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NOTE PRESENTATE DA SOCI

Analisi matematica. — Bowunds for the first derivatives of Green's
Junction. Nota di James H. BramsrLe @ e LawreEncE E. PavnEe 9,
presentata 7 dal Corrisp. G. FicHERrA.

RIASSUNTO. — Vengono dimostrate formule di maggiorazione, della forma
[0G (x , ¥)ex;| < Cr;y‘” per le derivate prime usando un metodo che si basa 'sul principio
di massimo.

Nel caso in cui la frontiera appartiene alla classe C"' il metodo ottiene facilmente un
valore numerico per la costante C.

I. INTRODUCTION.—Let G (x,y) be the Green function for Laplace’s
operator defined on a finite # dimensional region R with Liapunov boundary aR.
The purpose of this note is to give a complete proof of the inequality

(1.1) M}gc;ﬁ;”, i=1, -, n,
|

where C is a constant depending only on R, and 7,, is the distance from the
point x = (x1,--+,x,) to the point y =-(y1,---, y,).

This question is discussed elsewhere in the literature. For example, Eidus
[3] presents (1.1) and states without proof the inequality (2.1) which is
crucial in his derivation of (1.1). Giraud [5], however, gives a proof of (2.1)
so that if the results of these two authors were combined (1.1) could be consi-
dered as having been proved. The method presented here is simpler and in
certain cases allows us to easily determine the constant C in (1.1). More re-
cently Fichera [4] has treated the case of second derivatives in two dimensions
using a method of conformal mapping even for non-simply connected do-
mains. His method can be applied.to obtain an inequality analogous to (1.1)
for partial derivatives of any order

By the methods used in obtaining (1.1) we can obtain

2G (x,y)
o715 Oy

(1.2)

< Crx—yn

where 2/3n, and 8/n, are outward directed normal derivatives at x and y, res-
pectively, and, of course, x and y lie on 2R. This, we show, leads to a bound
for the Dirichlet integral of a harmonic function whose boundary values are
Holder continuous with exponent greater than 1/2. That this is a sufficient
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condition for the existence of the Dirichlet integral was shown by Miranda [8].
For further interesting work on this subject see De Vito [2].

Throughout we shall use C as a generic constant, not necessarily the
same in any two places.

II. BOUNDARY ESTIMATES.—We shall assume that the boundary R
satisfies the following conditions of Liapun\oxlf.
(1) At every point of @R there exists a uniquely defined tangent plane.
.(2) There exist two constants C>o0 and A,o0<A< 1, such that for
any two points P; and P on the surface, 6 < Cr*, where 0 is the angle
between the normals through P; and P2 and » is the distance between P1 and Pa.
(3) There exists a constant 4 > o such that if % is a sphere with ra-
dius 4 and center at P € 2R, every line parallel to the normal at P intersects
oR at most once inside X @),
In this section we shall show that

(2.1) _ang’y) <Cr

for x €2R, y € R. In the case # == 2 (2.1) is easily obtained using confor-
mal mapping and the maximum principle. We shall consider now # > 3
and at first prove (2.1) for A = 1 since this case can be treated in a somewhat
simpler manner.

Fig. 1.

(@) A = 1. Consider an arbitrary but fixed ¥ € R and arbitrary x, € oR.
We choose ¢ such that o< e <1/2 and such that it is possible to construct
the sphere S of radius p = ¢7,,, outside R, tangent to ¢R at xp. Because 2R
is a;Liapunov boundary and A = 1 this can always be done. Since R is

(1) Because of the finiteness of R the conditions of Liapunov are not independent. We
state them here in the usual manner (c.f. [6]) for convenience.

39, — RENDICONTI 1967, Vol. XL1I, fasc. 5.
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finite ¢ may be chosen independent of x, and y. For the moment we take
the center of this sphere to be the origin. Let » be the distance from
the origin to a point x. Let Ro = RN [x[»< 2p], Co=RN[x|r< 2¢p] and
Ci=RnN[x|r = 2p] (see fig. 1).
Now consider the function of x in Ry defined by
—_— ”

(2.2 w () =max| G (s,5) -5 ="
z2€C, p"—(2p)

This function has ‘the following properties:
w (x09) = O

w(x)>o0,x €Ry
w(x)_:rréacx|G(z,y)J,x€C1

W N~

4. Aw <o in Ro.
(Note that w is just a local barrier at xp, cf. Kellogg [7]).
Thus since G (x,y) = o for x €C,, it follows from the maximum prin-
ciple that

(2.3) Gl,y)<w( , xeR.

