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Chimica. —  Simple approximate evaluation of two-center Coulomb 
integrals. N ota di G iovanni C iullo e Claudio F u r la n i(#), presen
t a t a ^  dal Corrisp. G. S artori.

R iassunto. — In considerazione dell’attuale stato dei calcoli SCF—LCAO—MO per 
molecole inorganiche complesse, si propone una semplice approssim azione per gli integrali 
coulombiani bicentrici, basata sulla sostituzione di una delle due distribuzioni di carica in
teragenti con un appropriato sistema di cariche punti ormi. Alcune possibilità di migliora
mento sono contenute in questo semplice modello e sono discusse e valutate in una serie 
di confronti fra valori approssim ati e teorici di integrali su autofunzioni di Slater. La con
seguente ottimizzazione del calcolo perm ette una esattezza dell’1% per la maggior parte dei 
casi di interesse pratico.

Introduction.

M olecular problem s require knowledge of two-center Coulomb integrals 
even if sim plifying assum ptions, e.g. the W olfsberg-Helmholz approxim ation 
for non-diagonal elements [1], and the zero differential overlap concept [2], 
are adopted. E xact calculation of such integrals is feasible [3, 4, 5, 6, 7], but 
usually  ra ther com plicated, especially for high principal quantum  num bers 
n  of the involved A O ’s, so th a t even in organic problem s, where m ostly only 
n =  2 occurs, Coulomb integrals are often evaluated through roughly simplifi
ed models like the charged spheres model [8], or through semiempirical re la
tionships [2, 9, 10, 11 ]; another approxim ation, however not largely generali- 
zable, is the m ultipole m ethod by M ason and H irschfelder [12]. We are in ter
ested in self-consistent MO calculations of m etal complexes, where principal 
quantum  num bers 3 or 4 are frequently encountered; exact calculation of 
Coulomb integrals, although possible, becomes then so complicated, that it 
would take the largest p art of the calculative effort of the m olecular problem. 
On the other hand, MO m ethods for coordination com pounds employ, in 
their present status, several types of ra ther drastic approxim ations, and suffer 
also from uncertain ty  in the knowledge of the exact form of the atomic orbit
als, so th a t the high accuracy attainable from exact analytical calculation of 
Coulomb integrals is here probably  superfluous. W ith this in m ind, we propose 
here a m ethod for simplified evaluation of two-center Coulomb integrals for 
any n , based upon replacem ent of one, of the two interacting charge distribu
tions through an appropriate distribution of point charges, which does not 
probably  lower the overall accuracy of the current MO m ethods for complex 
inorganic molecules, and requires no more reckoning effort than  is needed 
for nuclear attraction integrals. (*) (**)

(*) Istituto di Chim ica Generale ed Inorganica, U niversità di Perugia, Italia.
(**) Nella seduta dell’ 11 marzo 1967.
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The model.

The Coulomb interaction between a charge distribution centered
on nucleus a and a charge element d?b =  <pf<pbdT belonging to a charge 
distribution tyb centered on nucleus b is given by:

( 0  d Ç i j  + * (0  ~  4 4 (0  d - i i .

The whole Coulomb interaction between the electronic charge and
the electron in is given as the result of the integration of (1) over the whole 
coordinate space of electron 2:

(2) (+Î 441+? +3) = J j  +Î ( 0  4 4 (0  —  ^  (2) + ,(2) dx2

this integration can be perform ed analytically, but we prefer instead to do 
it approxim ately, as a finite sum of terms, after replacing the continuous 
charge distribution through a discontinous distribution of point charges

(3) (+ î+ â |+ ?+ ,) =  2 ft-* (+ î|+ â>I

with

(3') (+?!+;) =
J r i ib

Clearly, the choice of the assum ed distribution of point charges qib is the 
basic feature of our model, and is essential for the validity of the proposed 
approxim ation.

Let us first discuss the,case of orbitals with nodeless radial parts, i.e. with 
charge radial density comprised under one “ bell ” only. T aking care to retain 
as far as possible the m ultipole character of the orbital charge distribution, the 
proposed fractionation of charge is, for different types of orbitals, as follows:

s'- 14 charges — i / i 4 e at the vertices of a tetracishexahedron;
p \  two charges —- i /2e  along the axis of the orbital; 
d  (except dz2 ): four charges — 1/4.Ç on the two appropriate axes at 

right angles;
d * \  two charges ■— 0.30755 e on the s-axis. plus four charges 

— 0.09623 e on the x  and y  axes.

