una delle ipotesi.

Dunque: $l_2 < 4$ e, per la (2): $l_3 \ge 5$.

Siano ora $\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5$ cinque piani di tipo 3 e – con le solite notazioni – $\Im(\sigma_i) = a_i \cup b_i$ (b_i non passante per Q). Denoteremo poi con i, j, l, m, n una qualunque permutazione degli indici I, 2, 3, 4, 5. Le rette b_i, b_j, b_l – essendo sghembe tra loro (4) e con a_m ed a_n – intersecano il piano $a_m a_n$ in tre punti distinti e non situati né su a_m né su a_n ; la retta r_{mn} che congiunge due di essi deve pertanto far parte di F(N) e contenere anche il terzo. Si determinano così su F(N) 10 rette r_{mn} ($I \le m \le n \le 5$) ciascuna sghemba con p, perché se r_{mn} e p fossero complanari, al loro piano apparterebbero b_i, b_i e b_l .

Proviamo che, oltre alle a_i e b_i , non esiste altra retta di F(N) appoggiata a p. Intanto se $a \in F(N)$ fosse una retta per Q distinta dalle a_i , il piano aa_i (per ogni $1 \le i \le 5$) dovrebbe contenere una retta s_i di F(N) diversa da a e da a_i , incidente a tutte le b_i (con $j \ne i$) e non passante per Q; allora il regolo $\{b_i, b_j, b_l\}$ conterrebbe s_m , s_n , r_{mn} e p e quindi farebbe parte di F(N). Se poi F(N) contenesse una retta p non passante per p0 e diversa dalle p1 essa dovendo essere sghemba con le p2 is appoggerebbe a tutte le p3 contenendo p3, p4, p5 (contenendo p5, p6, p7, p8 farebbe parte di p8. Le p9 sono così provate.

3. Per completare la dimostrazione del teorema, osserviamo che due delle 10 rette r_{mn} aventi un indice in comune (ossia incidenti ad una stessa coppia di b_i) sono certo sghembe; invece due rette r_{ij} ed r_{lm} (con $i \neq j \neq l \neq m$) devono essere incidenti, perché se esse incontrassero in punti distinti la retta $a_i a_j \cap a_l a_m$, questa farebbe parte di F(N) ed uno almeno dei due piani $a_i a_j$, $a_l a_m$ conterebbe quattro rette dell'insieme. Osserviamo inoltre che se i, j, l, m, n è ancora una permutazione di 1, 2, 3, 4, 5, r_{ij} , r_{lm} e b_n , essendo incidenti a due a due e non potendo – per ipotesi – uscire da uno stesso punto, risultano complanari. In particolare sono complanari le due terne di rette r_{12} , r_{34} , b_5 ed r_{13} , r_{25} , b_4 ; essendo $q \geq 5$ è sempre possibile scegliere un punto su b_4 , uno su b_5 e due su ciascuna delle rette r_{12} , r_{34} , r_{13} , r_{25} tutti distinti tra loro e distinti dai punti che quelle rette hanno a due a due in comune. Si ottengono così 10 punti i quali insieme con $r_{12} \cap b_4$, $r_{13} \cap b_5$, $r_{34} \cap r_{25}$, $r_{12} \cap r_{34}$, $r_{13} \cap r_{25}$ (certo tutti distinti per le ipotesi fatte su F(N)) offrono 15 condizioni indipendenti alle superficie del terzo ordine che li devono contenere.

Sia allora \mathbb{F}^3 la superficie cubica passante per quei 15 punti ed avente un punto doppio in \mathbb{Q} ; come si vede facilmente \mathbb{F}^3 contiene tutte le rette a_i , b_i ed r_{ij} e pertanto se π_s è un piano di tipo g i due insiemi $\pi_s \cap F(N)$ e $\pi_s \cap \mathbb{F}^3$ coincidono. Se, poi, π_s è di tipo g0, l'insieme g1 (g2) degli g3 punti comuni a g3 ed g4. F(N) fuori di g5 deve contenere i 4 punti (fra loro distinti) g5 e con l'aggiunta di g6 diventa – come si è detto – un

⁽⁴⁾ Vedi nota (2).