But since G (%o, ¥) = w (x0) = 0 we conclude that

(2.0 || | 2uld |,

dw (x,)
Now we can calculate 5

ow (xp) dw (%g) ” 2%
(25) e _-——?<2ﬂ_‘1>1;neaé[G(3,y)|‘
It is well known that
I —n
(2.6) OSG@,J’)Sm %
and hence by the construction
(2.7) znéag( |GE, | < m(l 2T
Combining (2.4), (2.5) and (2.7) we obtain
oG (x,7) 7 2—n 2% 1—n

(28) I iy I = e(n—2) an (1—2¢) (2ﬂ—1)rx”

for any x €oR and y e R.
The same method in two dimensions would “yield

(2.9) 1 LELAEA . <Cr3l|In7,, |

which is not optimal with respect to 7,,
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Note that we could have introduced another parameter § > 1 into the
construction and restricted ¢ so that 0 <e¢ < 1/8 = min [1/3, /2 (diameter
of R)] and defined Ro as RN [x |7 < 8 p], etc. We could obtain better
constants by optimizing first with respect to ¢ and then with respect 8. An
interesting case is that in which SOR = @ even if p > (diameter of R) as
would be true for example for convex domains. The optimum value of the
n—1\n—1 w1l 7 1
n——z) (n+ 1) —j;ﬁ For

constant of (2.8) then turns out to be L(
n = 3 we obtain 443[3m.
(b) o <A < 1. For simplicity and clarity we shall consider 7 = 3.
The case of general 7 is completely analogous.
We first observe that 3R will be a Liapunov surface for any positive

A <\ so that we can take, without loss, A =

S =7 » Where m is a positive
integer. Also 4 may be chosen small.

Consider an arbitrary point P € 3R and take it to be the origin. Let the
positive z-axis be along the outward normal and the (x, ) plane be tangent
to R at (0,0,0). Inside 224 32+ 22 <d we may represent 3R as

2= 0 (x,y). Asis shown in Smirnov [10] p. 5§71, if C4*< 1 then

(2.10) o (x, %) |< c(a?+ y2)ainr,

We consider for a positive number z0< @f2< 1 the “sphere ”

(2.11) (2 — 20)2 4 21+h L y1th — 2.

The set S:(z—zy)2 + a1+t —i—yl“g 23 lies inside' the Liapunov sphere.

Now we have for (x,y,2)€S,2< 2,

(2.12) [o (&, ) | < C@Er + 91 < C [ — (2 —2)?]
=C252—2% <2Cze.

Thus. if z;< 1/2 C we have

(2.13) lo(x,9) <=2

which means that SNR is empty.

We now are in a position to construct a barrier at (0, 0, 0) which exhibits
the proper behaviour. For this purpose we consider the function

(2.14) F#x,y,28) = (g —z)? + a1+ + yrrh— g2,
Now f€C"" in R but does not have second derivatives everywhere in R.

Buthfa,’V exists and is positive for every subdomain QCR so that Jfisa
3 ‘

subharmonic function in R. Hence f < %, where /% is the harmonic function

taking the values f on 8R. By a theorem in Giinter [6], Satz I p. 212, since

¢R is a Liapunov boundary and fe€C"*(R), it follows that ~ has continuous

first derivatives in R.
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We now consider Q) to be an arbitrary point of R and let 79 be the
distance from Q to the origin. Let Ry be the intersection of R with
(g — 20 + a1+* 4 y1+2 < (2 4 er)?, where ¢ >0 is to be chosen. Let C;
be the intersection of R with (2 —zp)2 4 1% 4 yl+h = (z) 4 erg). It is
not difficult to see that (diameter of Rg) << C erg so that e can be chosen so
that Ro lies in a sphere about the origin of radius §r¢ with §< 1.

