ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Judita Cofman

Triple transitivity in finite Möbius planes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **42** (1967), n.5, p. 616–620. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_5_616_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Matematica.** — *Triple transitivity in finite Möbius planes*. Nota di Judita Соғман, presentata ^(*) dal Socio В. Segre.

RIASSUNTO. — Sia \mathfrak{M} un piano finito di Möbius di ordine *n*. In base di risultati di Dembowski [5] e Hering [9], se \mathfrak{M} ammette un gruppo di automorfismi 3-transitivo sui punti di \mathfrak{M} , allora \mathfrak{M} è miqueliano. In questa Nota si dimostra che, se \mathfrak{M} ammette un gruppo di automorfismi che trasformi un insieme \mathfrak{V} di k > n + 1 punti in sè e che sia 3-transitivo sui punti di \mathfrak{V} , allora \mathfrak{V} contiene tutti i punti del piano \mathfrak{M} sicché \mathfrak{M} è miqueliano.

A Möbius plane is an incidence structure consisting of points and circles and an incidence relation satisfying the following axioms (see for instance Benz [3]):

(I) Any three distint points are incident with exactly one circle.

(II) If c is a circle, A a point on c and B a point not on c then there exists exactly one circle d containing A and B such that $c \cap d = \{A\}$.

(III) There exist at least four non-concyclic points. Any circle is incident with at least one point.

An *automorphism* of a Möbius plane is a permutation of the points of the plane mapping circles onto circles.

Let P be any point of a Möbius plane \mathfrak{M} . Consider the following incidence structure \mathfrak{M}_{P} :

the points of \mathfrak{M}_P are the points of \mathfrak{M} distinct from P; the lines of \mathfrak{M}_P are the circles of \mathfrak{M} through P; incidence in \mathfrak{M}_P is equivalent to incidence in \mathfrak{M} .

It is easy to see that \mathfrak{M}_P is an affine plane; it is called *the affine subplane* of \mathfrak{M} at P. The order of \mathfrak{M}_P does not depend on the point P; it is called *the* order of \mathfrak{M} .

A Möbius plane \mathfrak{M} is said to be *finite* if the number of points in \mathfrak{M} is finite.

A Möbius plane is called *miquelian* if in the plane the THEOREM OF MIQUEL (see e.g. [3]) is satisfied.

Let \mathfrak{M} be a finite Möbius plane of order n satisfying the following condition:

(A) \mathfrak{M} contains a set \mathfrak{V} of k points and admits an automorphism group Δ such that Δ maps \mathfrak{V} onto itself and induces a triply transitive permutation group on the points of \mathfrak{V} .

It is known that finite miquelian Möbius planes \mathfrak{N} of order n satisfy condition (A) for $k = n^2 + 1$ and k = n + 1 (see [3]); in the first case \mathfrak{N} consists

(*) Nella seduta del 13 maggio 1967.

of all points of \mathfrak{M} in the latter the points of \mathfrak{N} are the points of a circle in \mathfrak{M} .

Moreover Dembowski [5] and Hering [9] proved that finite Möbius planes of order n satisfying condition (A) for $k = n^2 + 1$ are miquelian.

The aim of the present note is to show that there are no finite Möbius planes of order *n* satisfying condition (A) for $n + 1 < k < n^2 + 1$. Thus the following generalization of the above result of Dembowski and Hering is obtained:

If \mathfrak{M} is a finite möbius plane of order n admitting an automorphism group Δ , which maps a set \mathfrak{N} of k > n + 1 distinct points of \mathfrak{M} onto itself and induces a triply transitive permutation group on the elements of \mathfrak{N} then \mathfrak{N} consists of all points of \mathfrak{M} and \mathfrak{M} is miquelian.

DEFINITIONS AND PRELIMINARY RESULTS.

