ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

EZIO MARCHI

Remarks on generalized n-person games

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **42** (1967), n.4, p. 473–477. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_4_473_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

NOTE PRESENTATE DA SOCI

Teoria dei giochi. — Remarks on generalized n-person games (*). Nota di Ezio Marchi, presentata (**) dal Socio B. Segre.

SUNTO. — Utilizzando la rappresentazione euclidea di un gioco generalizzato fra un qualunque numero di persone ed il teorema del punto fisso di Eilenberg Montgomery [2], si assegnano condizioni per l'esistenza di punti di equilibrio. Quelli di Debreu [1] sono un caso particolare.

I. An e-generalized game is given by a generalized n-person game

$$\Gamma = \{\Sigma_1, \dots, \Sigma_n \quad ; \quad A_1, \dots, A_n \quad ; \quad Z_1, \dots, Z_n\}$$

where for each player $i \in \mathbb{N} = (1, \dots, n)$, Σ_i is the strategy set, which is assumed to be in an Euclidean space R^{m_i} , where the payoff A_i is a function defined on $\Sigma_N = X_j \Sigma_j$, with values in the completed real line \overline{R} , and the multivalued function $Z_i: \Sigma_{\mathbf{N}} \to \Sigma_i$ determine a non-empty compact set Z_i (σ) for each strategy $\sigma \in \Sigma_N$ and where a multivalued function $e: N \to N$ is defined such that $e(i) \subseteq \mathbb{N}$ —(i) for all $i \in \mathbb{N}$. Such a game will be denoted by

$$\Gamma_{e} = \{\Sigma_{1}, \cdots, \Sigma_{n} \quad ; \quad A_{1}, \cdots, A_{n} \quad ; \quad Z_{1}, \cdots, Z_{n}\}.$$

For each player $i \in \mathbb{N}$ and each strategy $\sigma \in \Sigma_{\mathbb{N}}$, f(i) denoted the set $N - (e(i) \cup (i))$, and

$$\mathbf{V}_{i}\left(\mathbf{\sigma}\right) = \max_{\mathbf{s}_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right)} \ \min_{\mathbf{s}_{e}\left(i\right) \in \mathbf{Z}_{e\left(i\right)}\left(\mathbf{\sigma}\right)} \mathbf{A}_{i}\left(\mathbf{s}_{i} \text{ , } \mathbf{s}_{e\left(i\right)} \text{ , } \mathbf{\sigma}_{f\left(i\right)}\right)$$

and

$$\mathbf{V}^{i}\left(\mathbf{\sigma}\right) = \min_{\substack{s_{e(i)} \in \mathbf{Z}_{e(i)}\left(\mathbf{\sigma}\right) \\ s_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right)}} \max_{\substack{s_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right) \\ s_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right)}} \mathbf{A}_{i}\left(s_{i}\,,s_{e(i)}\,,\sigma_{f(i)}\right).$$

We denote here $S_R \in Z_R = \underset{j \in R}{X} \Sigma_i$ and $Z_R = \underset{j \in R}{X} Z_j$, where R is e(i) or f(i). A strategy $\bar{\sigma} \in \Sigma_N$ is an e_m -simple point of the e-generalized n-person

game Γ , if:

$$\min_{\substack{s_{e(i)} \in Z_{e(i)}(\bar{o})}} A_{i}(\bar{\sigma}_{i}, s_{e(i)}, \bar{\sigma}_{f(i)}) = V_{i}(\bar{\sigma})$$

and

$$\bar{\sigma}_i \in Z_i(\bar{\sigma})$$
 for all $i \in \mathbb{N}$.

It is an e^m -simple point of the e-generalized n-person game Γ_e if:

$$\max_{s_{i} \in Z_{i}(\overline{\sigma})} A_{i}\left(s_{i}, \bar{\sigma}_{e(i)}, \bar{\sigma}_{f(i)}\right) = V^{i}\left(\bar{\sigma}\right)$$

and

$$\bar{\sigma}_i \in Z_i(\bar{\sigma})$$
 for all $i \in \mathbb{N}$.

- (*) The research described in this paper was partially supported by the Office of Naval Research, Contract No. Nonr 1858 (16).
 - (**) Nella seduta dell'8 aprile 1967.
- 31. RENDICONTI 1967, Vol. XLII, fasc. 4.