In  all above cases, the fractional charges are supposed to lie all at the 
sanie appropriate distance from  the nucleus. A physically plausible choice for 
such a distance m ay be e.g. the m ean orbital radius ( r =  ” 0,5 for Slater

. v a
orbitals) or the radius of maximum density (Vmax =  nja for Slater orbitals);
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since this choice also has some influence on the validity  of the approxim ation, 
we shall discuss it later in more detail.

It is to be rem arked th a t the above charge fractionation preserves the 
m ultipole character of the orbitals in all cases except where the charge di
stribution is im properly assigned a Ó4~pole character like th a t of /-electrons; 
nevertheless, the accuracy of reproduction of the actual charge distribution 
turns out after all to be better for s than  for p  or d  orbitals, owing to the finer 
subdivision into fractional charges, and we shall take particu lar advantage of 
this favourable circum stance in the optim ization of our approxim ation, as 
will be discussed below.

If  the charge distribution <\)b has any radial nodes, we shall replace it, 
with obvious extension of the above model of fractionation, through as m any 
sets of point charges of the sym m etry above described as there are “ bells ” 
in the charge radial distribution curve, each set comprising the fraction of the 
electronic charge lying under the corresponding “ bell The point-charge 
approxim ation will be particularly  good here because of the finer subdivision; 
furtherm ore, it will be better the narrow er the “ bells ” are. By the same 
token, when dealing with nodeless charge distributions (one radial “ bell ” 
only), the approxim ation will be better the less the charge distribution is 
expanded; if therefore a Coulomb integral between two nodeless orbitals 
and is to be calculated by our approxim ation, it will be m ore convenient to 
replace the less expanded one through point charges, except possibly when 
the m ore expanded of the two orbitals is of s—type, since the better fractiona
tion of «s*—charge distributions, according to the proposed model, can overcome 
the disadvantages arising from the point-charge sim ulation of the broader 
of the two charge distributions. In  any case, the point-charge approxim a
tion obviously works better the larger the internuclear distances are; we 
shall discuss below the possible occurrence of lower limits of applicability 
of the point-charge model.

E v a l u a t io n  o f  t h e  i n t e g r a l s .

In  our approxim ation, the essential step in the calculation of a Coulomb 
integral is the evaluation of the integrals (3'), having the form of a nuclear 
attraction integral. and <\>a can in principle be any  kind of atom ic orbitals, 
i.e. hydrogenic, S later-type, SCF type or else, but we shall deal here in larger 
detail with the case of nodeless Slater orbitals (radial part R ni =  (2 a )^ + 0-5).
• [(2 n) !] —°-o r n -1 eXp ( _  aF), r  in a.u.), since they represent a very simple 

type of charge distribution where the general aspects of our model can be 
m ost easily exemplified and discussed; on the other hand, SCF orbitals are 
often expressed through linear combinations of Slater orbitals [13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24, 25]; so their use in integrals (3') can be reduced 
again to the calculation of integrals of the same type, but w ith Slater radial 
parts.
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Since the fractional charges qib do not in general lie on the axes of the 
functions or , it is not convenient to evaluate (3') in elliptic coordinates; 
instead, we use polar coordinates centered on nucleus a, and expand 1/74*3 
in series of surface harm onics according to:

(4) n b

00 +/£
2 . 2k=0 '

{k—I m' \ )\ r < k T>\m' \ / (\ \ -nk'l / o n
Ì_k {k +  I tri I ) ! r >(*+i) Pk (C0S ^  Pk (cos ^

• exp [imr (91 —  9-3)] .

Expansion (4) allows useful group-theoretical simplifications: nam ely only 
those term s of (4) which belong to the identical representation of the sym m etry 
group of the distribution of the qib s, or contain the same representation among 
their reduction products, give non-vanishing contributions to (3); further 
simplifications arise in the calculation of group Coulomb integrals in complex 
molecules, when sum m ing (3) over all atoms surrounding a . By the use of the 
proposed model, we can therefore fully exploit the possibility of group theore
tical aids in the com putation of interatom ic Coulomb integrals. We notice by 
the w ay th a t the present type of reasoning closely follows the basic ideas of 
the crystal-field model.