Let P be an arbitrary point of a Möbius plane \mathfrak{M} and let $\alpha \neq I$ be an automorphism of \mathfrak{M} fixing P. Then α induces a collineation α_P in the affine plane \mathfrak{M}_P . If \mathfrak{M}_P is a perspectivity with an affine axis c in \mathfrak{M}_P then α is called an *inversion of* \mathfrak{M} with axis c. If α_P is a perspectivity with improper axis in \mathfrak{M}_P and an affine (improper) centre then α is called a *dilatation* (*translation*) of \mathfrak{M} .

For our proofs the following results will be needed:

Result I (Dembowski [5] (5.3) and Zusatz 5): Let \mathfrak{M} be a Möbius plane and let c be a circle of \mathfrak{M} . Then there exists at most one inversion in \mathfrak{M} with axis c. Any inversion of \mathfrak{M} is involutorial.

Result 2 (Dembowski [6] Satz 2.3): Let \mathfrak{N} be a finite Möbius plane of order n and let α be an involution (i.e. an automorphism of order 2) of \mathfrak{N} which is not an inversion. Then

if n is even α is a translation, and

if n is odd α is either a dilatation or a fixed point free automorphism of \mathfrak{M} .

Results 3 and 4 can be immediately deduced from Results 1-2:

Result 3: Let \mathfrak{M}_P be the affine subplane of a Möbius plane \mathfrak{M} at an arbitrary point $P \in \mathfrak{M}$ and let c be any affine line of \mathfrak{M}_P . Then there exists at most one perspectivity in \mathfrak{M}_P with axis c. Any perspectivity of \mathfrak{M}_P with affine axis is involutorial.

Result 4: Let \mathfrak{M}_P be the affine subplane of a finite Möbius plane \mathfrak{M} at an arbitrary point $P \in \mathfrak{M}$. Then all involutions of \mathfrak{M}_P are perspectivities.

Result 5 (Dembowski [5] Satz 3): The affine subplane \mathfrak{M}_P of a finite Möbius plane \mathfrak{M} of even order at an arbitrary point P is desarguesian.

Result 6 (Dembowski [5] Satz 5): A finite Möbius plane \mathfrak{M} of even order admitting an automorphism group, which is triply transitive on the points of \mathfrak{M} , is miquelian.

Result 7 (Hering [9]): A finite Möbius plane \mathfrak{M} of odd order admitting an automorphism group which is doubly transitive on the points of \mathfrak{M} , is miquelian.

Result 8 (Cofman [4] Theorem I): Let \mathfrak{A} be a finite affine plane of order *n* and let \mathfrak{S} be a set of l > n + I affine points in \mathfrak{A} . If \mathfrak{A} admits a collineation group Γ which maps \mathfrak{S} onto itself and is doubly transitive on the points of \mathfrak{S} and if the involutions of Γ are perspectivities, then \mathfrak{A} is a translation plane and \mathfrak{S} consists of all affine points of \mathfrak{A} .

MAIN RESULTS.

We start our investigations by proving several lemmas about finite affine planes.

Let \mathfrak{A} be a finite affine plane of order n satisfying the condition:

(**B**) \mathfrak{A} admits a collineation group Γ which maps a set \mathfrak{S} of l affine points of \mathfrak{A} onto itself and induces a doubly transitive permutation group on the elements of \mathfrak{S} . The following can be shown:

LEMMA I.—If \mathfrak{A} is an affine plane of order *n* satisfying condition (**B**) for l > n then Γ is transitive on the improper points of \mathfrak{A} .

Proof.—An arbitrary improper point of \mathfrak{A} is incident with exactly n affine lines of \mathfrak{A} . Since \mathfrak{S} contains more than n points this implies that through any improper point of \mathfrak{A} there exists at least one affine line carrying more than one point of \mathfrak{S} . From the doubly transitivity of Γ on the points of \mathfrak{S} then it follows that Γ is transitive on the improper points of \mathfrak{A} .

