
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

H. Günzler

Vector valued functions on semigroups with almost
periodic differences

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 42 (1967), n.6, p. 775–781.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_6_775_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1967_8_42_6_775_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1967.



H. GÙNZLER, Vector valued functions on semigroups, ecc. 775

Matematica. — Vector valued functions on semigroups with 
almost periodic differences. Nota di H. G unzler , presen ta tan  dal 
Corrisp. L., A m erio .

RIASSUNTO. ■— Si approfondisce l’analisi delle funzioni q.p. su semigruppi, ottenendo, 
tra l’altro, estensioni di risultati di Amerio e di Doss.

Even before H . Bohr defined almost periodicity, in connection w ith the 
asym ptotic behavior of solutions of differential equations Bohl considered and 
solved the following* question: Given a ‘ quasi-periodic ’ fu n c tio n ^  on the reals

X
R, when is the indefinite integral f i x )  J g ( t ) d t  again quasiperiodic? His

0
answer lf  is quasi-periodic if and only if it is bounded ’ and the applications 
to differential equations he gave have been extended in m any directions and by 
m any authors, especially Bohr, Favard, Bochner, Brauers to m ention a few.

In  recent years, interest in these questions has been revived due to the 
penetrating work of Am erio on a.p. solutions of the wave equation. M otivat- 
ed by problem s which arose there, Amerio and his coworkers, Bochner and 
others obtained m any new and im portant results on the alm ost periodicity 
of indefinite integrals of vector valued a.p. functions or (partly  w ith the aid 
of these results) more generally of solutions of differential equations— see 
the survey of Am erio [4]; B ochner’s almost autom orphie functions were also 
introduced in this context.

The underlying group till then was always the real line R. Now if
X

f ( f f )  =  j g( t ) d t  w ith a.p. g, for fixed s the difference function f s ,

is a.p. in i e R ,  and this has a m eaning for arb itra ry  groups. It was R. Doss 
who had this simple but extrem ely fruitful idea, he showed [8] th a t bounded 
complex valued /  w ith all f s a.p. are a.p. too.

In this note we will indicate how the results of Am erio and Doss can be 
combined, giving conditions on the range (space) so th a t to tally  bounded 
respectively bounded /  w ith all differences f s a.p. are a.p.; instead of groups 
a rb itra ry  semigroups are adm itted. However, there still rem ain m any open 
questions, for example: Is the theorem  of Amerio-Doss valid for arb itra ry  
reflexive B anach spaces, or for L 1 ? (See after theorem  D below).

The proofs, m ore details and literature will appear in [io ], [ n ] .  O ur 
term inology is th a t of Kòthe [12].

(*) Nella seduta del 21 giugno 1967.
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A semigroup S is a non-em pty set w ith a b inary  associative operation 
s-t. I f  S has a un it u, us =  su =  j  for r  e S, then SK : =  S, else SM denotes 
the semigroup obtained from  S by form ally adjoining a unit. A  topological 
semigroup S is a semigroup and a topological space such th a t (s , t) - r  st is 
separately continuous in r respectively t. A  function /  defined on such a S 
and w ith values in a uniform  space will be called almost periodic (a.p.) if 
the following is true (M aak [14], Gunzler [9]): /  is continuous, and to 
every neighborhood N of the uniform ity there exist finitely m any subsets

m

Pi , • • • , Pm C S  w ith S =  U Pfx such th a t whenever for some c', d' , x fy  e S
|A =1 U

the elements c'xd ' and c'yd ' are in the same P^ , then ( f  (cxd) \ f (cyd))e  N 
for all c , d  e Su w ith cxd  and cyd e S.

If  S is a group, this coincides w ith the definitions of Bochner, von N eu­
m ann and M aak. If  S =  R, the additive group of the reals in the usual topo- 
logy, and the range space is C =  complex num bers or any complex Banach 
space, the definition above is equivalent w ith B ohr’s definition; this is true 
also for convex subsem igroups of w ith non-em pty interior.

A  locally convex abelian group E is a com m utative group and a topolo­
gical space such th a t (x ,y )  -> xy  and x~x are continuous, and in which to

m

each neighborhood V  of o there is a neighborhood U  of zero with — V  U  C V
m 1^1

for every  natural m, or equivalently if zero has a neighborhood basis 
o f convex sets; here for A ,  B C E ,  A + B :  =  { «  +  i  : « e A . k  B},

—  A  : =  {x  e E  : m x t A } ,  m x  : =  ^  x, A  is convex i f  —  X  A  =  A  for
1 1 A 1 M’; = 1  . meach natu ral A  denotes the closure of A. Since such E are uniform  spaces, 

to tally  bounded is equivalent w ith precom pact, if E is (topologically) complete, 
it is equivalent w ith relatively compact. Exam ples are locally convex real 
or complex linear spaces, especially norm ed spaces.