Confining ourselves to the case where and are real S later orbitals of 
the sam e n  and same angular part, we obtain after inclusion of (4) into the 
expression of the integrals (3'):

(5)

0  I -o  =

( A  ! A) =

( f i x  ! f i x )

(fiy I fi'y) =

(dz2 I dzï) — 

(dxz j  dx )̂ —

(dyz j dy^) — 

(dx2—y2 j dx2

(dXy i  dXy) =

Io ib +  — (3 COs2 &ib ---- 0  12 ib5 w

Io^ — ~  (3 COS2-9-^— 1) h a  +  — sin2 cos 2 cp;412l-* 

-  (3 cos2 — 1) I2 a — A  sin2 ̂  cos 2 <p,-* I2rtIo^ To

h a  , 7

: Ion +  — I2 '— 3 sin20-!ä (cos2 <pw +  1)] I2,-b +

• ( I —  7 cos2 &,*) —  j -  cos4 § ti +  A  cos2 A* — — h n

■- Ion +  — [3 sin2 (cos 2 <p(>—  1) +  2] \ 2ib +  cos 2 y* sin2 ^
C .  _ T _

IO ' IO

Io n +  y  (3 cos2 8y* —  1) h  ib +  ^  (3 5 cos4 %b
T

Î4 A * —  30 COS2 8ya +  3) lu b  

A  cos 2 (pib sin2 4^  •

(7 cos2 —  1)— — COS4 +  — cos2 $Y t ---fi-6 lb 7 lt> 14J 14 ib

/ )  =  Io.>— y  (3 COS2 I) l2,i +  ( - c o s 4^ - | c o s 2#,.j +
I

56 ~

— — sin4 &,A cos 4 24 tò ^

: Io ib’---- J  (3 COs2 ^ib

I4 ib

>2 S-vA —  1) hib +  COS4 $ ib ■— ^  cos2 IE3 +  ^5 +

4- — sin' 
^  24

l4 cos 4 oiòy . Ui



4o 6 Lincei -  Rend. Sc. fis. m at. e nat. -  Vol. X L II -  marzo 1967

where:

ha h (»« R<i) -   ̂S " ì j +CLm

2^ + 1)
+  l ^ ) T exP(“ 2 X '>

V  (__ T\v (2» « + ^ ;  — ï ; v ) - ( 2» a— /ê— i ; - i ; v )  v (2 « „ -v - l>  ,
A   ̂ ( L . 2 ) ( v + 1) x *'* +v =0

+ Y <-■)’ i2,,: + ^ : ;v) x i ; - - - “
v =  2 » —-è — 1 ( - 2 ) '(v + 1)

with — ocm R ^ , =  2—— and equal to the distance between the
point charge qlb and the nucleus a.

Quite analogous formulas can be easily derived for the case na =j= n a . 
fig. I shows the curves of

h  {na,v.a ,v.a,R#)

ccm K x y x + i)
<xm J

against for some k  and na.
Before passing to illustrate the results of some actual calculations carried 

out with the application of formulas (3) and (5), we w ant to discuss briefly the
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physical meaning of the terms in (5), together with some additional possibili
ties of improving the proposed approximation without requiring any more 
involved calculations than those of nuclear attraction integrals already em
ployed in formulas (5).

As is evident from (5), all Coulomb integrals (<\>a | <j4) contain a term
2  9a Io (na , cq , oc( , R representing the electrostatic interaction of the point

i
charges qib with the monopole of the charge distribution ; for orbitals, 
this is the only non-vanishing term. Terms with k >  o represent interactions 
of the qib ’s with the higher multipoles (of order 2 /  of the charge distribution 
4b'jb; they are presumably smaller and often vanish, e.g. the last terms in 
the expressions for p x or py in (5), with k =  2, containing cos 2 <p,.Ä, vanish 
if the system of the point charges qib has at least a C4 axis along the internu- 
clear axis.

