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Chimica fisica. — Double scale factor method for minimization of
molecular energy. Nota di Gian Franco Majorino ed Exrica Ru-
scon1, presentata® dal Corrisp. M. SIMONETTA.

RIASSUNTO. — Fissata una funzione d’onda di prova per una data molecola, si ricerca
il minimo dell’energia molecolare al variare di un fattore di scala o per la funzione d’onda ¢
di un fattore di scala 1/B per le distanze internucleari.

I valori di « e P sono ottimizzati per via analitica; si diiostra quindi che per tali valori
I’energia cinetica e 1’energia potenziale della molecola soddisfano il teorema del viriale.

Si rileva poi che, usando funzioni d’onda costruite con orbitali « centrati» (ad esempio
orbitali di tipo Slater), questo metodo rappresenta una generalizzazione a molecole poliato-
miche etero—nucleari del metodo degli orbitali fluttuanti.

E quindi riportata un’applicazione numerica per la molecola Hz, i cui risultati sono in
completo accordo con quelli di lavori precedenti.

a) INTRODUCTION.

Starting from a trial wave function for a given molecule, it is possible to
improve its energy value by scaling both the wave function and internuclear
distances with the same proper scale factor. This is the well known procedure
we shall call “single scale factor method ”, expounded by Coulson and
Bell [1] in 1945. The advantages of such a method are several.

From a theoretical point of view, when the total energy is minimized with
respect to the scale factor, the virial theorem is automatically satisfied: in
this way Lowdin [2] showed that an exact eigenfunction of any molecular
hamiltonian in the Born-Oppenheimer approximation is such that the virial
theorem is satisfied. From a numerical point of view, it suffices to calculate
the kinetic and the potential energy of the molecule only once during all
the minimization procedure.

We now propose to use two different scale factors, one for the wave func-
tion and one for the internuclear distances.

Optimizing both parameters we shall get an energy less than (or at the
most equal to) that we can obtain with the single scale factor method. We
pay for this advantage, from a numerical point of view, by calculating in
several points the nuclear attraction. However it is well known that the com-
puting time needed for this calculation is negligible compared with that needed
for the electronic repulsion, which has to be calculated only once. Further
we shall show that also with our method the virial theorem is satisfied.

(*) Nella seduta del 13 maggio 1967.
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b) EXPOSITION OF THE PROCEDURE.
Let
Hi=—12 X Vi X ZJr,+ X tlry+ X Z,Z,fr.
: o i< n<i
be the hamiltonian of a molecule with given nuclear configuration, where

7,7 label the electrons and #,/ label the nuclei.
If we consider moreover a normalized trial wave function:

b= @17y
the following expectation values are determined:
Kinetic energy T =—1/2 Ef¢1 Vi de
Electronic repulsion W; = ; / by 1)7; 4y dr
z J
Nuclear ‘repulsion Ri= Y Z, Z)V -
n</
In addition we introduce another normalized wave function, obtained
by 'scaling {1 by a scale factor a:

Yo = 6N g (o1 )

and the hamiltonian relative to the preceding nuclear configuration, after
uniform stretch of all position vectors by a scale factor 1/B:

Hy=—1/2 E Vi— ; Zalrims + ;j 175+ n;/ Zy Zyfrup
where ;
rinp = (0 — 2B + (3 — a8 + (i — 2,/B)°
raip = (lB—51[B) + (3alB — 3,/BY + (2B — 2,/8)"

Then it is easy to verify, with dimensional considerations like those used
for example in [2], that the molecular energy corresponding to the nuclear
configuration of hamiltonian Hg, calculated with the wave function ¢, , results:

E (¢, B) = o2 Ty + oWy + BRy + of (/)

where

718 = D2, | Wl G BT Gy BT G B
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Indicating with y the ratio ®/8, () represents the nuclear attraction
calculated with the wave function ¢y associated with the nuclear configuration
obtained by scaling the initial configuration by a scale factor 7.

The minimum conditions:

PE[ox = o
eE[B = o
using y may be put into the form:
Y (fdy —Ri=o
2oy Wi+ vdf (Nldy +f(x) = o
B =oafy.
From an operative poiﬁt of view it is useful to rewrite them as:
Y af (Nldy—Ri=o0
= —[Wi+ Rify + 7)) 2 Ty
B=afy

to emphasize that the first equation gives the value of the ratio y which,
when substituted in the second and then in the third equation, allows us to.
calculate immediately the parameter values @ and B minimizing E (« , B).

C> CONNECTION WITH THE FLOATING ORBITAL PROCEDURE.

If the function {1 is built with a Slater type orbital basic set, it is easy
to verify that, calling 7,, the coordinates of a generic orbital centre, and §,
the exponent of the £-#4 atomic orbital, we have:

Yo = N2 (7, | 82| a7) = byome (7f2 | 28| 7,)

where NORM indicates that the function is normalized.

