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Analisi matematica. — An application of the extension theorem to
a control problem. Nota di Giorcio P. SzEco, presentata @ dal Socio
G. SANSONE.

RIASSUNTO. — In questo lavoro si studia il problema della stabilitad assoluta di un
sistema di controllo non lineare sotto opportune ipotesi sulla nonlinearitd e la sua derivata
prima. Mediante ’'uso del teorema di estensione e di una funzione di Liapunov di nuovo tipo
si ricavano condizioni sufficienti per la stabilith assoluta.

INTRODUCTION. — In Ref. [1, 2] and in particular in Ref. [3] a new
set of theorems, called extension theorems, have been proved. These exten-
sion theorems apply to a particular, but highly realistic stability problem, of a
compact set MCE”, namely the case in which the stability properties ‘“in
the small” (in a sufficiently small neighbourhood) of M are known. In
addition it must be assumed that such stability properties are strong, i.e.,
of a type for which the stability theorems of first approximation hold (either
asymptotic stability or instability).

Under these circumstances the extension theorem gives conditions under
which the same stability properties which hold ‘“in the small ”’ are true
globally. :

In the sequel, when not otherwise stated, capital Roman letters will denote
matrices, small Roman letters vectors (notable exceptions ¢ = time, £,/%,v
and @ which are scalars), small Greek letters scalars and script letters sets.

In what follows E” denotes the euclidean 7-space.

For completeness we shall now state the extension theorem in its stron-
gest global form.

(1) Extension theorem.
Let v = @ () and w = ¢ (x) be real-valued functions defined on E”,
Let MC E” be compact. Assume that
) v=g (x)eCt
ii) @ (x)=o0 for x €M
iii) for any sequence {x,}, ¢ (x,) —o implies x, - M
V) §(0) = (grad o (4),/ (x).
Then whatever may be the local stability properties of M for the differen-
tial equation

@) r=f()
they are global.

(*) Nella seduta del 21 giugno 1967.
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Notice that the major difference between the requirements of the exten-
sion theorem above and those of the Liapunov second method is that in the
extension theorem no condition on the sign properties of the real-valued fun-
ction v = & (x) is imposed. Thus, the extension theorem is particularly well
suited to the case of stability problems in which the analysis of the stability
properties via the second method of Liapunov would be very difficult, if not
impossible, due to the extrene difficulty of analyzing the sign properties of
the Liapunov functions v = @ (x) used.

This situation is well illustrated by the particular problem which is the
subject of this note.

2. THE CONTROL PROBLEM. — Consider the closed-loop control system

represented by the equations:
| = Ax—b¢(c)
? o =2cx—2E()

(3

where the real valued function £ () satisfies the conditions

@ lim =0 ; E@),E@eLifo,+ oo)

/=400

and the real valued function ¢ () satisfies the conditions

(s) 0oLop ()< Aot ; B0 g(o)eCh
i) for all real £ with

©) o< k<A

all linear systems

@) z= (A —2kbc') x

are ‘asymptotically stable
- ii) the linear part of the system (3) is completely controllable and

completely observable. In particular, it is assumed that the matrix A and the
vectors 4, ¢ have the form:

o I o | o ]cl
0 0 I o 2
® A=l =) s
o
@ ax - - oa, I Cn |

Then for the system (3) we shall define the following property:

(9) Definition.

If the asymptotical equilibrium point x = 0 of the system (3) is globally
attracting for all real valued functions satisfying conditions (3), then the
system (3) is called absolutely attracting. 1f € (£) = o and the rest point x = o
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of the system (3) is globally asymptotically stable for all real valued functions
satisfying condition (5) then the system (3) is called absolutely stable.

We shall now prove a sufficient condition for absolute stability and at-
traction for the system (3). Such a condition is of the Popov type [4], i.e.,
it is a condition on the behaviour for all real w of the function

(10) G (jo) = 2¢' (Ijo —A)" " 4

which is the so-called harmonic response function of the linear part of the
system (3).

To derive this condition our basic instrument will then be the extension
Theorem (1). The function v = ¢ (x) that we shall use is derived from a
- function used by I. A. Iakubovich [6] and a function recently introduced
by K.S. Narendra and C. P. Neuman [7]. All these functions are an impro-
vement of the well known Lur’e function [8].