According to (3) and (5), the said monopole interaction term is expressed
as:

(6) 2 — a» 2  Çn exp (— 2 X ib) /  (X,-4)
* ib Ì

where /  (X ib) is a polynomial of X a and i/X,-4. Since the sum over the index i 
replaces, in our approximation, integration over the whole volume of the 
charge distribution of electron 2, the first term of (6) represents the point-

charge approximation of / ^4 (2) dq (2) aT2 ; we can then calculate the exact
' l a

value of the latter integral according to the appropriate formula of type (5), 
after merely interchanging indexes a, b, 1 and 2, and replace the first term 
of the approximate expression (6) through its exact value. This leads in 
general to a significant improvement in the accuracy of the whole Coulomb 
integral, provided the first term of (6) is large with respect to the second one, 
as it is usually the case, since the second term of (6) tends to zero when the point 
charges qtb tend to be external, or at least to lie on the tail of the charge distri
bution of electron 1. However the same procedure is not applicable,
when one of the point charges qib falls very close to the nucleus a\ then the 
absolute values of both terms of (6) tend to infinite for X ib o, while their 
difference remains finite and is still a good approximation to the value of the 
monopole interaction; under such circumstances, clearly an improvement in 
the first term alone would make the overall result worse.

Furthermore, turning to the case cca — <x'a, the monopole interaction term 
corresponds to the integral | <$, where ']ias is an j-type orbital, centered 
on nucleus a, and having the same n and a as this integral, which is part of 
all integrals ( \ <Jif), can be evaluated according to optimization rules found 
for tjhe integrals (si | <J>f), e.g. taking advantage of the better approximation for 
the charge distribution s% and then approximating .

Referring hereafter to the case <xa=a.'a, we shall discuss below, with regard 
to the above problems, the limits of validity and the optimal conditions for our 
point-charge model. We compared, in some selected cases, exactly calculated
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values of Coulomb integrals with the approxim ate ones, m aking use of the 
different possibilities discussed above, in order to decide w hat param etrization 
procedure ensures the best agreement. We perform ed such a comparison 
for some cases where num erical tables or at least m aster formulas for exact 
calculation of the Coulomb integrals were given in the literature, nam ely 
m ostly for n a-=nh=  2 [26] and also for a few integrals involving na =  nb =  3 
w ith the restriction aa =  <xb [6]. The final conclusions as to the optimal 
procedure, emerging from the com parison between approxim ate and exact 
Coulomb integrals w ith n =  2, can be m ade valid also for higher quantum  
num bers n, provided w e replace, in the expressions given below for the validity
limits of different approxim ations, a of the considered Slater orbital through

2 oc . .0C2 =  . This extensional m ethod has been checked for the quantum  num bers
n  =  2 and 3.

W e present here a concise list of the results for the m ost relevant cases 
and illustrate them  by a few num erical examples; a m ore am ple and detailed 
description and discussion of all calculations, whose results are epitomized 
below, will be given elsewhere.

Results.
(a) sa — sb Coulomb interaction.

Optim ization of the point-charge approxim ation requires th a t the less 
expanded of the two orbital charge distributions, nam ely the one with sm aller r 
(hereafter indexed b), be approxim ated by point charges. T he distance of 
the point charges from the nucleus is better set equal to rb, except if Ra$ >  

when rmaXj3 gives slightly better results. Substitution of the 
first term  of (6) by its exact value always im proves the approxim ation, unless 
one of the point charges falls too close to the nucleus a (i.e. in this case, unless 
X2ib =  oc2æ R ^ <  1.4S for any of the z’s), as discussed in the preceding sec
tion; if such is the case with rb but not with rmâX}b, use of rmaic,b and substitution 
of the first term  of (6) gives better results th an  use of rb w ithout substitution; 
if substitution w ith the use of f b is possible, this procedure yields the best 
solution. Following the above rules for optimization, the agreem ent between 
exactly, and approxim ately calculated Coulomb integrals is better than  1 % . 
T able I shows some characteristic examples of the above case.

(b 1) — sb Coulomb interaction =J= s; radial p a r t o f sb equally or less
expanded than that o f ^a).

In  this case, s\ has to be approxim ated by point charges. The Coulomb 
integral is here a sum of two terms: a m onopole-m onopole interaction term  

I sf) which is again equivalent to an .r — ̂  Coulomb interaction, and will 
therefore be calculated according to the rules given above under (a), and 
the interaction of the higher m ultipoles of tyl w ith for which the best results 
are usually obtained with r max>3, except when the distance from any of the
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point charges to the positions of m axim um  density of is small; r b is nam ely 
to be preferred in a region of a2b (R ^  ■— RmaXl« — Rmax,3) grossly limited bet
ween — 1.3 and 1.65, the actual limits varying slightly with the type of the 
orbital <ba . A ccuracy is generally better than  2 % , but som ewhat poorer for 

— dG and ocÆ ='ocj at short internuclear distances.

