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Matematica. — Vector valued functions on semigroups with
almost periodic differences. Nota di H. GUNzLER, presentata ® dal
Corrisp. L. AmERrI0.

RIASSUNTO. — Si approfondisce I'analisi delle funzioni q.p. su semigruppi, ottenendo,
tra l’altro, estensioni di risultati di Amerio e di Doss.

Even before H. Bohr defined almost periodicity, in connection with the
asymptotic behavior of solutions of differential equations Bohl considered and
solved the following question: Given a ¢ quasi-periodic ’ function g on the reals

R, when is the indefinite integral f(x) : = J g (#)dt again quasiperiodic? His

answer ‘f is quasi-periodic if and only if 1?{ is bounded’ and the applications
to differential equations he gave have been extended in many directions and by
many authors, especially Bohr, Favard, Bochner, Brauers to mention a few.:

In recent years, interest in these questions has been revived due to the
penetrating work of Amerio on a.p. solutions of the wave equation. Motivat-
ed by problems which arose there, Amerio and his coworkers, Bochner and
others obtained many new and important results on the almost periodicity
of indefinite integrals of vector valued a.p. functions or (partly with the aid
of these results) more generally of solutions of differential equations—see
the survey of Amerio [4]; Bochner’s almost automorphic functions were also
introduced in this context.

The underlying group till then was always the real line R. Now if
fx) = f g (@) dt with a.p. g, for fixed s the difference function f,,

' F @ =+ —F @)

is a.p. in Z€R, and this has a meaning for arbitrary groups. It was R. Doss
who had this simple but extremely fruitful idea, he showed [8] that bounded
complex valued f with all /, a.p. are a.p. too.

In this note we will indicate how the results of Amerio and Doss can be
combined, giving conditions on the range (space) so that totally bounded
respectively bounded / with all differences £, a.p. are a.p.; instead of groups
arbitrary semigroups are admitted. However, there still remain many open
questions, for example: Is the theorem of Amerio-Doss valid for arbitrary
reflexive Banach spaces, or for L'? (See after theorem D below).

The proofs, more details and literature will appear in [10], [11]. Our
terminology is that of Koéthe [12].

(¥) Nella seduta del 21 giugno 1967.
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A semigroup S is a non-empty set with a binary associative operation
s-¢. If S has a unit », ws =su = s for s€8S, then S, : = S, else S, denotes
the semigroup obtained from S by formally adjoining a unit. A topological
semigroup S is a semigroup and a topological space such that (s,8) —stis
separately continuous in s respectively #. A function f defined on such a S
and with values in a uniform space will be called almost periodic (a.p.) if
the following is true (Maak [14], Giinzler [9]): F is continuous, and to
every neighborhood N of the uniformity there exist finitely many subsets

P1,---,P,CS with S=u P, such that whenever for some ¢/, d’, » ,YES,

the elements ¢'xd’ and ¢ y;” are in the same P, then (f (cxd), f(cyd))eN
for all ¢,d €S, with ¢xd and cyd €8S.

If S is a group, this coincides with the definitions of Bochner, von Neu-
mann and Maak. If S = R, the additive group of the reals in the usual topo-
logy, and the range space is C = complex numbers or any complex Banach
space, the definition above is equivalent with Bohr’s definition; this is true
also for convex subsemigroups of R* with non-empty interior.

A locally convex abelian group E is a commutative group and a topolo-
gical space such that (x,y) -xy and 21 are continuous, and in which to
each neighborhood V of o there is a neighborhood U of zero with —7;— Yucv

p=1
for every natural s, or equivalently if zero has a neighborhood basis

of convex sets; here for A, BC E, A+ B: ={a+b:a€A,beB}
miAzz{xEE:meA}, mx:= 3 x, A is convex if mLEA:A for
1 p=1

each natural 7, A denotes the closupfe of A. Since such E are uniform spaces,
totally bounded is equivalent with precompact, if E is (topologically) complete,
it is equivalent with relatively compact. Examples are locally convex real
or complex linear spaces, especially normed spaces.

