Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Judita Cofman

Triple transitivity in finite Möbius planes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 42 (1967), n.5, p. 616-620.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1967_8_42_5_616_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - Triple transitivity in finite Möbius planes. Nota di Judita Cofman, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Sia \mathfrak{N} un piano finito di Möbius di ordine n. In base di risultati di Dembowski [5] e Hering [9], se \mathfrak{M} ammette un gruppo di automorfismi 3-transitivo sui punti di \mathfrak{N}, allora \mathfrak{N} è miqueliano. In questa Nota si dimostra che, se \mathfrak{N} ammette un gruppo di automorfismi che trasformi un insieme 2) di $k>n+1$ punti in sè e che sia 3-transitivo sui punti di ゆ, allora ゆ contiene tutti i punti del piano \mathfrak{N} sicché \mathfrak{N} è miqueliano.

A Möbius prane is an incidence structure consisting of points and circles and an incidence relation satisfying the following axioms (see for instance Benz [3]):
(I) Any three distint points are incident with exactly one circle.
(II) If c is a circle, A a point on c and B a point not on c then there exists exactly one circle d containing A and B such that $c \cap d=\{\mathrm{A}\}$.
(III) There exist at least four non-concyclic points. Any circle is incident with at least one point.

An automorphism of a Möbius plane is a permutation of the points of the plane mapping circles onto circles.

Let P be any point of a Möbius plane $\mathfrak{\Re}$. Consider the following incidence structure $\mathscr{\mathscr { R }}_{P}$:
the points of $\mathfrak{R}_{\mathrm{P}}$ are the points of $\mathfrak{A R}$ distinct from P ;
the lines of $\mathfrak{N}_{\mathrm{P}}$ are the circles of \mathfrak{N} through P ;
incidence in \mathfrak{M}_{p} is equivalent to incidence in \mathfrak{N}.
It is easy to see that \mathscr{R}_{P} is an affine plane; it is called the affine subplane of. $\mathfrak{Q R}$ at P . The order of $\mathfrak{R}_{\mathrm{P}}$ does not depend on the point P ; it is called the order of $\mathfrak{M r}$.

A Möbius plane $\mathfrak{Q K}$ is said to be finite if the number of points in \mathfrak{M} is finite.

A Möbius plane is called miquelian if in the plane the Theorem of Miquel (see e.g. [3]) is satisfied.

Let \mathfrak{M} be a finite Möbius plane of order n satisfying the following condition:
(A) \mathfrak{Q} contains a set $\mathscr{\otimes}$ of k points and admits an automorphism group Δ such that Δ maps ๑ onto itself and induces a triply transitive permutation group on the points of $\mathfrak{\otimes}$.

It is known that finite miquelian Möbius planes $\mathfrak{A K}$ of order n satisfy con$\operatorname{dition}(\mathbf{A})$ for $k=n^{2}+\mathrm{I}$ and $k=n+\mathrm{I}$ (see [3]); in the first case \otimes) consists
(*) Nella seduta del 13 maggio 1967 .
of all points of $\mathscr{\mathscr { K }}$ in the latter the points of $\mathscr{\mathcal { D }}$ are the points of a circle in \mathfrak{M}.

Moreover Dembowski [5] and Hering [9] proved that finite Möbius planes of order n satisfying condition (A) for $k=n^{2}+\mathrm{I}$ are miquelian.

The aim of the present note is to show that there are no finite Möbius planes of order n satisfying condition ($\mathbf{(})$ for $n+\mathrm{I}<k<n^{2}+\mathrm{I}$. Thus the following generalization of the above result of Dembowski and Hering is obtained:

If \mathfrak{Q} is a finite möbius plane of order n admitting an automorphism group Δ, which maps a set \mathfrak{D} of $k>n+1$ distinct points of $\mathfrak{A K}$ onto itself and induces a triply transitive permutation group on the elements of \mathfrak{Q} then $\mathfrak{\sim}$ consists of all points of \mathfrak{M} and \mathfrak{M} is miquelian.

Definitions and preliminary results.

Let P be an arbitrary point of a Möbius plane \mathfrak{A} and let $\alpha \neq \mathrm{I}$ be an automorphism of $\mathfrak{A R}$ fixing P. Then α induces a collineation α_{P} in the affine plane \mathfrak{O}_{P}. If \mathscr{R}_{P} is a perspectivity with an affine axis c in \mathfrak{Q}_{P} then α is called an inversion of \mathscr{N} with axis c. If α_{P} is a perspectivity with improper axis in $\mathscr{M r}_{P}$ and an affine (improper) centre then α is called a dilatation (translation) of $\mathfrak{Q r}$.