Table I.

M  +1)

A R ab
Approxim ate methods

E xact
r r -f- sub

stitution Gnax
'"max+sub-

stitution

2 1.8 2 s 2.7 4.O .24988 .24995 .24992 .24995 .24994

» 1 .0 » 1.5 3-5 .26697 .26938 .26748 .27238 .27136

» 1.0 » 1-5 2.08 .35235 •35565 .26543 .36914 ■33236

3 -f 2 .0 3 J 2 .0 4-5 .22156 .22223 .221Ç0 .22220 .22204

» 1 .0 » 1 .0 5.0 .17981 .18178 .16837 >̂ .18633 .17918

» 4 .0 » 4 .0 0.5 •96371 .96643 I .07710 I . O3194 .92048

» 2 .0 » 2 .0 1 .6 •43832- •43944 .08246 .462IO — .16749

2 ^ 1 .0 2 s 1.5 0 .8 .41441 .41894 .52009 .443IO •38391

Note. — In  this and the other tables, all the quantities are expressed in a.u ., and the values of the integrals in 
best agreem ent with the theoretical ones are shown in italics.

(b 2) sa —  '\)b Coulomb interaction (d> =j= s\ radial p a rt o f tyb less expanded than 
that o f sa).

In  this case, it does not appear obvious which one of the two charge distri
butions si and i]4 has to be sim ulated through point charges since the finer 
subdivision of ^  into fractional charges contrasts with the sm aller expansion 
of ^  . If  we approxim ate sa , we m ust change just a little the rules under (b i), 
and calculate the m onopole-m onopole interaction by replacing, on the contrary, 
the less expanded charge distribution by point charges. A  survey of 
m any num erical examples has shown th a t the point-charge approxim ation of 
Sa gives better results if tyb is of p  ra ther than  d  type, and if n a , olq are not 
vastly  different from n b , oc$ ; on the contrary, it is more convenient to have 

replaced through point charges if the two principal quantum  num bers 
and the two radial exponents are very different, and if tyb is of d  ra ther than  
p  type. In  the latter case, the rules of param eter choice are slightly modified
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Table II.

tya 0Ca A ^at>

( €  4 f)

Exact

A pproxim ate methods

approxim ated s* approxim ated

r r  +  sub
stitution ^max ^max +  Sub-

stitution r
i

Tnax

2 S I .48 2 P o 1.48 5.O .2101 I .22516 .2 1 0 3 1 .21550 .21065 .21074 .21074
» » 2 At » .19445 .18947 .19451 • 19306 .19451 .1 9 4 4 2 .1 9 4 4 2
» I .O 2 P o I .O 2.7 .30654 •34587 — 1.83796 •35256 — .05578 .J0055 .31629
» » 2 -A » » .27879 .26541 .29562 .28685 .29120 .28650 .2 7 8 6 3

» I .O 2 P o 1-5 I .9 •37215 .38628 — 1 .30401 •39636 — .04788 .36690 ■ 36949
» » 2 P . » » •35840 •35386 •39553 •37254 •37905 .36582 •36452
» I .O 2 P o 1 .0 0 .8 •35778 .3 6 0 4 0 •45758 •39975 •34733 •34970 .35086
» » 2 At » » •35383 .34526 .42818 •38799 .38764 ■35039 .35001
» I .O 2  P o 1-5 2 .p8 .36277 .38004 — .41473 •38758 .11980 •35613 ■36239
» » 2 At » » •34714 •34174 .37762 •35894 .36526 •35540 ■ 35227
» 1.8 2 P o 2.7 4 .0 .25619 .26390 . 2 3 6 1 8 •25873 .25629 .25646 .25638
» » 2 At » » .24673 •24354 .2 4 6 9 6 .24579 .2 4 6 9 6 .24665 24669