The meaning of the energy E («, B) in this case is made clear as follows.
If we take a given nuclear configuration (7,), an orbital centre configuration
and orbital exponents (7, , §;}—i.e., if we fix some floating orbitals [3] [4]
[5] [6]—the energy E («, 8) is the energy associated with the nuclear confi-
guration (7,/B) and the orbital configuration (7,,/, «3,).

It is worth noting that—fixing in a suitable way the coordinate origin,
and eventually repeating the preceding procedure with different coordinate
systems—one can pass from a given nuclear and orbital configuration to
any other nuclear and orbital configuration. That is, one can make the
nuclei and centres ‘ floating "’ in the space in a completely arbitrary way, each
new configuration being entirely characterized by a parameter pair («,B); at
each stage only the nuclear attraction f(y) must be recalculated.
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However, the exponents §; are to be multiplied by the same constant «
which divides the coordinates 7, : this is the only effective restriction of the pro-
cedure. Fig. 1 shows how the final configuration (for fixed « and B) chan-

A I B A l B
‘OlO ¢ OIO
A B A B .
I +—6-6
A e B

Ae 0.0"B

Fig. 1. - On the left there is the same nuclear and orbital initial configuration (& = f = 1);
on the right the corresponding configurations with « = 3/2, = 1/2 in three different
coordinate systems.

The points A and B label the nuclei, the circles represent 1s Slater type orbitals.

ges in varying the origin of the coordinate system. This possibility can be
used with molecules built of different atoms: for example, in an etheronuclear
biatomic molecule we do not know if the best energy is obtainable by fixing
the origin in the middle point, or in the center of mass, or coincident with
one of the two nuclei of the molecule. Both the energy ‘and the function
J () 'should be indicated with Eg(x,B) and f,(y) to point out their
dependence on the origin of the coordinates.

d) CONNECTION WITH THE VIRIAL THEOREM.

It has been demonstrated [1], [2], [7] that an optimum scale factor
function gives values of the kinetic energy T and of the potential energy V
which satisfy the virial theorem:

V=—2T.
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In the case of the double scale factor, the optimization procedure with respect
to « is achieved subordinately to the determination of the optimum value of the
parameter y = «/B3: yet, we can demonstrate that when E («, B) is minimum,
the virial theorem is automatically satisfied.

At first we observe that optimizing a wave function with a scale factor s is
equivalent to applying the double scale factor procedure with the supplemen-
tary condition « = f = s; in fact we have:

E@¢,)=2T1i 4+ sWi+sRi+ /(1) =2T1 + sV
which leads to the well known minimum condition:
251 +Vi=o.

In second place, let us assume that we have calculated two values & and 8
such that:

(1) E (&, é) = minimum.

If now we optimize the function {- with respect to the scale factor s, we get
a value § such that:

(2) E (52 ,38) = minimum.

From (1) and (2) it results 5§ = 1. That is, Y- is already an optimum func-
tion with regard to the scale factor, and the virial theorem is then automatically
satisfied.

¢) NUMERICAL APPLICATION.

The preceding procedure has been used to investigate the minimum energy
configuration of the Hz molecule, employing as wave function:

Y = N (15, 15; + 155 1s,)

in order to compare the results with those reported in [3] and [4]. We have
taken nuclear and orbital initial configurations as coincident (7, = 7,),
putting the two nuclei 1.406 A apart. The calculations were repeated with
different values of initial orbital exponent 3; the results are reported in the
Table 1.

The mlnlmum of the energy is found to be 1.1444 a.u. with internuclear
distance of 1.410 A nuclei-orbital centre distance of 0.05454 A and exponent
3 = 1.167. These values are equal to those reported in [4].

At each stage the virial theorem is satisfied.

About the minimization methods used in the mentioned papers, we note
that, for the Ha molecule, Hurley [6] suggests a minimization procedure
on two variables, which offers the advantage of fixing the nuclear configuration
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TABLE 1.

Ha molecule with O =N (15,15, -+ 15,15,) and initial orbital and internuclear
distance. R = 1.406 A.

In the first column there is the initial exponent; then o and. P optimum values and
corresponding: exponent §, orbital distance Ry, nuclear distance R,, total energy E (o, B).

Sz, o B8 3 R, R, E

0.8o 1.42615 1.11520 1.1409 0.9859 1.2608 —1.12661
0.90 1.28248 1.07920 1.1542 1.0963 1.3028 —1.13709
1.00 1.16313 1.03582 1.1631 ‘ 1.2088 1.3574 —1.14298
1.08 1.08053 0.99696 | 1.1670 1.30I2 I.4103 —1.14438
I.1I0 1.06135 0.98612 1.1675 1.3247 1.4258 —1.14430
1.20 0.97295 0.93268 1.1675 1.4451 1.5075 —1.14124
1.30 0.89521 0.87660 1.1638 1.5706 1.6039 —1.13509

we wish to reach, but his formulas are tied to the particular wave function
used and to the particular geometry of the biatomic homonuclear molecule.

‘For the Hy ion, Barker and others [5] used a minimization procedure
involving in an analytical way only the orbital exponent.
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