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Analisi matematica. —  A n  application of the extension theorem to 
a control problem. Nota di G iorgio  P. S zegò , presentata n dal Socio 
G. S ansone .

R iassu n to . ■— In  questo lavoro si studia il problem a della stabilità assoluta di un 
sistema di controllo non lineare sotto opportune ipotesi sulla nonlinearità e la sua derivata 
prim a. M ediante l’uso del teorem a di estensione e di una funzione di L iapunov di nuovo tipo 
si ricavano condizioni sufficienti per la stabilità assoluta.

Introduction. —  In Ref. [1 ,2] and in particular in Ref. [3] a new 
set of theorems, called extension theorems, have been proved. These exten­
sion theorem s apply to a particular, but highly realistic stability problem, of a 
com pact set M C E ”, nam ely the case in which the stability  properties “ in 
the small ” (in à sufficiently small neighbourhood) of M are known. In  
addition it m ust be assumed tha t such stability  properties are strong, i.e., 
of a type for which the stability theorem s of first approxim ation hold (either 
asym ptotic stability  or instability).

U nder these circumstances the extension theorem  gives conditions under 
which the same stability  properties which hold “ in the small ” are true 
globally.

In  the sequel, when not otherwise stated, capital Rom an letters will denote 
matrices, small R om an letters vectors (notable exceptions t =  time, k  , h , v 
and w  which are scalars), small Greek letters scalars and script letters sets.

In  w hat follows E ” denotes the euclidean ^-space.
For completeness we shall now state the extension theorem  in its stron­

gest global form.

(1) Extension theorem.

Let v — 0 (x) and w — (x) be real-valued functions defined on E” .
L et M C  Kn be compact. Assume tha t

i) V =  0 (x) € C1
ii) 0 (pc) — o for x  eM

iii) for any sequence { xn } , (xn) -> o implies x n
iv) (x) — (grad 0 (x) , / ( # ) ) .

T hen w hatever m ay be the local stability properties of M for the differen­
tial equation

(2) * = / ( * )

they are global.

(*) Nella seduta del 21 giugno 1967.
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Notice th a t the m ajor difference between the requirem ents of the exten­
sion theorem  above and those of the L iapunov second m ethod is tha t in the 
extension theorem  no condition on the sign properties of the real-valued  fun­
ction v =  0 (x) is imposed. Thus, the extension theorem  is particularly  well 
suited to the case of stability  problems in which the analysis of the stability 
properties via the second m ethod of L iapunov would be very difficult, if not 
impossible, due to the extrene difficulty of analyzing the sign properties of 
the L iapunov functions v =  0  (x) used.

This situation is well illustrated by the particular problem  which is the 
subject of this note.

2. The CONTROL PROBLEM. —  Consider the closed-loop control system 
represented by the equations:

1 x  =  A x  —  by (a)
 ̂ I -G =  2 c' x  —  2 £ (t)

where the real valued function E, (t) satisfies the conditions

(4) lim 1 ( f )  =  o ; I  00 > Ì  (0 e Li [o , +  00)
/ 1- OO

and the real valued function <p (a) satisfies the conditions

(5) o <  <jf (a) <  k* g2 ; A -  >  o ; <p (a) 6 C1.

i) for all real k with

(6) o <  k <  k*

all linear systems

(7) x<= (A  —  2 kb f) x

are asym ptotically stable
ii) the linear part of the system (3) is com pletely controllable and 

completely observable. In  particular, it is assumed th a t the m atrix  A  and the 
vectors b, c have the form:

O 1 0  • • • 0 O Cl

O 0 1 • • • 0 O C2
( 8 ) A =

. . . .  i

b  =

O

C —

a i a2 I Cn
T hen  for tlhe system  (3) we shall define the following property:

(9) Definition.

If  the asym ptotical equilibrium  point x  — o of the system (3) is globally 
attracting for all real valued functions satisfying conditions (5), then  the 
system  (3) is called absolutely attracting. If  £ (t) =  o and the rest point x  =  o
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of the system  (3) is globally asym ptotically stable for all real valued functions 
satisfying condition (5) then the system (3) is called absolutely stable.

We shall now prove a sufficient condition for absolute stability  and a t­
traction for the system  (3). Such a condition is of the Popov type [4], i.e., 
it is a condition on the behaviour for all real co of the function

(io) G (/to) =  2 c '(I  j a  —  A )“ 1 b

which is the so-called harm onic response function of the linear part of the 
system  (3).

To derive this condition our basic instrum ent will then be the extension 
Theorem  (1). The function v =  9 (x) th a t we shall use is derived from a 
function used by I. A. Iakubovich [6] and a function recently introduced 
by K. S. N arendra and C. P. N eum an [7]. All these functions are an im pro­
vem ent of the well known L u r’e function [8].