3 s 3 .0 3 P o 3-0 3-5 .29979 .32114 .2 9 9 9 3 .31098 .30009 .30028 .30021
» » 3 At » » .27842 .27105 ■ 2 7 H 5 .27472 ■ 27845 .27835 .27838
» » 3 Atu G » » .29759 .30186 .2 9 8 0 1 .29702 .29810 .29830 .29819
» » 3 du 71 » » .28938 .29214 .28945 • 29073 .28946 .2 8 9 4 2 .28943
» » 3 A. » » .27568 .27105 .27570 .27472 .2 7 5 6 9 .27560 .27563
» 2 .0 3 P o 2.0 1 .0 .49082 •50773 .41572 • 52867 .08515 .48102 .4 8 6 0 3
» » 3 A » » •47737 .46813 • 54490 •50545 .52366 •48431 .4 8 1 8 0

» » 3 A0  G » » •49559 .4 9 2 4 9 •55432 •51974 .34281 .48702 •48695
» » 3 A » » .48017 .49211 .54208 .52302 ■47899 .47884 •48307
» » 3 A » » .47667 .4 6 8 1 3 .52754 •50545 ■ 50630 .50662 .50144
» 1 .0 3  P o 1 .0 3-4 .22567 .23902 —4.50793 •24455 — .75806 .21968 .2 2 6 9 3
» » 3 At » » .20966 .20058 •22583 •2I349 •22313 .2 I 360 .2 0 9 9 8
» » 3 d

u  G » » .22251 .2 2 4 2 2 — 2.63580 •23259 — •33030 .25629 .21925
» » 3 A » » .21888, .22562 .2 2 1 3 6 .23470 .21191 .19189 .22263
» » 3 A » » .20736 .20058 .21747 .21349 .21478 •22457 .2 1 0 9 8
» 3-0 3 A 3-0 2.2 .47952 .56159 ■43895 •5357I •47254 .4 8 5 6 0 .48967
» » 3 A » » .42209 .40130 .42510 •4134I •42499 .4 1 9 4 9 •41745
» » 3 A ̂ a » » •47359 .49989 .4 6 8 4 2 .48864 .48904 .48072 .48627
». » 3 ^Lat » » .45156 .46408 •45413 •46393 •45545 .45212 .4 5 1 8 2

*
» 3 A » » .41473 .40130 .41612 •41341 .4 1 6 0 0 .41207 .40925
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with respect to case (a), in such a w ay as to avoid, whenever possible, bringing 
any of the point charges qib too close to the positions of m axim um  density 
of si : rb is to be preferred to rmax,̂  whenever R ab <  (rmax,a +  if 4* is p G y dG

or da , or R ab<  rmSLK>a if 4* is p n or dh\ furtherm ore, replacem ent of
* K ib

through its exact value seems to have a less beneficial effect than  in the 
sa •—  sb and in the 4a —  sb case; it really im proves the approxim ation only if 
all X 2*$ ’s are relatively large ( >  3.5-4.5, depending on /  and X of 4$)> is 
practically  w ithout effect for sm aller X 2# ’s (.3.5-4.5 >  X 2# >  1 .5-34) and, 
as in case (a), is not applicable for even sm aller X 2# ’s. Following the 
above rules for optim ization, the accuracy is generally better than  2 % , 
except if =  p G , where the error m ay be somewhat larger, especially for

short distances ( < - ^  ) between one or two of the charges qib and the posi-
\ a2 b)

tions of m axim um  density  of (error 7-8 %). T able II shows some cha
racteristic examples for the cases (b 1) and (b 2).

(c) 4b —  4b Coulomb interaction (both 4 different fro m  s).

Point-charge approxim ation will be applied to replace the less expanded 
of the two orbital distributions (still indexed b). The complete integral 
(4a I 4l). can be separated into two terms: the interaction of the monopole of 4« 
with the point charge system sim ulating 4^, represented by  ^ q zb Io (na ,

i
nam ely by the point-charge approxim ation of (4L | 4 to be calculated 
according to paragraph  (b2), and the interaction of the higher multipoles of 
4a w ith the point charges qih\ in the latter term  r maX)b gives the better results, 
except fo r— i.6 < 0 2 j(R « * — Rmax,« — Rma*,j) <  o, when use of rb instead of n ^ fb 
gives slightly better accuracy. H ere too, the case of 4* =  p G is unfavourable for

short distances between one ( <  —  ; error 4 -6  % ) or two ( <  ~  ; error 10 % \
\ J \  a2 b J

of the charges q f  s and the positions of m axim um  density of 4a-
A n alternative w ay (c 1) to evaluate (4« | 4L m ay follow from the reduc

tion of 42 to basic charge distributions [3, 26] and results in the approxim ate 
relationship :