The e-generalized n-person game is on the one hand an extension of the generalized n-person game due to Debreu [1], and on the other hand a generalization of the game with a simple structure function introduced in [3]. If for each $i \in \mathbb{N}$: $e(i) = \emptyset$ and Z_i is independent of $\sigma_i \in \Sigma_i$, then an e_m -simple point is an equilibrium point in the sense of Debreu.

The results presented here give the general conditions under which the existence of such points is guaranteed.

As in [1], we prove the main result using as a lemma a particular case of the fixed point theorem of Eilenberg and Montgomery [2].

Lemma: Let W be a contractible polyhedron and $\alpha: W \to W$ an upper semicontinuous multivalued function such that for every $w \in W$ the set $\alpha(w)$ is contractible. Then α has a fixed point.

We recall that a polyhedron is a set in a Euclidean space R^m homeomorphic to the union of a finite number of simplexes.

A non-empty set W in a Euclidean space R^m is said to be contractible, or more precisely, deformable into a point $\overline{w} \in W$, if there exists a continuous function $\alpha:[0,1] \times W \to W$ such that $\alpha(0,w) = w$ and $\alpha(1,w) = \overline{w}$ for all $w \in W$.

A multivalued function $\alpha:W_1\to W_2$, where W_1 and W_2 are subsets in Euclidean spaces, is said to be upper semicontinuous if the graph of the function $\alpha:G_\alpha=\{(\sigma\,,\,\tau)\colon\tau\in\alpha\,(\sigma)\}$ is closed. It is said to be lower semicontinuous if for any $\tau\in\alpha\,(\sigma)$ and any convergent sequence $\sigma\,(k)\to\sigma$ there is a convergent sequence $\tau\,(k)\to\tau$ such that for all $k:\tau\,(k)\in\alpha\,(\sigma\,(k))$. The multivalued function α is continuous if it is upper and lower semicontinuous. A fixed point of the multivalued function $\alpha:W\to W$ is a point \overline{w} such that $\overline{w}\in\alpha\,(\overline{w})$.

- 2. Theorem: Let Γ_e be an e-generalized game such that for all $i \in \mathbb{N}$, Σ_i is contractible polyhedron, the multivalued function Z_i is upper semicontinuous.
 - (a) An e_m -simple point of Γ_e exists, if: for all $i \in \mathbb{N}$
 - (a₁) the functions V_i in $\sigma \in \Sigma_N$ and

$$\min_{s_{e(i)} \in \mathbf{Z}_{e(i)}(\sigma)} \mathbf{A}_{i} (\tau_{i}, s_{e(i)}, \sigma_{f(i)}) \quad in \quad (\sigma, \tau_{i}) \in \mathbf{G}_{i}$$

are continuous and

(a2) for all $\sigma \in \Sigma_N$ the set

$$\mathbf{S}_{i}\left(\mathbf{\sigma}\right) = \left\{\mathbf{\tau}_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right) : \min_{s_{e(i)} \in \mathbf{Z}_{e(i)}\left(\mathbf{\sigma}\right)} \mathbf{A}_{i}\left(\mathbf{\tau}_{i} , s_{e(i)} , \mathbf{\sigma}_{f(i)}\right) = \mathbf{V}_{i}\left(\mathbf{\sigma}\right)\right\}$$

is contractible.

(b) An e^m -simple point of Γ_e exists, if: for all $i \in \mathbb{N}$

(b₁) the functions V^i in $\sigma \in \Sigma_N$ and $\max_{s_i \in Z_i(\sigma)} A_i(s_i, \tau_{e(i)}, \sigma_{f(i)})$ in $\tau_{e(i)} \in G_{e(i)}$ are continuous where $G_{e(i)}$ is the graph of $Z_{e(i)}$ and

 $(\sigma, \tau_{e(i)}) \in G_{e(i)}$ are continuous where $G_{e(i)}$ is the graph of $Z_{e(i)}$, and (b_2) for all $\sigma \in \Sigma_N$ the set

$$T\left(\sigma\right) = \left\{\tau \in Z_{N}\left(\sigma\right): \max_{s_{i} \in Z_{i}\left(\sigma\right)} A_{i}\left(s_{i}\,,\,\tau_{e\left(i\right)}\,\sigma_{e\left(i\right)}\right) = V^{i}\left(\sigma\right) \qquad \text{for all} \quad i \in \mathbb{N}\right\}$$
 is contractible.