For our proofs the following results will be needed:
Result I (Dembowski [5] (5.3) and Zusatz 5): Let \mathfrak{M} be a Möbius plane and let c be a circle of \mathfrak{K}. Then there exists at most one inversion in $\mathfrak{O K}$ with axis c. Any inversion of $\mathfrak{A K}$ is involutorial.

Result 2 (Dembowski [6] Satz 2.3): Let \mathfrak{N} be a finite Möbius plane of order n and let α be an involution (i.e. an automorphism of order 2) of \mathfrak{A} which is not an inversion. Then
if n is even α is a translation, and
if n is odd α is either a dilatation or a fixed point free automorphism of $\mathfrak{A R}$.

Results 3 and 4 can be immediately deduced from Results I-2:
Result 3: Let $\mathscr{M r}_{\mathrm{P}}$ be the affine subplane of a Möbius plane \mathfrak{Q} at an arbitrary point $\mathrm{P} \in \mathscr{\mathscr { K }}$ and let c be any affine line of $\mathscr{\mathscr { R }}_{\mathrm{P}}$. Then there exists at most one perspectivity in \mathscr{R}_{P} with axis c. Any perspectivity of \mathscr{N}_{P} with affine axis is involutorial.

Result 4: Let $\mathfrak{N r}_{\mathrm{P}}$ be the affine subplane of a finite Möbius plane $\mathfrak{A K}$ at an arbitrary point $\mathrm{P} \in \mathfrak{\mathscr { K }}$. Then all involutions of \mathscr{N}_{P} are perspectivities.

Result 5 (Dembowski [5] Satz 3): The affine subplane $\mathfrak{O R}_{\mathrm{P}}$ of a finite Möbius plane $\mathfrak{N K}$ of even order at an arbitrary point P is desarguesian.

Result 6 (Dembowski [5] Satz 5): A finite Möbius plane \mathfrak{A} K of even order admitting an automorphism group, which is triply transitive on the points of $\mathfrak{Q R}$, is miquelian.

Result 7 (Hering [9]): A finite Möbius plane \mathfrak{N} of odd order admitting an automorphism group which is doubly transitive on the points of \mathfrak{M}, is miquelian.

Result 8 (Cofman [4] Theorem i): Let \mathfrak{A} be a finite affine plane of order n and let \mathfrak{S} be a set of $l>n+$ I affine points in \mathfrak{A}. If \mathfrak{a} admits a collineation group Γ which maps \S onto itself and is doubly transitive on the points of \mathcal{S} and if the involutions of Γ are perspectivities, then \mathfrak{A} is a translation plane and \mathfrak{S} consists of all affine points of \mathfrak{G}.

Main results.

We start our investigations by proving several lemmas about finite affine planes.

Let \mathfrak{Q} be a finite affine plane of order n satisfying the condition:
(B) \mathfrak{A} admits a collineation group Γ which maps a set \mathfrak{E} of l affine points of \mathfrak{Q} onto itself and induces a doubly transitive permutation group on the elements of \mathfrak{s}. The following can be shown:

Lemma i.-If $\mathfrak{G l}$ is an affine plane of order n satisfying condition (B) for $l>n$ then Γ is transitive on the improper points of \mathfrak{a}.

Proof.-An arbitrary improper point of \mathfrak{G} is incident with exactly n affine lines of \mathfrak{A}. Since \mathcal{S} contains more than n points this implies that through any improper point of \mathfrak{Q} there exists at least one affine line carrying more than one point of \mathfrak{E}. From the doubly transitivity of Γ on the points of \mathfrak{S} then it follows that Γ is transitive on the improper points of \mathfrak{a}.

Lemma 2.-If \mathfrak{A} is an affine plane of order n satisfying condition (B) for $l>n$ and if Γ contains a non-identical homology with improper axis then Γ contains non-identical elations with improper axis.