For f  : S E  and ^ € S the right difference f s is a function: S -> E 
defined by

CO f s ( f ) - . = f ( t s ) - f ( t ) .

I f  A C  S ,. / ( À )  : =  { /(* )  : j € A } .
Theorem A .— I f  S is a topological semigroup, E  a locally convex abelian 

group, f . S —> E, then f  is a.p. i f  and only i f  the followm g three conditions hold

(A) For each s e S, the right difference f s is a.p. on S;
(B) For each r e S ,  f  (cS) is totally bounded;
(C) There is a natural m and a  , cm e S such that

m  m

CO . r 1 2■ ( - o * +1 T P m )  c 2 ( - I f +1/ ( ^ S ) .
d l , ‘ "  idm e S  jx =  1

For groups S or semigroups w ith non-em pty center, for exam ple with 
a unit, condition (C) is autom atically fulfilled; for general S however it cannot 
be om itted as suitable counterexam ples show.
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If  S =  R, E =  complex num bers C, then theorem  A yields the theorem  
of Bohl and Bohr on integration of a.p. functions, since the differences of 
indefinite integrals of a.p. functions are easily seen to be a.p. For general 
E and S =  R, theorem  A essentially contains B ochner’s extension [5] on 
integration of B ohr-a.p . functions. If  S =  group, E =  C, one gets the result 
of Doss [8]. The special case S — abelian group, E =  B anach space has also 
been obtained independently  by R. Doss (unpublished, oral communication).

I f  E is a locally convex linear space, then  in theorem  A it is enough 
if (A), (B) and (C) hold only in the weak topology, provided there are c0 , dQ 
w i t h f ( c 0 Sd0) to tally  bounded, theorem  A in its general form follows once 
it has been shown for complex valued /  on S. For this one has to use

THEOREM B.— I f  S is a topological semigroup, E a locally convex real
or complex linear space, / :  S -> E, then f  is a.p. i f  and only i f  f  is weakly
a.p. and there are c0 , d0 e S so that f  (c0 Sd0) is totally bounded.

/ i s  weakly a.p. m eans / i s  a.p. in the weak topology of E, i.e. 9 o / i s  a.p. 
for each continuous linear scalar valued functional 9 on E. For S =  R, 
E =  B anach space, theorem  B is due to Kopec [13] and Am erio [1].

Since the total-boundedness of the range is a quite restrictive assum ption, 
weakened versions would be of interest. One such possibility, which we for­
m ulate only for S C R ” (see theorem  2 of [ i i ] )  is the following

THEOREM C.-—Let S be a convex open subsemigroup of R ” , E a locally
convex abelian group / :  S -> E be continuous. Then f  is a.p. i f  and only i f
all differences f s are a.p. on S and further f  is totally bounded on a set M C S  
which is relatively dense in  S.

M is relatively dense in S if there is a r >  o such th a t each ball w ith center 
x e $  and radius r  meets M.

An extension in a different direction, which has useful applications in partial 
differential equations, is due to Amerio [2]: If  the indefinite integral /  of an 
a.p, function : R -> B is only bounded, /  is a.p. if B is a uniform ly convex 
B anach space (for exam ple a H ilbert space).

This can be generalized to arb itrary  semigroups and /  w ith only a.p. 
differences. The following theorem  sim ultaneously shows th a t uniform  con­
vexity is in some sense a necessary assumption.

If A C N ,  N a norm ed real or complex linear space, A has (u) respectively 
(wcùs) resp.» (wncùs) means:

(u) sup !/|| =  : M <  00 and to each s >  o there is a & >  o so that' x  , y e  A,
be a

\ x  — y  I >  £ im ply || x  +  y  [| <  2M  • (1 —  5)
(wcùs) If  x 0 , x x , x 2 , • • • e A  with xn~> x 0 weakly, then 1 x n —  x 0 II----- ► o

n —>  00

(wntas) If x 0 , Xi , x 2 , ■ ■■ e A  with x n-^-x0 weakly and \ x n | | - ^ | |^ 0 ||, then 
! x„ — x 0 I ----- >- o.

n  —>  DO

N is uniform ly convex if its unit ball (or sphere) has (u), then any bound­
ed subset of N has (u), N has even (wns) : =  (wncùs) for nets instead of 
sequences. ‘ Renorm ing ’ m eans introducing an equivalent norm.
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THEOREM D .—Let $ be a topological semigroup, N a real or complex linear 
space, /  : S -> N . I f  -all right differences f s of f  are a.p ., i f  f  satisfies (C) of 
theorem A  with respect to the weak topology, (3)—(6) below are equivalent'.
(3) /  A

(4) N can be renormed so that f  (S) has (u)
(5) N can be renormed so that | j / | |  is a.p. and  / ( S) [or the closed linear 

hull of /  (S)] has (wncos)
(6) /  (S) is bounded and has (wcùs).