- (c) An e_m -and e^m -point of Γ_e exists, if it is satisfied (a₁), (a₂), (b₁), (b₂) and
- (c₁) for all $\sigma \in \Sigma$ the set $U(\sigma) = S(\sigma) \cap T(\sigma)$ is contractible, where $S(\sigma) = \{\tau \in \Sigma_N : \tau_i \in S_i(\sigma) \text{ for all } i \in N\}.$

Proof: Σ_N is a contractible polyhedron, since it is the product of a finite number of contractible polyhedra.

(a) Let $\psi = \underset{i \in \mathbb{N}}{X} S_i$: $\Sigma_N \to \Sigma_N$: be a multivalued function. $\psi(\sigma)$ is contractible for all $\sigma \in \Sigma_N$, because the set $S_i(\sigma) \subseteq \Sigma_i$ is contractible for all $i \in \mathbb{N}$ and $\sigma \in \Sigma_N$. For each $i \in \mathbb{N}$, the set

$$\begin{split} \mathbf{S}_{i} &= \left\{ \left(\mathbf{\sigma} \text{ , } \tau_{i} \right) \in \Sigma_{\mathbf{N}} \times \Sigma_{i} : \tau_{i} \in \mathbf{S}_{i} \left(\mathbf{\sigma} \right) \right\} = \\ &= \left\{ \left(\mathbf{\sigma} \text{ , } \tau_{i} \right) \in \mathbf{G}_{i} : \min_{\boldsymbol{s}_{e\left(i\right)} \in \mathbf{Z}_{e\left(i\right)} \left(\mathbf{\sigma} \right)} \mathbf{A}_{i} \left(\tau_{i} \text{ , } \boldsymbol{s}_{e\left(i\right)} \text{ , } \boldsymbol{\sigma}_{f\left(i\right)} \right) = \mathbf{V}_{i} \left(\mathbf{\sigma} \right) \right\} \end{split}$$

is closed, since G_i is closed and the functions $V_i(\sigma)$ and

$$\min_{s_{e(i)} \in \mathbf{Z}_{e(i)}(\sigma)} \mathbf{A}_{i} \left(\mathbf{\tau}_{i} , s_{e(i)} , \sigma_{f(i)} \right)$$

are continuous. Therefore the graph of the function ψ , which is

$$\begin{split} G_{\psi} &= \{ (\sigma\,,\,\tau) \in \Sigma_{\mathrm{N}} \times \Sigma_{\mathrm{N}} \colon \tau \in \psi\,(\sigma) \} = \\ &= \{ (\sigma\,,\,\tau) \in \Sigma_{\mathrm{N}} \times \Sigma_{\mathrm{N}} \colon \tau \in \mathrm{S}_{i}\,(\sigma) \qquad \text{for all} \quad i \in \mathrm{N} \} = \\ &= \{ (\sigma\,,\,\tau) \in \Sigma_{\mathrm{N}} \times \Sigma_{\mathrm{N}} \colon (\sigma\,,\,\tau_{i}) \in \mathrm{S}_{i} \qquad \text{for all} \quad i \in \mathrm{N} \} = \\ &= \bigcap_{i \in \mathrm{N}} \{ (\sigma\,,\,\tau) \in \Sigma_{\mathrm{N}} \times \Sigma_{\mathrm{N}} \colon (\sigma\,,\,\tau_{i}) \in \mathrm{S}_{i} \}, \end{split}$$

is closed, since S_i is. The above lemma, applied to the function ψ , gives a fixed point $\bar{\sigma} \in \Sigma_N : \bar{\sigma} \in \psi(\bar{\sigma})$. Such a strategy is an e_m -simple point.