Proof.-Let α be a non-identical homology of \mathfrak{A} with centre A and improper axis l_{∞}. Let B_{0} be a point of \mathcal{S} distinct from A ; denote by B_{0}^{\prime} the image of B_{0} under α. Clearly $\mathrm{B}_{0}^{\prime} \neq \mathrm{B}_{0}$. Since \mathbb{S} contains more than n points the points of \mathfrak{S} are not collinear. Let C_{0} be a point of S not on $\mathrm{B}_{0} \mathrm{~B}_{0}^{\prime}$ and let φ be a collineation of Γ fixing B_{0}^{\prime} and mapping B_{0} onto C_{0}. Then $\varphi^{-1} \alpha \varphi$ is a homology with axis l_{∞} and centre $\mathrm{A} \varphi \neq \mathrm{A}$. According to André [I] Satz 3 the group generated by α and $\varphi^{-1} \alpha \varphi$ contains an elation with axis l_{∞} mapping A onto $\mathrm{A} \varphi$; q.e.d.

Lemma 3.-Let $\mathfrak{M r}_{\mathrm{P}}$ be the affine subplane of a finite Möbius plane \mathfrak{M} of odd order n at a point $\mathrm{P} \in \mathfrak{A}$. Then $\mathfrak{N R}_{\mathrm{P}}$ cannot satisfy condition (\mathbf{B}) for $l=n+\mathrm{i}$.

Proof.-Assume that \mathscr{M}_{P} satisfies condition (B) for $l=n+\mathrm{I}$. At first we shall show that
(i) the collineation group Γ of $\mathfrak{N}_{\mathrm{P}}$ contains non-identical homologies with improper axis.
Γ is of even order thus it contains a non-identical involution α_{P}. According to Result 2 the involution α_{P} is a homology of \mathscr{M}_{P}.

If the axis of α_{P} is the improper line of \mathscr{M}_{P} then (i) is proved.
Therefore it remains to investigate the case when the axis of α_{P} is an affine line a of \mathscr{R}_{P}. Then the centre of α_{P} is an improper point A_{∞} of $\mathfrak{M r}_{\mathrm{P}}$. By Lemma I the group Γ is transitive on the improper points of \mathscr{R}_{P}; this
implies that Γ contains an involution β_{P} whose centre B_{∞} is the intersection of a with the improper line of $\mathfrak{N R}_{P}$ ．

Suppose that the axis b of β_{P} is not incident with A_{∞} ．Then $\beta_{P}^{-1} \alpha_{P} \beta_{P}$ is an involutory homology with axis a and centre $\mathrm{A}_{\infty} \beta_{\mathrm{P}} \neq \mathrm{A}_{\infty}$ ．Thus Γ contains two distinct perspectivities of $\mathfrak{M}_{\mathrm{P}}$ with the same axis，a contradiction to Result 3.

Hence $b \ni \mathrm{~A}_{\infty}$ ．The product $\alpha_{P} \beta_{\mathrm{P}}$ is，according to Ostrom［io］Lemma 6， an involutory homology with centre $a \cap b$ and axis $\mathrm{A}_{\infty} \mathrm{B}_{\infty}$ ．

This proves（i）．
From（i），applying Lemma 2，it follows that \mathscr{Q}_{P} contains non－identical translations．According to Gleason［7］，Lemma i．6．this implies together with the transitivity of Γ on the improper points of \mathscr{M}_{P} that Γ contains the translation group of $\mathfrak{R}_{\mathbf{P}}$ ．Thus Γ is transitive on the affine points of $\mathfrak{O r}_{\mathrm{P}}$ which contradicts the fact that Γ has an orbit \mathfrak{S} of $n+\mathrm{I}$ affine points．This estab－ lishes the proof of Lemma 3.

Lemma 4：Let $\mathfrak{M}_{\mathrm{P}}$ be the affine subplane of a finite Möbius plane \mathfrak{M} of even order n at a point P of \mathfrak{M} ．Then \mathfrak{M}_{P} cannot satisfy condition（B）for $l=n+\mathrm{I}$ ．

Proof．－Assume that \mathscr{M}_{P} satisfies condition（B）for $l=n+\mathrm{I}$ ．
The group Γ is of even order hence，by Result 2 and Lemma I，any impro－ per point of $\mathscr{\mathscr { R }} \mathfrak{R}_{P}$ is the centre of at least one involutory elation of Γ ．