LEMMA 2.—If \mathfrak{A} is an affine plane of order *n* satisfying condition (**B**) for l > n and if Γ contains a non-identical homology with improper axis then Γ contains non-identical elations with improper axis.

Proof.—Let α be a non-identical homology of \mathfrak{A} with centre A and improper axis l_{∞} . Let B_0 be a point of δ distinct from A; denote by B'_0 the image of B_0 under α . Clearly $B'_0 \neq B_0$. Since δ contains more than n points the points of δ are not collinear. Let C_0 be a point of S not on $B_0 B'_0$ and let φ be a collineation of Γ fixing B'_0 and mapping B_0 onto C_0 . Then $\varphi^{-1} \alpha \varphi$ is a homology with axis l_{∞} and centre $A\varphi \neq A$. According to André [I] Satz 3 the group generated by α and $\varphi^{-1} \alpha \varphi$ contains an elation with axis l_{∞} mapping A onto $A\varphi$; q.e.d.

LEMMA 3.—Let \mathfrak{M}_P be the affine subplane of a finite Möbius plane \mathfrak{M} of odd order n at a point $P \in \mathfrak{M}$. Then \mathfrak{M}_P cannot satisfy condition (**B**) for l = n + 1.

Proof.—Assume that \mathfrak{M}_P satisfies condition (**B**) for l = n + 1. At first we shall show that

(i) the collineation group Γ of \mathfrak{M}_P contains non-identical homologies with improper axis.

 Γ is of even order thus it contains a non-identical involution α_P . According to Result 2 the involution α_P is a homology of \mathfrak{M}_P .

If the axis of α_P is the improper line of \mathfrak{M}_P then (i) is proved.

Therefore it remains to investigate the case when the axis of α_P is an affine line a of \mathfrak{M}_P . Then the centre of α_P is an improper point A_{∞} of \mathfrak{M}_P . By Lemma 1 the group Γ is transitive on the improper points of \mathfrak{M}_P ; this implies that Γ contains an involution β_P whose centre B_{∞} is the intersection of a with the improper line of \mathfrak{M}_P .

Suppose that the axis b of β_P is not incident with A_{∞} . Then $\beta_P^{-1} \alpha_P \beta_P$ is an involutory homology with axis a and centre $A_{\infty} \beta_P \neq A_{\infty}$. Thus Γ contains two distinct perspectivities of \mathfrak{M}_P with the same axis, a contradiction to Result 3.

Hence $b \ni A_{\infty}$. The product $\alpha_P \beta_P$ is, according to Ostrom [10] Lemma 6, an involutory homology with centre $a \cap b$ and axis $A_{\infty} B_{\infty}$.

This proves (i).

From (i), applying Lemma 2, it follows that \mathfrak{M}_P contains non-identical translations. According to Gleason [7], Lemma 1.6. this implies together with the transitivity of Γ on the improper points of \mathfrak{M}_P that Γ contains the translation group of \mathfrak{M}_P . Thus Γ is transitive on the affine points of \mathfrak{M}_P which contradicts the fact that Γ has an orbit δ of n + I affine points. This establishes the proof of Lemma 3.

LEMMA 4: Let \mathfrak{M}_P be the affine subplane of a finite Möbius plane \mathfrak{M} of even order n at a point P of \mathfrak{M} . Then \mathfrak{M}_P cannot satisfy condition (**B**) for l = n + 1.

Proof.—Assume that $\mathfrak{M}_{\mathbb{P}}$ satisfies condition (**B**) for l = n + I.

The group Γ is of even order hence, by Result 2 and Lemma 1, any improper point of \mathfrak{M}_P is the centre of at least one involutory elation of Γ .

Let A_0 be one of the n + 1 points of S. Among the n + 1 lines joining A_0 to the improper points of \mathfrak{M}_P clearly there exists at least one line δ carrying no point of S distinct from A_0 . Denote by B_{∞} the intersection of δ with the improper line of \mathfrak{M}_P . Obviously the axis of any elation with centre B_{∞} must contain A_0 . Hence, according to Result 3, it follows:

(i) Any improper point of \mathfrak{M}_P is the centre of exactly one non-identical involution of Γ .