 (h_s+1) -arco $\Im'(\pi_s)$. Pertanto se γ_s è la conica residua intersezione di π_s con \Im^3 , oltre p, basta osservare che anche γ_s passa per Q ed i punti Q_{si} per concludere che se $h_s \geq q$ — I si ha: $\Im'(\pi_s) \subset \gamma_s$.

Dal fatto che \mathbb{F}^3 possiede esattamente q^2+6q+1 punti (cfr. [3], teorema I) di cui IIq-4 contenuti nei piani σ_i segue poi che tra le coniche γ_s (ottenute al variare di π_s nel fascio di asse p) una sola è tangente a p; quindi tra i numeri h_s uno al più può risultare uguale a q. D'altra parte dalle (I) e dall'ipotesi $N \geq q^2+6q+1$ si ricava: $\sum_{s=1}^{q-4}h_s \geq q^2-5q+5=(q-1)(q-5)+q;$ perciò se qualcuno degli h_s fosse inferiore a q-1 almeno due degli altri dovrebbero essere uguali a q. Concludendo, l'unico caso possibile è quello in cui uno degli h_s vale q, tutti gli altri valgono q-1 ed $\mathbb{F}(\pi_s)$ è sempre uguale all'insieme dei punti di γ_s fuori di p. Ogni piano passante per p sega dunque $\mathbb{F}(N)$ ed \mathbb{F}^3 nello stesso insieme, ossia $\mathbb{F}(N)$ ed \mathbb{F}^3 coincidono e pertanto si ha $\mathbb{F}(n)$ 0 ed \mathbb{F}^3 reconcidente.

Osservo inoltre che, nel caso q=5, se p è ancora una retta di F(N) passante per Q, non è difficile approfondendo l'esame delle sezioni di F(N) con i piani passanti per p, vedere che l'ipotesi $l_4 \leq 2$ del teorema può essere sostituita con quella, meno restrittiva, che F(N) non sia un cono; si può quindi concludere senz'altro che se q=5 ed $N\geq 56$, ogni F(N) di $S_{3,5}$ con un solo punto doppio Q è un cono luogo di II rette $^{(6)}$ uscenti da Q, oppure è una superficie cubica, non cono, luogo di 21 rette di cui 6 uscenti dal punto doppio ed in ogni caso risulta N=56.

⁽⁵⁾ Una superficie G di questo tipo è ad esempio quella di equazione: $(x_1 x_2 - x_0^2) x_3 + (x_1^2 - x_2^2) x_0 = 0$; G ha il punto doppio in Q = (0, 0, 0, 1) e, pur essendo irriducibile, contiene le sei rette del cono di equazione $x_1 x_2 - x_0^2 = 0$ ad essa tangente in Q.

⁽⁶⁾ Se F(N) è un cono costituito da h rette uscenti da Q, un qualunque piano non passante per Q sega F(N) in un $\{h; 3\}$ —arco; essendo II il massimo valore di h per cui esistono $\{h; 3\}$ —archi in un S_{2,5} (cfr. [I], n. 2) deve essere $h \le 11$. Dall'ipotesi $N \ge 56$ segue allora: h = 11.

BIBLIOGRAFIA.

- [1] BARLOTTI A, Sui { k; n}-archi di un piano lineare finito, « Boll. U.M.I. », (3), 11, 553-556 (1956).
- [2] BONARDI M. T., Intorno a certe superficie cubiche dello spazio di Galois, « Rend. Acc. Naz. Lincei », (8) 37, 396-400 (1965).
- [3] ROSATI L. A., Sul numero dei punti di una superficie cubica in uno spazio lineare finito, « Boll. U.M.I. », (3) 11, 412-418 (1956).
- [4] SEGRE B, Lectures on modern geometry, Roma, Cremonese, 1961.
- [5] TALLINI G., Caratterizzazione grafica di certe superficie cubiche di S_{3,q}, Note I e II, « Rend. Acc. Naz. Lincei » (8), 26, 484–489 e 644–648 (1958).