(b) Let $\psi=T:\Sigma_N\to\Sigma_N$ be a multivalued function, such that $\psi\left(\sigma\right)$ is contractible for all $\sigma\in\Sigma_N$.

$$G_{e(i)} = \{(\sigma, \tau_{e(i)}) \in \Sigma_{N} \times \Sigma_{e(i)} : (\sigma, \tau_{j}) \in G_{j} \quad \text{for all} \quad j \in e(i)\},$$

which is the graph of the function $Z_{e(i)}$ is closed for all $i \in \mathbb{N}$, since G_j is. By the same argument the graph G_N of the multivalued function Z_N is closed. Thus the graph of the function ψ ,

$$\begin{split} G_{\psi} &= \{ (\sigma \,,\, \tau) \in \Sigma_{\mathcal{N}} \times \Sigma_{\mathcal{N}} \colon \tau \in \psi(\sigma) \} = \\ &= \{ (\sigma \,,\, \tau) \in \Sigma_{\mathcal{N}} \times \Sigma_{\mathcal{N}} \colon \tau \in Z_{\mathcal{N}}(\sigma) \quad \text{and} \quad \max_{s_i \in Z_i(\sigma)} A_i \, (s_i \,,\, \tau_{e(i)} \,,\, \sigma_{f(i)}) = \mathbf{V}^i \, (\sigma) \\ &\qquad \qquad \qquad \qquad \qquad \text{for all} \quad i \in \mathcal{N}) \} = \\ &= G_{\mathcal{N}} \cap \bigcap_{i \,\in\, \mathcal{N}} \{ (\sigma \,,\, \tau) \in \Sigma_{\mathcal{N}} \times \Sigma_{\mathcal{N}} \colon (\sigma \,,\, \tau_{e(i)}) \in G_{e(i)} \text{ and } \max_{s_i \in Z_i(\sigma)} A_i \, (s_i \,,\, \tau_{e(i)} \,,\, \sigma_{f(i)}) = \mathbf{V}^i (\sigma) \} \end{split}$$

is closed since for all $i \in \mathbb{N}$, the set $G_{e(i)}$ and $G_{\mathbb{N}}$ are also closed, and the functions $V^{i}(\sigma)$ and

$$\max_{s_i \in Z_i(\sigma)} \mathbf{A}_i \left(s_i \;,\; \tau_{e(i)} \;,\; \sigma_{f(i)} \right)$$

are continuous. The lemma applied to the function ψ , gives again a fixed point $\bar{\sigma} \in \Sigma_N$; $\bar{\sigma} \in \psi(\bar{\sigma})$. Such a strategy is an e^m -simple point.

(c) Let $\psi = U : \Sigma_N \to \Sigma_N$ be a multivalued function. For each $\sigma \in \Sigma_N$, the set $\psi(\sigma) \subseteq \Sigma_N$ is contractible. The graph of the function ψ ,

$$G_{\psi} = \{(\sigma, \tau) \in \Sigma_{N} \times \Sigma_{N} : \tau \in \psi(\sigma)\} =$$

$$= \bigcap_{i \, \in \, \mathbf{N}} \big[\{ (\sigma \, , \, \tau) \, \in \, \Sigma_{\mathbf{N}} \times \, \Sigma_{\mathbf{N}} \, : \, (\sigma \, , \, \tau_i) \, \in \, G_i \quad \text{and} \quad \min_{s_{e(i)} \, \in \, \mathbf{Z}_{e(i)}(\sigma)} \mathbf{A}_i(\tau_i \, , \, s_{e(i)} \, , \, \sigma_{f(i)}) \, = \, \mathbf{V}_i(\sigma) \big\} \cap$$

$$\cap \{(\sigma\,,\,\tau) \in \Sigma_{\mathbf{N}} \times \Sigma_{\mathbf{N}} : (\sigma\,,\,\tau_{e(i)}) \in G_{e(i)} \quad \text{ and } \quad \max_{s_{i} \in Z_{i}(\sigma)} \mathbf{A}_{i}\,(s_{i}\,,\,\tau_{e(i)}\,,\,\sigma_{f(i)}) = \mathbf{V}^{i}\,(\sigma)\}]$$

is closed, since G_i , $G_{e(i)}$ are closed and the functions $V_i(\sigma)$, $V^i(\sigma)$,

$$\min_{s_{e(i)} \in Z_{e(i)}(\sigma)} \mathbf{A}_{i} \left(\mathbf{\tau}_{i} \text{ , } s_{e(i)} \text{ , } \mathbf{\sigma}_{f(i)} \right) \qquad \text{and} \quad \max_{s_{i} \in Z_{i}(\sigma)} \mathbf{A}_{i} \left(s_{i} \text{ , } \mathbf{\tau}_{e(i)} \text{ , } \mathbf{\sigma}_{f(i)} \right)$$

are continuous on G_i and $G_{e(i)}$ respectively. Finally, the lemma applied to the function ψ , guaranteed a fixed strategy $\bar{\sigma} \in \psi(\bar{\sigma})$, which is e_m -and e^m -simple point. Q.E.D.