(11) Theorem.

Let ^ (0 =  o. Let us denote with the real zeros of the function  G (/). 
Consider the real numbers ^  , yt- > 0  and zi >  o such that

(12) X. = Y» +  e.

I f  the conditions (4) (6) and  (7) are satisfied and in addition the inequality:

0 3 ) k* +  Re G (Ito) 1 +  Po/m +  aco2 +  2 ,- y ( 1 —  qfi -7 > 0

is satisfied fo r  all real co, a real (30 , a real a >  o and real numbers (3V, y* >  o 
and Zi >  o subject to the constraint (12), then the system (3) is absolutely 
stable fo r  all nonlinearities of the class (5).

Proof. Consider the real valued function:

(14)

c

v =  x* H x  +  Po I  9 (jf) d\x +  
0

2 x ' D j C

P* j ? (l*) —
0

2 onyx* A* c +  olc’ b y 2

where H is a sym m etric m atrix, (3*- and a are real num bers and D* are matrices. 
The total tim e derivative of the function (14) along the solutions of the system 
(3) (£ (t) == o) has the form

(15) v =  x '[ A 'H  +  HA] x  —  2<$x’ [Hb — (30 Ad c f  olA' A 'c  —  c — y,- (c—

k* +  2 $d b —  2 ocb! A! c • 4 a x 'A  ' c— <p b' c dcp
k*

— 2 Y* K<P —  9i) (? —  ai)] —  2 <P« h i  (? —  °i) —  $ ìx 'A ' D ’id]

—  2 P,-<P i^b'D'iC,
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where we have omitted the summation signs, used the notations <p*- =(p(2x 'Dt-c) 
and (T; =  2 x 'D i c and introduced the identity

(16) 2<px'c —  'pG +  - r r Cp2 +  2Yt-(cp +  (pl-)(a —  0;)— -^r<P2 —

—  2 Ti (9 +  9*) 0  — a i) =  o.

From condition (5) it follows that if >  o

( 17) Y« [(9 —  9») (a —  <*,•)] >  o.

The last two terms of the expression (15) will be nonpositive if the matrices D,- 
are chosen in such a way that for s,. >  o it is

(18) T;( I - D 1. ) - p i D,.A =  s,.D1.
c'D,-b  =  o .

The first equation (18) has the solution

(19) D,- =  — (x,-1 +  A)-1

where Xi is defined by  (12).
The second equation (18) becomes sim ply

(20) c'(Xil + A )-t 6 =  o

and it is satisfied if Xi is a real zero of G (s), as can be seen by  com paring (20) 
and (10).

The I akubo vich-K alm an Lem m a [9, 10] applied to the system

/ A 'H -}- HA -f- qq1 <C o
(21) ) H£ —  (1 +  Y,- —  —  PoA ' c  +  a A 'A 'c  =  yq

I —  +  2 Po ^ —  2 0LÒ'A'c =  Y2

shows th a t a necessary and sufficient condition for the existence of real q and y 
satisfying (21) is th a t the inequality

(22) T  2 Po cr b aò'Af c T

+  2 Re [^'(1 +  y, — D , + p 0A — aAA)(Iyco— A)~1^ ] > o

is satisfied for all real co.
Following the techniques used in References [6, 12] the inequality  (22) 

can be reduced to the sim pler form (13).
If  the condition (13) (and therefore (22)) is satisfied, then the expression 

(15) becomes

(23) v <  — [pc’ q +  yep]2 —  4 a [%'A'c- ■9 è ' £]2^  — 9
1

—  2 S,- S,. cp-a- —  -qx'Cx

49. -  RENDICONTI 1967, Voi. XLII, fase. 6.



77o Lincei -  Rend. Sc. fìs. mat. e nat. -  Voi. X L II -  giugno 1967

where y) >  o is a sufficiently small real num ber and C is a positive definite 
m atrix .

The condition (23), (6) and (5) are such th a t all conditions of theorem  (1) 
are satisfied. Thus the system (3) is absolutely stable and the theorem  is proved.

By the same procedure as in [11] it is possible to show th a t if in addition 
condition (4) is satisfied and \  (t) =j= o, the system  (3) is absolutely attracting.

3. Conclusions. —  By means of the extension theorem  we have derived 
the condition (13) for absolute stability of the system  (3). Notice th a t it is 
not at all obvious th a t the real valued function (14) is positive definite for 
all real for which condition (13) is satisfied, so th a t the application here 
presented is a significant example of the use of the extension theorem  as com­
pared w ith the use of the classical theorem s on asym ptotical stability.

The extension theorem  has other im portant corollaries as, for instance, 
a theorem  analogous to Rolle’s in En, which will be the subject of another 
paper.
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