(11) THEOREM.

Let E(2) = 0. Let us denote with »; the real zeros of the function G (s).
Consider the real numbers B;,Y; >0 and €, > 0 such that

(12) %, :Y_Bﬂ

If the conditions (4) (6) and (7) are satisfied and in addition the inequality:

(13) —é%—{—ReG(Ico)[I—I—BOjco—l—oco)z—}—E,-y(I—L’: I)>o

B: Jo 4%

is satisfied for all real o, areal By, a real o> 0 and real numbers B;, v;> 0
and ¢ > 0O subject to the constraint (12), then the system (3) is absolutely
stable for all momlincarities of the class (5).

Proof: Consider the real valued function:

2x'D;c

(149  v=2"Hx+ /CP (W) dp + Z; B;fcp (W) dp — 2 apx" A’ ¢ + ac’ by?
J

0

where H is a symmetric matrix, B; and « are real numbers and D; are matrices.
The total time derivative of the function (14) along the solutions of the system
(3) ¢ (® = o) has the form

(15) 9=x'[A'H+HA]Jx—20x' [Hb —ByA'c+ aA'A'c—c—v; (c—D;0)]
— ? % + zﬂc’b—~20cb’A’c]—4oc[x’A’c—tpb’c %C’:i —tp{c—%q}r

—2v:[(p — @) (6 —0)] —29; [; (6 —0;) — B; ' A’ D;¢]
—28; ¢; 94'D;c,
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where we have omitted the summation signs, used the notations ¢, =¢ (24'D; ¢)
and o; = 22'D; ¢ and introduced the identity

(16)  2x'c—go + 5r o + 27 (0 + ¢) (6—0) — PP —
—2Y: (¢ +9)(c—0)=o.
From condition (5) it follows that if v; > o
(17) Yi [(p —¢) (6 —0)]=0.

The last two terms of the expression (15) will be nonpositive if the matrices D;
are chosen in such a way that for g;> o0 it is

<18> Yz'(I_—‘Dz)—BiDiA:aiDi
¢D;b=o0.
The first equation (18) has the solution

(19) D, =%, T+ A

where y, is defined by (12).
The second equation (18) becomes simply

(20) dul+A)Te=0

and it is satisfied if y, is a real zero of G (s), as can be seen by comparing (20)
and (10).
The Iakubovich-Kalman Lemma [9, 10] applied to the system
[ A'H +HA +¢¢'<o
(21) s Ho— (1 +v;—D))c—BoA'c+ aA'A'c =g
'\ ZI; + 2Bgc'b—206'Alc =42

shows that a necessary and sufficient condition for the existence of real ¢ and y
satisfying (21) is that the inequality

(22) o+ 2Boc’b—ab'Alc +
+2Re [/ (1 + v, —D; + Bo A —aAA) (Ijo —A) ' 4] >0

is satisfied for all real .

Following the techniques used in References [6, 12] the inequality (22)
can be reduced to the simpler form (13).

If the condition (13) (and therefore (22)) is satisfied, then the expression
(15) becomes

S 7 I 4 I 9
(23)  F<—[r'g+ 1ol —galrAc—o b —olo— o] —
—22X5 09,06, —nx'Cx

z

49. — RENDICONTI 1967, Vol. XLII, fasc. 6.
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where 1> o0 is a sufficiently small real number and C is a positive definite
matrix.

The condition (23), (6) and (5) are such that all conditions of theorem (1)
are satisfied. Thus the system (3) is absolutely stable and the theorem is proved.
By the same procedure as in [11] it is possible to show that if in addition
condition (4) is satisfied and & (#) == o, the system (3) is absolutely attracting.

3. CONCLUSIONS. — By means of the extension theorem we have derived
the condition (13) for absolute stability of the system (3). Notice that it is
not at all obvious that the real valued function (14) is positive definite for
all real §; for which condition (13) is satisfied, so that the application here
presented is a significant example of the use of the extension theorem as com-
pared with the use of the classical theorems on asymptotical stability.

The extension theorem has other important corollaries as, for instance,
a theorem analogous to Rolle’s in E”, which will be the subject of another

paper.
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