The continuity of the functions involved in the above results is related with the requirements on the functions A_i and Z_i .

LEMMA: Let us suppose that for each $i \in \mathbb{N}$, the graph G_i of the multivalued function Z_i is compact, the function $A_i : \Sigma_{\mathbb{N}} \to \overline{\mathbb{R}}$ and the multivalued function Z_i are continuous. Then for each $i \in \mathbb{N}$, the functions

$$\mathbf{B}_{i}\left(\tau_{i}\,,\,\mathbf{\sigma}\right) = \min_{s_{e(i)} \in \mathbf{Z}_{e(i)}\left(\mathbf{\sigma}\right)} \mathbf{A}_{i}\left(\tau\,,\,s_{e(i)}\,,\,\mathbf{\sigma}_{f(i)}\right)$$

are continuous in $(\sigma, \tau_i) \in G_i$,

$$\mathbf{C}_{i}\left(\mathbf{\tau}_{e(i)}\,,\,\mathbf{\sigma}\right) = \max_{\mathbf{s}_{i} \in \mathbf{Z}_{i}\left(\mathbf{\sigma}\right)} \mathbf{A}_{i}\left(\mathbf{s}_{i}\,,\,\mathbf{\tau}_{e(i)}\,,\,\mathbf{\sigma}_{f(i)}\right)$$

are continuous in $(\sigma, \tau_{e(i)}) \in G_{e(i)}$ and V_i and V^i are continuous in $\sigma \in \Sigma_N$. Proof: The multivalued function $Z_{e(i)}$ has a compact graph $G_{e(i)}$, since for all $j \in e(i)$ the multivalued function Z_j has a compact graph G_j . Let $(\sigma(k), \tau_i(k)) \to (\bar{\sigma}, \bar{\tau}_i)$ be a convergent sequence in G_i . Since $Z_{e(i)}(\sigma(k))$ is compact $s_{e(i)}(k) \in Z_{e(i)}(\sigma(k))$ can be chosen such that

$$\mathbf{A}_{i}\left(\tau_{i}\left(k\right),\,s_{e\left(i\right)}\left(k\right),\,\sigma_{f\left(i\right)}\left(k\right)\right)=\,\mathbf{B}_{i}\left(\tau_{i}\left(k\right),\,\sigma\left(k\right)\right);$$

by the compactness of the graph $G_{\epsilon(i)}$ it is possible to extract from the sequence $(\tau_i(k), s_{\epsilon(i)}(k), \sigma(k))$ a convergent subsequence $(\tau_i(k'), s_{\epsilon(i)}(k'), \sigma(k')) \rightarrow (\bar{\tau}, \bar{s}_{\epsilon(i)}, \bar{\sigma})$. By the continuity of A_i ,

$$\mathbf{A}_{i}\left(\tau_{i}\left(k^{\prime}\right),\,s_{e\left(i\right)}\left(k^{\prime}\right),\,\sigma_{f\left(i\right)}\left(k^{\prime}\right)\right)\rightarrow\mathbf{A}_{i}\left(\bar{\tau}_{i}\;,\,\bar{s}_{e\left(i\right)}\;,\,\bar{\sigma}_{f\left(i\right)}\right)\geq\mathbf{B}_{i}\left(\bar{\tau}_{i}\;,\,\bar{\sigma}\right).$$

Therefore, for any $\delta > 0$ there exists a m such that

$$B_i(\tau_i(k'), \sigma(k')) > B_i(\bar{\tau}_i, \bar{\sigma}) - \delta$$
 for all $k' > m$.