For /:S —E and s€S the right difference f, is a function: S — E
defined by

(D f@i=f0)—f().
If ACS, f(A):={f(s):s€A}.
THEOREM A.—If S is a topological semigroup, E a locally convex abelian
group, f:S —E, then f is a.p. if and only if the following three conditions hold
(A) For ecach s €S, the right difference f, is a.p. on S;
(B) For each c €S, f(cS) is totally bounded:

(C) There is a natural m and c1,---,c, €S such that
@ N _ X0 764) € 20" f@s).
dy,eend, €S pml Cop=1

For groups S or semigroups with non-empty center, for example with
a unit, condition (C) is automatically fulfilled; for general S however it cannot
be omitted as suitable counterexamples show.
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If S =R, E = complex numbers C, then theorem A yields the theorem
of Bohl and Bohr on integration of a.p. functions, since the differences of
indefinite integrals of a.p. functions are easily seen to be a.p. For general
E and S = R, theorem A essentially contains Bochner’s extension [5] on
integration of Bohr—a.p. functions. If S = group, E = C, one gets the result
of Doss [8]. The special case S = abelian group, E = Banach space has also
been obtained independently by R. Doss (unpublished, oral communication).

If E is a locally convex linear space, then in theorem A it is enough
if (A), (B) and (C) hold only in the weak topology, provided there are ¢, d,
with f (¢y Sd) totally bounded, theorem A in its general form follows once
it has been shown for complex valued f on S. For this one has to use

THEOREM B.—If S is a topological semigroup, £ a locally convex real
or complex linear space, f:S —E, then f is a.p. if and only if f is weakly
a.p. and there are ¢y, dy €S so that f(c,Sdy) is totally bounded.

Jis weakly a.p. means fis a.p. in the weak topology of E, i.e. pofis a.p.
for each continuous linear scalar valued functional ¢ on E. For S = R,
E = Banach space, theorem B is due to Kopec [13] and Amerio [1].

Since the total-boundedness of the range is a quite restrictive assumption,
weakened versions would be of interest. One such possibility, which we for-
mulate only for SCR” (see theorem 2 of [11]) is the following

THEOREM C.—Let S be a convex open subsemigroup of R*, E a locally
convex abelian group f:S —E be continuous. Then f is a.p. if and only if
all differences f, are a.p. on S and further f is totally bounded on a set M CS
which is relatively dense in S.

M is relatively dense in S if there is a »> o such that each ball with center
x €S and radius » meets M.

An extension in a different direction, which has useful applications in partial
differential equations, is due to Amerio [2]: If the indefinite integral f of an
a.p, function ¢ : R — B is only bounded, f is a.p. if B is a uniformly convex
Banach space (for example a Hilbert space).

This can be generalized to arbitrary semigroups and f with only a.p.
differences. The following theorem simultaneously shows that uniform con-
vexity is in some sense a necessary assumption.

If ACN, N a normed real or complex linear space, A has () respectively
(wows) resp: (wrws) means:

(2) sup |4]=:M <oco and to each £> o there is a § >0 so that x, y€ A,
seA
|*—y[=¢ imply |z +y|<2M (1—3)
(wos) If xg,x, x5, - €A with x,—x, weakly, then |x, — x| —=0
(wnws) If xg, 21,25, -+ €A with x,—x, weakly and |x,| —|x|, then

Il
| %, — x| —— o.
n —> o0

N is uniformly convex if its unit ball (or sphere) has (%), then any bound-
ed subset of N has (x), N has even (wns): = (wnws) for nets instead of
sequences. ‘ Renorming ’ means introducing an equivalent norm.
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THEOREM D.—Let S be a topological semigroup, N a real or complex linear
space, [ S —N. If all right differences f, of f are a.p., if f satisfies (C) of
theorem A with respect to the weak topology, then (3)~(6) below are equivalent:
(3) fis a.p.

(4) N can be renormed so that f(S) has ()

(5) N can be renormed so that |f| is a.p. and f(S) [or the closed linear
hull of f(S)] has (wnws)

6) f(S) is bounded and has (wws).