Since Γ is doubly transitive on the points of S, for any two points of S there exists an involution of Γ mapping one onto the other. This implies, in view of (i), that no three distinct points of S are collinear.

However according to Result 5, the plane \mathfrak{M}_P is desarguesian and therefore it cannot admit a collineation group which is doubly transitive on a set of n + I points no three of which are collinear (see Hartley [8]).

This contradiction proves Lemma 4.

We are now able to prove our

THEOREM.—Let \mathfrak{M} be a finite Möbius plane of order n and let \mathfrak{N} be a set of k > n + 1 points in \mathfrak{M} . If \mathfrak{M} admits an automorphism group Δ which maps \mathfrak{N} onto itself and is triply transitive on the points of \mathfrak{N} then \mathfrak{N} consists of all points of \mathfrak{M} and \mathfrak{M} is miquelian.

Proof.—Let P_0 be an arbitrary point of \mathfrak{M} . The stabilizer of P_0 in Δ induces an automorphism group Δ_{P_0} in the affine subplane \mathfrak{M}_{P_0} of \mathfrak{M} at P_0 with the properties:

(1) Δ_{P_0} maps the set $\mathfrak{V}_{P_0} = \mathfrak{V} \setminus \{P_0\}$ onto itself and is doubly transitive on the points of \mathfrak{V}_{P_0} ;

(2) the involutions of $\Delta_{\mathbf{P}_{\bullet}}$ are perspectivities (according to Result 4).

We shall distinguish two cases:

(a)
$$k = n + 2;$$

(b)
$$k > n+2$$
.

In *Case* (a) the plane \mathfrak{M}_{P_0} would satisfy Condition (**B**) for l = n + 1. However this is impossible according to Lemmas 3-4. Thus Case (a) cannot occur.

In *Case* (b) the set \mathfrak{V}_{P_0} consists of more than n + I points. Δ_{P_0} has the properties (I)-(2) hence the affine plane \mathfrak{M}_{P_0} satisfies the assumptions of Result 8. Thus, by Result 8, the set \mathfrak{V}_{P_0} consists of all affine points of \mathfrak{M}_{P_0} . The point P_0 is not fixed by Δ therefore Δ is triply transitive on the points of \mathfrak{M}_{P_0} . The application of Results 6-7 completes the proof of the Theorem.

References.

- [1] ANDRÉ J., Über Perspektivitäten in endlichen projektiven Ebenen, «Arch. Math.», 6, 29–32 (1954).
- [2] BAER R., Projectivities with fixed points on every line of the plane, "Bull. Am. Math. Soc. ", 52, 273–286 (1946).
- [3] BENZ W., Über Möbiusebenen. Ein Bericht, « J.-Ber. Deutsch. Math.-Verein », 63, 1-27 (1960).
- [4] COFMAN J., Double transitivity in finite affine planes I, to appear in «Math. Z.».
- [5] DEMBOWSKI P., Möbiusebenen gerader Ordnung, «Math. Ann. », 157, 179-205 (1964).
- [6] DEMBOWSKI P., Automorphismen endlicher Möbius-Ebenen, «Math. Z.», 87, 115-136 (1965).
- [7] GLEASON A. M., Finite Fano planes, «Am. J. Math.», 78, 797-808 (1966).
- [8] HARTLEV R. W., Determination of the ternary collineation groups whose coefficients lie in the GF (2ⁿ), «Annals of Math.», 27, 140–158 (1925–26).
- [9] HERING, Ch., Endliche zweifash transitive Möbiusebenen ungerader Ordnung, «Arch. Math. », 18, 212-216 (1967).
- [10] OSTROM T.G., Doubly transitivity in finite projective planes, «Can. J. Math.», 8, 563-567 (1956).