Since any sequence $(\sigma(k), \tau_i(k)) \to (\bar{\sigma}, \bar{\tau}_i)$ in G_i has a subsequence $(\sigma(k'), \tau_i(k')) \to (\bar{\sigma}, \bar{\tau}_i)$ with the mentioned property any sequence $(\sigma(k), \tau_i(k)) \to (\bar{\sigma}, \bar{\tau}_i)$ in G_i has the property.

Since $Z_{e(i)}(\bar{\sigma})$ is compact

$$s_{e(i)} \in Z_{e(i)}(\bar{\sigma})$$

can be chosen such that $A_i(\bar{\tau}_i, s_{e(i)}, \bar{\sigma}_{f(i)}) = B_i(\bar{\tau}_i, \bar{\sigma})$. By the lower–continuity of the function $Z_{e(i)}$ a sequence $s_{e(i)}(k) \to \bar{s}_{e(i)}$ exists such that $s_{e(i)}(k) \in Z_{e(i)}(\sigma(k))$ for all k. By continuity of the function A_i ,

$$\mathrm{B}_{i}\left(\tau_{i}\left(k\right),\,\sigma\left(k\right)\right)\leq\mathrm{A}_{i}\left(\tau_{i}\left(k\right),\,s_{e\left(i\right)}\left(k\right),\,\sigma_{f\left(i\right)}\left(k\right)\right)\rightarrow\mathrm{A}_{i}\left(\bar{\tau}_{i}\,,\,\bar{s}_{e\left(i\right)}\,,\,\bar{\sigma}_{f\left(i\right)}\right).$$

Therefore, for any $\delta > 0$ an m exists such that

$$B_i(\tau_i(k), \sigma(k)) < B_i(\bar{\tau}_i, \bar{\sigma}) + \delta$$
 for all $k > m$.

The function B_i is continuous at $(\bar{\tau}_i, \bar{\sigma}) \in G_i$.

The continuity of the functions C_i , B_i and V^i can be obtained in the same way. Q.E.D.

The above result implies:

COROLLARY: Let Γ_e be an e-generalized game such that for all $i \in \mathbb{N}$, Σ_i is a contractible polyhedron, the function A_i and the multivalued function Z_i are continuous.

- (a) A e_m -simple point of Γ_e exists, if for all $i \in \mathbb{N}$ and all $\sigma \in \Sigma_{\mathbb{N}}$ the set $S_i(\sigma)$ is contractible.
- (b) A e^m-simple point of Γ_e exists, if for all $i \in \mathbb{N}$ and all $\sigma \in \Sigma_{\mathbb{N}}$ the set $T(\sigma)$ is contractible.
- (c) A e_m -and e^m -simple point $\overline{\sigma} \in \Sigma_N$ of Γ_e such that $V_i(\overline{\sigma}) \leq A_i(\overline{\sigma}_i, \overline{\sigma}_{e(i)}, \overline{\sigma}_{f(i)}) \leq V^i(\overline{\sigma})$ for all $i \in N$, exists if for all $i \in N$ and all $\sigma \in \Sigma_N$ the set $U(\sigma)$ is contractible.

A very particular case arises when for each $i \in \mathbb{N}$ and each $\sigma \in \Sigma_{\mathbb{N}}$: $Z_i(\sigma) = \Sigma_i$ is convex, the function $B_i(\tau_i, \sigma) = B_i(\tau_i, \sigma_{f(i)})$ is quasiconcave in $\tau_i \in \Sigma_i$ for fixed $\sigma_{f(i)} \in \Sigma_{f(i)}$ and the function $C_i(\tau_{e(i)}, \sigma) = C_i(\tau_{e(i)}, \sigma_{f(i)})$ is quasi-convex in $\tau_{e(i)} \in \Sigma_{e(i)}$ for fixed $\sigma_{f(i)} \in \Sigma_{f(i)}$. Applying these conditions in the previous corollary a generalization of the main results given in [3] is obtained.

BIBLIOGRAPHY.

- [1] Debreu G., A Social Equilibrium Existence Theorem, & Proceedings National Academy of Science, U.S.A. », 38, 886-803 (1952).
- [2] EILENBERG S. and Montgomery D., Fixed point Theorems for Multi-valued Transformations, «Am. J. of Math. », 68, 214-222 (1946).
- [3] MARCHI E., Simple Stability of General n-Person Game. (To appear in «Nav. Res. Log. Quart. », June 1967).