Let us say that the theorem of Amerio-Doss holds for N and S if N is a
real or complex normed linear space, S a topological semigroup, and for any
/S —N which has norm-a.p. differences f, and which is weakly a.p., one
can conclude that f is a.p.; by theorem A, “ f is weakly a.p. ” is here equival-
ent with ““ f is bounded and (C) holds in the weak topology ”, so for most S
boundedness of f suffices.

As a corollary, if N is isomorphic to a uniformly convex normed linear
space, then the theorem of Amerio-Doss holds for N and arbitrary S. Examples
are L?—spaces of functions with values in a uniformly convex Banach space,
1< p< oo, the Amerio-Doss theorem holds also for such Li,—spaces.

With (5) of theorem D one gets: If N is locally uniformly convex, then
f:S —Nisap. if | f] is a.p., all £, are a.p. and (C) holds in the weak topology
(compare with theorem VII of Amerio [1]; locally uniformly convex is a
much weaker condition than uniformly convex, any separable normed linear
space can be renormed locally uniformly convex).

Since the space /' of absolutely convergent sequences has (wws), the
theorem of Amerio-Doss is true for /' and any S. For Zl—type spaces however
much more holds as we will see presently.

Though the range has to be uniformly convex if boundedness implies
almost periodicity, by the results of Amerio [3] there are reflexive Banach
spaces B of Z~type for which the theorem of Amerio-Doss holds with S = R,
but which are not isomorphic to a uniformly convex Banach space (use theo-
rem I). An extension to more general substitution spaces and arbitrary S
is contained in

THEOREM E.—Let T be a uniformly convex Banuch space with (7), (8),
(9) below, S a topological semigroup, L. a normed real or complex linear space
of type TI\N; (see below), f:S — L. Then the theorem of Amerio-Doss holds
Jor L and S, if it holds for each N; and S.

Here I is an arbitrary index set, the assumptions on T and L are:

(7). T is a normed real linear space of functions ¢ : I — R under pointwise
addition, scalar multiplication and equality

(8) If ¢ and all ¢, €T, then | ;| <[ | for all j€]
(9) If o, 9€T with o <o < on I, then |o| <[]

J denotes the system of all finite subsets jCI, ¢;(?): = ¢ () for i €, else =o0
in I. Examples would be 7 (I), 1< p < oo,
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If T satisfies (7) and N, , 7€1, are normed real or complex linear spaces,
L s of type T|N; means L is a normed real or complex linear space of functions
g on I with g(7) €N;, €I, under pointwise addition, scalar multiplication
and equality, such that g € L implies g; €L for all j€] and |g | €T with
gl =1llglls; 1g1@):=|g@)|y., & is defined as above. Examples are
the substitution spaces Vit (I,N,), tlzlen for I = natural numbers », S = reals R,
theorem E yields an analogue to a result of Amerio [3], which by theorem I
below is in fact equivalent with it.

The case p = 1 is not subsumed by theorem E, but here we have

THEOREM F.—Let S be a topological semigroup, N; normed real or complex
linear spaces for i €1, 1 arbitrary index set, f:S —1'(1, N,). Then f is a.p.
of and only if it is weakly a.p. and all its projections f; S — N, are norm-a. b
7€l

For an extension to locally convex range spaces with (wws) see [10, theo-
rem 4].

If N; = complex numbers C (or reals R) one gets as a first corollary,
generalizing a result of Ricci and Rizzonelli [16] from R to arbitrary topolo-
gical semigroups S:

For f:S =1 (I, C) weak and norm almost periodicity coincide.