Now let

h(x,y,z) TSgPCIG(T,Q)J

(2'15> wa’y’Z):

(20 + e7)? —«zg
in Rop. The function w satisfies
Aw = 0 in Ry
w(0,0,0) =0
w>0 in Ry
and on C;
fTS‘el%l‘\G(T,QH
T (2ot arQ)z———zg

=sup [G(T,Q)].
TEC,

Thus it follows trom the maximum principle that
(2.16) G (P, Q)<w (P)
for Pe€Rg. Since G (0, Q) =w (0) = o we have

| 3G(0,0Q) wio) | tep ST 4,
(2.17) | o | = am | 2 ’T )
| # ° (20 +ergQ)®—2, "
But sup |G(T,Q)| <Clrq , (2+ erq? —22=Crq and ‘ a};fzo) ‘é C, so
TEC, |

that finally,

(2.18) Iﬁo’—

where the constant in (2.18) depends only on R.

By exactly the same types of arguments as in (a) and (b) we can establish

192G<x,y

(2.19) 2 ) irg Cry'

where for example, inh case (a) we use (2.8) in place of (2.6).

II1. INTERIOR ESTIMATES.—In this section we make use of the following
observation. Let the origin O be an aribitrary point of R and % be a function,
harmonic in R except at the origin. Then ‘

(3.1 AGrm=2h) —2 (n—2) 2,72 (r"=2 /) ;= 0

in R — O, where here the notation, 7 means partial differentiation with respect
to x;, and summation from I to # over a repeated index is understood. The
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symbol A means, of course, Laplace’s operator. Now from the maximum
principle for second order elliptic equations it follows that

(3.2) |#"=2 4| <max [ sup |»""24 (x)|, lim sup |»*2/ (x)|].
x €cR : x>0

Since the origin was taken to be an arbitrary point, we can assume, without
loss, that the point y is the origin. Let us consider

<33> h <x> =% G,i<x ’ O>,

and verify by calculation that AZ = o if x ==o. Thus using the definition of
G (x, %), and the fact that G (x,0) is of class C! in RUSR except at the
origin (cf. Gunter [5]),
1
) @—nl ’

~where #z; is the component of the outward unit normal in the direction ;.
Noting that |x; 7,7 | <1 and using (2.8) (or 2.18) we have

(3-5) |7 2x;Gi(x,0)| <C,

(3.4) |7 2x;G,;(x,0)| < max [sup =2 x;m; -

3G (x , 0)
x €OR on

where C is a constant depending only on R. In fact C can be calculated
from (2.8) (or (2.18)) and (3.4). In exactly the same manner we take

(3.6) h(x) = %G, (x,0) —x,G;(x,0)

for arbitrary but fixed 7 and ;. As before we observe that AZ =0 in R—O
and' conclude finally that

37

We now note that

7Gx, 0 —x;,Gu(x, 0| <C.

(3.8) 771G ;(x,0) = %’;7”*2 %, G ;(x,0)F %r”“Q(xiG,j(x,o)——ij,,(x,o)).
It follows at once from (3.5), (3.7) and (3.8) that
(3:9) 771G, 0 [<C

where C is another constant. Since the origin was chosen arbitrarily we have
the result

(3.10) 1———% (.7

) 1-n
e l <Cruy .

IV. THE DIRICHLET INTEGRAL.—Let # be a harmonic function in R
which is Hélder continuous with exponent &> 1/2 in RU®R. The following
expression for the Dirichlet integral, D (» , %) = | % %, dx, is easily derived

R

@y Dww= | [me)—u0rEEEn as,as,

oy dny
OR(x) IR()
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(cf. Slobodetski and Babich [9]). The inequality (2.19) thus leads to

(4.2) D@,u)<c f /[u(x)-——%(y)]zrxy as,dsS,.
OR(x) IR(z)

Such an inequality can be used to provide error bounds for the approximation
of the Dirichlet integral of one harmonic function in terms of another. Since
the inequality is quadratic the Rayleigh-Ritz technique can be applied to syste-
matically improve the approximations (cf. Bramble and Payne [t].
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