L et us say th a t the theorem of Amerio-Doss holds fo r  N and S if N is a 
real or complex norm ed linear space, S a topological semigroup, and for any 

/ :  S -> N  which has norm -a.p . differences f s and which is weakly a.p., one 
can conclude th a t /  is a.p.; by theorem  A, “ /  is weakly a.p. ” is here equival­
ent w ith “ / i s  bounded and (C) holds in the weak topology ” , so for most S 
boundedness of /  suffices.

As a corollary, if N is isomorphic to a uniform ly convex norm ed linear 
space, then the theorem  of Amerio-Doss holds for N and arb itra ry  S. Exam ples 
are L^-spaces of functions w ith values in a uniform ly convex B anach space, 
i <  /  <  00, the Amerio-Doss theorem  holds also for such Lf0k~spaces.

W ith (5) of theorem  D one gets: If  N is locally uniform ly convex, then 
/ :  S -> N  is a.p. if ||/ || is a.p., a l l / .  are a.p. and (C) holds in the weak topology 
(compare with theorem  V II of Amerio [1 ]; locally uniform ly convex is a 
m uch weaker condition than  uniform ly convex, any separable norm ed linear 
space can be renorm ed locally uniform ly convex).

Since the space I1 of absolutely convergent sequences has (wcùs), the 
theorem  of Amerio-Doss is true for I1 and any S. For / - t y p e  spaces however 
m uch m ore holds as we will see presently.

T hough the range has to be uniform ly convex if boundedness implies 
alm ost periodicity, by  the results of Amerio [3] there are reflexive Banach 
spaces B of / - t y p e  for which the theorem  of Amerio-Doss holds with S =  R, 
bu t which are not isomorphic to a uniform ly convex Banach space (use theo­
rem  I). A n extension to m ore general substitution spaces and arb itrary  S 
is contained in

THEOREM E .— Let T  be a uniformly convex Banach space with (7), (8), 
(9) below, S a topological semigroup, L  a normed real or complex linear space 
of type T |N ,- (see below), /  : S -> L. Then the theorem of Amerio-Doss holds 

fo r  L  and  S, i f  it holds fo r  each N* and  S.
H ere I is an a rb itra ry  index set, the assum ptions on T  and L  are:

(7) T  is a norm ed real linear space of functions 9 : I -> R  under pointwise 
addition, scalar m ultiplication and equality

(8) If  9 and all 9y € T, then J 9y | <  || 9 || for all j  e J
(9) If  9 , <[» e T  with o <  9 <  (J; on I, then || 9 || <  | ^ |.

J denotes the system of all finite subsets j C  I, (pj(i) : =  9 (i) for i e j ,  else =  o 
in I. Exam ples would be lp (I), i <  p  < 00,
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If  T  satisfies (7) and N,- , i e l ,  are norm ed real or complex linear spaces, 
L is of type T|N* m eans L  is a norm ed real or complex linear space of functions 
g  on I with g(i)  eN,-, i e I, under pointwise addition, scalar m ultiplication 
and equality, such th a t g  e L implies gy e L for all j  6 J and \ g \ - e T  with 
I k  II ~  I k l l x  > k l  00 : =  \ g ( z) In.» g j  defined as above. Exam ples are 
the substitution spaces lp (I , N,-), then for I =  natural num bers co, S =  reals R, 
theorem  E yields an analogue to a result of Amerio [3], which by theorem  I 
below is in fact equivalent w ith it.

The case p  =  1 is not subsum ed by theorem  E, but here we have
Theorem F — Let § be a topological semigroup, N,- normed real or complex 

linear spaces fo r  i e l ,  I arbitrary index set, /  : S I1 (I , N,-). Then f  is a.p. 
i f  and only i f  it is weakly a .p . and all its projections f  : S -> N,- are norm-a.p ., 
i e l .

For an extension to locally convex range spaces w ith (wcùs) see [10, theo­
rem  4].

If  N,- =■ complex num bers C (or reals R) one gets as a first corollary, 
generalizing a result of Ricci and Rizzonelli [16] from R to a rb itra ry  topolo­
gical semigroups S:

For f  : S -> /  (I , C) weak and norm almost periodicity coincide.
A m erio’s result [3 , /  =■ i] is subsum ed by the following corollary:
I f  S an d 'Ni are as in theorem F, then the theorem of Amerio-Doss holds 

fo r  I (I , N*) and  S i f  and only i f  it holds fo r  all N* and S, i e l .
The case p =  00 however, as Amerio has shown in [2], furnishes exam ­

ples of Banach spaces where the theorem  of Amerio-Doss fails to hold, even 
for S =  R  or integers.