Amerio’s result [3, p = 1] is subsumed by the following corollary:

If S and N; are as in theorem ¥, then the theorem of Amerio-Doss holds
for (1, N,) and S if and only if it holds for all N; and S, i €1,

The case p = oo however, as Amerio has shown in [2], furnishes exam-
ples of Banach spaces where the theorem of Amerio-Doss fails to hold, even
for S = R or integers. '

Turning to integration of a.p. functions in R”, let us say that #e theorem
of Bohl-Amerio holds for B and S if the following is true: B is a real or com-
plex Banach space, S an open additive subsemigroup of R* in the usual topo-
logy, 1< 7 natural < oo, each continuous and bounded f#:S - B which
has all its distribution derivatives of first order a.p. is itself a.p. on S.

For » =1, S open convex subsemigroup CR, the theorem of Bohl-Ame-
rio holds for B and S if and only if for any a.p. g : S — B with on S bounded

indefinite Bochner integral f(x)— J g(®)dt, fis ap. on S.

0
o

Il
For general # and S, if ﬁf,- “e, Tx_f are a.p., the difference f, is
7 s

a.p. on S for each s€S open convex CR”; if 7 =1, Stepanoff-almost-perio-
dicity of f* is enough. So our theorems above apply, one has:

THEOREM G.—If the theorem of Amerio-Doss holds for B and S, S open
convex CR", then the theorem of Bohl-Amerio hods for B and S. The latter
25 true therefore especially for uniformly convex B, but also for L as in theorem E
with Banach spaces N; for which the Bohl-Amerio-theorem holds with respect
to' S, or for I' (1, B)) with Banach spaces B, which satisfy the Bohl-Amerio
theorem,
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Similarly as in theorem C above, the boundedness assumption can be
somewhat relaxed:

THEOREM H.—Let S be a convex open subsemigroup of R*, M a relatively
dense subset of S, B a real or complex Banach space, f:S — B continuous
with a.p. first order derivatives in S; if n =1, f' need only be Stepanoff-a.p.
with p = 1. Then [ is a.p. if either f (M) is totally bounded or f is bounded
(or bounded in the mean) on M and the theorem of Bohl-Amerio holds for B
and S.

From this one deduces for S and M as in theorem H the equivalence
of the following three statements concerning a distribution T € D’ (S):

(10) T 4s an a.p. distribution.
(11) For each s€S, =T —T is a.p., and T is bounded on M.
(12)  The first order derivatives of T are a.p. on' S, and T is bounded on M.

Theorem G and H contain as special cases results of Brauers [6],
(S =M = R”, B =C), Amerio [2], [3] (S =M = R', B uniformly convex
or (v, B,), ® = natural numbers), Vasconi [17] and Prouse [15]
(S=M=R', B uniformly convex). Also a.p. solutions of the wave equation
Pou—ay + a(x)u=f(x,t), P, elliptic, can be treated if f is periodic,
but not necessarily continuous in # (see [11, 11) in § 3]).

Theorem G and these applications suggest that ¢ the theorem of Bohl-
Amerio is valid ”’ is a condition less restrictive than “ the theorem of Amerio-
Doss holds ”’.  For » = 1 one has however

THEOREM 1.—If B is a real or complex Banach space, then the theorem
of Amerio-Doss holds for B and R if and only if the theorem of Bohl-Amerio
holds for B and R.

This is a corollary of the following characterization of (unbounded) func-
tions with a.p. differences:

THEOREM J.—1f B is a real or complex Banach space, f: R— B is bound-
ed on a set of positive Lebesgue measure, then the following statements are equi-
valent:

(13) For eack s€R, f, is a.p. on R.

X

(14) There are two a.p. g, h:R—>B with f(x)=g(x) —I—J/z(z‘) dt, x€R.
0

(15)  Thereis a sequence of a.p. functions f,: R—B with f(0) + J fa@dt =1 (x),
uniformly in x € R. b

If B = C, this still generalizes a result of Caracosta and Doss [7], in (13)
they had to add ““ and f is uniformly continuous on R ”. With theorem J
a' similar characterization of distributions with a.p. differences is possible.

Furthermore, there are extensions to SC R”, also instead of ‘ all differ-
ences f, are a.p. ”’, under suitable assumptions it is enough if only sufficiently
(finitely) many £, are a.p. This we intend to treat elsewhere,
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