Let A_{0} be one of the $n+I$ points of \mathfrak{s} ．Among the $n+I$ lines joining A_{0} to the improper points of $\mathfrak{N r}_{\mathrm{P}}$ clearly there exists at least one line b carrying no point of \mathfrak{S} distinct from A_{0} ．Denote by B_{∞} the intersection of b with the improper line of \mathscr{R}_{P} ．Obviously the axis of any elation with centre B_{∞} must contain A_{0} ．Hence，according to Result 3，it follows：
（i）Any improper point of $\mathfrak{N}_{\mathrm{P}}$ is the centre of exactly one non－iden－ tical involution of Γ ．

Since Γ is doubly transitive on the points of \mathfrak{S} ，for any two points of \mathfrak{S} there exists an involution of Γ mapping one onto the other．This implies，in view of（i），that no three distinct points of \mathfrak{S} are collinear．

However according to Result 5，the plane $\mathfrak{Q}_{\mathrm{P}}$ is desarguesian and there－ fore it cannot admit a collineation group which is doubly transitive on a set of $n+1$ points no three of which are collinear（see Hartley［8］）．

This contradiction proves Lemma 4.
We are now able to prove our
Theorem．－Let 9 R be a finite Möbius plane of order n and let ๑）be a set of $k>n+1$ points in \mathfrak{M} ．If \mathfrak{M} admits an automorphism group Δ which maps ヤ）onto itself and is triply transitive on the points of ヤ then ヤ）consists of all points of \mathfrak{M} and \mathfrak{M} is miquelian．

Proof．－Let P_{0} be an arbitrary point of \mathfrak{M} ．The stabilizer of P_{0} in Δ induces an automorphism group $\Delta_{P_{0}}$ in the affine subplane $\mathscr{N}_{P_{0}}$ of \mathfrak{N} at P_{0} with the properties：
（I）$\Delta_{\mathrm{P}_{0}}$ maps the set $\mathscr{2}_{\mathrm{P}_{0}}=\mathscr{\varrho} \backslash\left\{\mathrm{P}_{0}\right\}$ onto itself and is doubly transitive on the points of $\mathfrak{Q}_{\mathrm{P}_{0}}$ ；
（2）the involutions of $\Delta_{\mathrm{P}_{0}}$ are perspectivities（according to Result 4）．

We shall distinguish two cases:

$$
\begin{equation*}
k=n+2 ; \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
k>n+2 . \tag{b}
\end{equation*}
$$

In Case (a) the plane $\mathfrak{R}_{\mathrm{P}_{0}}$ would satisfy Condition (B) for $l=n+\mathrm{I}$. However this is impossible according to Lemmas 3-4. Thus Case (a) cannot occur.

In Case (b) the set ${\stackrel{\nu}{P_{0}}}$ consists of more than $n+\mathrm{I}$ points. $\Delta_{\mathrm{P}_{0}}$ has the properties (I)-(2) hence the affine plane $\mathscr{R}_{\mathrm{P}_{0}}$ satisfies the assumptions of Result 8. Thus, by Result 8, the set $\emptyset_{\complement_{P_{0}}}$ consists of all affine points of $\mathscr{M}_{\mathrm{P}_{0}}$. The point P_{0} is not fixed by Δ therefore Δ is triply transitive on the points of $\mathfrak{G K}$. The application of Results $6-7$ completes the proof of the Theorem.

References.

[I] André J., Über Perspektivitäten in endlichen projektiven Ebenen, "Arch. Math.», 6, 29-32 (1954).
[2] BaER R., Projectivities with fixed points on every line of the plane, "Bull. Am. Math. Soc.», 52, 273-286 (1946).
[3] Benz W., Über Möbiusebenen. Ein Bericht, «J.-Ber. Deutsch. Math.--Verein», 63, I-27 (1960).
[4] Cofman J., Double transitivity in finite affine planes I, to appear in «Math. Z.».
[5] Dembowski P., Möbiusebenen gerader Ordnung, «Math. Ann.», 157, 179-205 (1964).
[6] Dembowski P., Automorphismen endlicher Möbius-Ebenen, «Math. Z.», 87, II5-136 (1965).
[7] Gleason A. M., Finite Fano planes, «Am. J. Math.», 78, 797-808 (1966).
[8] Hartley R. W., Determination of the ternary collineation groups whose coffficients lie in the GF (2^{n}), "Annals of Math.》, 27, 140-158 (1925-26).
[9] Hering, Ch., Endliche zweifash transitive Möbiusebenen ungerader Ordnung, "Arch. Math.», 18, 212-216 (1967).
[10] Ostrom T. G., Doubly transitivity in finite projective planes, «Can. J. Math.», 8, 563-567 (1956).