(7) ■ ( ^  I ** (+« I <!&) +  (i>i I —  (tyl I i>l)

where the three term s of the right-hand side can be evaluated according to 
(a) , (b 1) and/or (b 2). I f  e.g. both 4a and 4^ are 2 P orbitals, the two m em 
bers of eq. (7) are identical except for a term  corresponding to interactions 
of two basic charge distributions of type 3D , which should be added to the 
right-hand side, bu t which, by direct calculation, tu rns out to be negligible for 

I j  >  2; the same limit, expressed as R ab j| > 2 , was found

to hold for orbitals of higher n. This m ethod is particu larly  useful in case of 

proxim ity of one (always ( —-——— j >  2) or two of the point charges qib

27. -  RENDICONTI 1967, Voi. XLII, fase. 3.
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Table III.

a« A A

(+! 4‘f)

Exact
Approximate methods

r rmax formula (7)

2 A 1.0 2 A 1-5 0.8 .44184 .48670 .47636 .42623

2 A » 2 A » » -41351 •39951 .42492

2 A t » 2 A » » .40298 .38300 .38817 ■41323

2 A, » 2 A » » •43346 .48563 .47419 ■41I 93

2 A 1.0 2 A 1.5 3-5 •31794 •34156 •34137 ■31315

2 A » 2 A » » .29242 .28841 •29445 .29754

2 A, » 2 A » » .26149 .25716 .25726 .25880

2 A » 2 A » » .24729 ■24937 .24484 .24319

2 A 1.8 2 A 4.2 3.0 •37295 .37780 •37563 •37316

2 A » 2 A » » .36021 •35867 ■35987 .36128

2 A » 2 A » » .32060 •31939 ■3204? .32422

2 A » 2 ■̂r jt » » .31446 •31531 .31141 •31235

3 A 4.0 3 A 4.0 4.0 •24774 •24765 .24770 .24787

3 A » 3 A » » .24997 .24984 .230OI .25039

3 A » - 3 A » » .24881 .24870 .24877 .24898

3 A » 3 A » » .25112 .25089 .25IO7 .25161

3 A » 3 A » » .24366 •24377 .24368 .24341

3 A 2 .O 3 A 2.0 3-1 .29736 .29523 .29098 .29815

3 A » 3 A » » .30860 .30808 .30780 .31637

3 A » 3 A ̂ at » » .29800 .28990 .29037 .30694

3 A » 3 A » » •31319 • .30929 ■31377 .32096

3 A » 3 A » » .27917 .28024 •27799 .28045

3 A 3 ,o 3 A 3-0 0.7 .71685 .76222 • 753 n .68980

3 A » 3 A » » .70252 .69563 .69938 .71036

3 A » 3 -̂rrJt » » .68616 •63737 •63547 .71144

3 A » 3 A » » .71295 .67960 •69455 .70124

3 A » 3 A » » .70747 .70382 •69635 .69301
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to the positions of m axim um  density of $ ,  since it does not give even under 
the unfavourable condition errors larger than  5-6 % , whereas both the m e
thods (c) and (c 1), in their respective favourable cases, give results of com
parable accuracy (better th an  2 %). T able III shows some examples of 
cases (c) and (c 1).

Concluding remarks

The approxim ation here proposed gives results of fairly uniform  quality  
in all investigated cases; the attained accuracy becomes poor ( >  5 %) only 
for very low values of X ^ , i.e. for unusually  short internuclear distances or 
for unusually  expanded orbital charge distributions. In  most cases of p rac 
tical interest, nam ely for valence orbitals and for distances close to or larger 
than  the usual order of m agnitude of bond distances, the agreem ent between 
exactly and approxim ately calculated values of two-center Coulomb integrals 
is never worse than  1 % , the higher limit occurring w ith p  orbitals; from some 
cases where com parison w ith exactly calculated values could be m ade for 
both quantum  num bers n  =  2 and 3, we observed th a t the accuracy, at equal 
oc2 values, is even slightly better for the higher n, and we therefore reached the 
conclusion th a t the proposed extension to higher quantum  num bers n  of 
validity limits, actually  checked for n =  2, can be regarded as entirely  
feasible. W e thus confidently assume th a t our model can give results accurate 
within zb I % for any principal quantum  num ber in m ost cases of practical 
interest.
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