T urn ing  to integration of a.p. functions in R", let us say th a t the theorem 
of Bohl-Ameno holds fo r  B and  S if the following is true: B is a real or com­
plex B anach space, S an open additive subsemigroup of R" in the usual topo­
logy; 1 <  n natu ra l <  oo, each continuous and bounded /  : S B which 
has all its distribution derivatives of first order a.p. is itself a.p. on S.

For n = 1 ,  S open convex subsem igroup C R, the theorem  of Bohl-Ame- 
rio holds for B and S if and only if for any a.p. g  : S —> B w ith on S bounded

X

indefinite Bochner integral f ( x )  =  j  g(t)dt ,  f  is a.p. on S.
0

F or general n  and -S, if — / , •  • • , — /  are a.p., the difference f s is

a.p. on S for each j e S  open convex C R ”; if n =  i, Stepanoff-almost-perio- 
dicity of f ! is enough. So our theorem s above apply, one has:

Theorem G .-—I f  the theorem of Amerio-Doss holds fo r  B and  S, S open 
convey C R ”, then the theorem of B ohi-Amerio hods fo r  B and  S. The latter 
ls therefore especially fo r  uniformly convex B, but also fo r  L as in theorem E 
with Banach spaces N,- fo r  which the Bohl-Amerio-theorem holds with respect 
to S, or fo r  I (I , B,-) with Banach spaces B?- which satisfy the B ohi-Amerio 
theorem»
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Sim ilarly as in theorem  C above, the boundedness assum ption can be 
som ewhat relaxed:

T h eo rem  H .—Let S be a convex open subsemigroup of IT*, M a relatively 
dense subset of S , B a real or [ complex Banach space, /  : S -> B continuous 
with a.p. first order derivatives in  S; i f  n = 1, f  need only be Stepanoff-a.p . 
with p  =  1. Then f  is a.p. i f  either / ( M )  is totally bounded or f  is bounded 
(or bounded in the mean) on M and the theorem of B ohi-Amerio holds fo r  B 
and  S.

From  this one deduces for S and M as in theorem  H the equivalence 
of the following three statem ents concerning a distribution T  e (S):

(10) T  is an a.p. distribution.
(11) For each s e S , t _^T  —  T is a.p., and T  is bounded onisli.
(12) The first order derivatives of T  are a.p. on S, and  T  is bounded on M.

Theorem  G and H contain as special cases results of Brauers [6], 
(S =  M =  R w, B =  C), Amerio [2], [3] (S =  M =  R 1, B uniform ly convex 
or lp (co , Bn) , co =  natural num bers), Vasconi [17] and Prouse [15] 
( S ^ M ^ R 1, B uniform ly convex). Also a.p. solutions of the wave equation 
Px u —  utt +  a (x) u =  f  (x , t), P* elliptic, can be treated  if /  is periodic, 
b u t not necessarily continuous in t  (see [11, n )  in § 3]).

Theorem  G and these applications suggest th a t “ the theorem  of Bohl- 
Amerio is valid”  is a condition less restrictive than  “ the theorem  of Amerio- 
Doss holds ” . For n =  1 one has however

THEOREM I.— I f  B is a real or complex Banach space, then the theorem 
of Amerio-Doss holds fo r  B and R i f  and only i f  the theorem of B ohi-Amerio 
holds fo r  B and  R.

This is a corollary of the following characterization of (unbounded) func­
tions with a.p. differences:

Theorem J.-—I f  B is a real or complex Banach space, f  : R ->  B is bound­
ed on a set of positive Lebesgue measure, then the following statements are equi­
valent'.

(13) For each ^ e R ,  f s is a.p. on R.

(14) There are two a.p. g, h : R ->  B with f ( x ) = g ( x ) - \ - j h ( t ) d t ,  xe.R.
0

X

(15) There is a sequence of a.p. functions f n : R ->  B with f  (o') +  f n (t) dt = > /0 ) ,
uniformly in x  e R , $

If  B — C, this still generalizes a result of Caracosta and Doss [7], in (13) 
they  had to add “ and f  is uniform ly continuous on R ” . W ith theorem  J 
a sim ilar characterization of distributions w ith a.p. differences is possible.

Furtherm ore, there are extensions to S C R ”, also instead of “ all differ­
ences f s are a .p .” , under suitable assum ptions it is enough if only sufficiently 
(finitely) m any f s are a.p. This we intend to trea t elsewhere,
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