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Chimica. — Sumple approximate evaluation of two-center Coulomb
wntegrals. Nota di Grovannt Crurro e CrLaupio FurLant @, presen-
tata®” dal Corrisp. G. SARTORI.

RIASSUNTO. — In considerazione dell’attuale stato dei calcoli SCF—ILCAO—MO per
molecole inorganiche complesse, si propone una semplice approssimazione per gli integrali
coulombiani bicentrici, basata sulla sostituzione di una delle due distribuzioni di carica in-
teragenti con un appropriato sistema di cariche punti’ormi. Alcune possibilitd di migliora-
mento sono contenute in questo semplice modello e sono discusse e valutate in una serie
di confronti fra valori approssimati e teorici di integrali su autofunzioni di Slater. La con-
seguente ottimizzazione del calcolo permette una esattezza dell’1% per la maggior parte dei
casi di interesse pratico.

INTRODUCTION.

Molecular problems require knowledge of two-center Coulomb integrals
even if simplifying assumptions, e.g. the Wolfsberg-Helmholz approximation
for non-diagonal elements [1], and the zero differential overlap concept [2],
are adopted. Exact calculation of such integrals is feasible [3, 4, 5, 6, 7], but
usually rather complicated, especially for high principal quantum numbers
7 of the involved AO’s, so that even in organic problems, where mostly only
7 = 2 occurs, Coulomb integrals are often evaluated through roughly simplifi-
ed models like the charged spheres model [8], or through semiempirical reia-
tionships [2, 9, 10, 11]; another approximation, however not largely generali-
zable, is the multipole method by Mason and Hirschfelder [12]. We are inter-
ested in self-consistent MO calculations of metal complexes, where principal
quantum numbers 3 or 4 are frequently encountered; exact calculation of
Coulomb integrals, although possible, becomes then so complicated, that it
would take the largest part of the calculative effort of the molecular problem.
On the other hand, MO methods for coordination compounds employ, in
their present status, several types of rather drastic approximations, and suffer
also from uncertainty in the knowledge of the exact form of the atomic orbit-
als, so that the high accuracy attainable from exact analytical calculation of
Coulomb integrals is here probably superfluous. With this in mind, we propose
here a method for simplified evaluation of two-center Coulomb integrals for
any 7, based upon replacement of one of the two interacting charge distribu-
tions through an appropriate distribution of point charges, which does not
probably lower the overall accuracy of the current MO methods for complex
inorganic molecules, and requires no more reckoning effort than is needed
for nuclear attraction integrals.

(*) Istituto di Chimica Generale ed Inorganica, Universita di Perugia, Italia.
(**) Nella seduta dell’1t marzo 1967.
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THE MODEL.

‘The Coulomb interaction between a charge distribution ¥ {, centered
on nucleus & and a charge element dg, =¥}, dv belonging to a charge
distribution ¥, centered on nucleus & is given by:

0 dg, [ 45 () - 40 dm

The whole Coulomb interaction between the electronic charge ¢*¢’ and
the electron in ¢, is given as the result of the integration of (1) over the whole
coordinate space of electron 2:

@ WL = [ [V W GO 45 @) 4 dey

this integration can be performed analytically, but we prefer instead to do
it approximately, as a finite sum of terms, after replacing.the continuous
charge distribution ¢j §, through a discontinous distribution of point charges

Zis (Z 9 = I>1
©) W91 o) = Xgus (W | 4)

with
.

(3" W ) = J PE (1) —— (1) dry -

7148

Clearly, the choice of the assumed distribution of point charges ¢,; is the
basic feature of our model, and is essential for the validity of the proposed
approximation.

Let us first discuss the case of orbitals with nodeless radial parts, i.e. with
charge radial density comprised under one  bell ” only. Taking care to retain
as far as possible the multipole character of the orbital charge distribution, the
proposed fractionation of charge is, for different types of orbitals, as follows:

s: 14 charges —1/14e at the vertices of a tetracishexahedron;

p: two charges —1/2e along the axis of the orbital;

d (except d.): four charges —1/4e on the two appropriate axes at
right angles;

ds: two charges — 0.30755 ¢ on the z-axis plus four charges

— 0.09623¢e on the x and y axes.

In all above cases, the fractional charges are supposed to lie all at the
samle appropriate distance from the nucleus. A physically plausible choice for

such a distance may be e.g. the mean orbital radius (7= ”ﬁ%'s for Slater

orbitals) or the radius of maximum density (7m. = 2/e for Slater orbitals);
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since this choice also has some influence on the validity of the approximation,
we shall discuss it later in more detail.

It is to be remarked that the above charge fractionation preserves the
multipole character of the orbitals in all cases except s, where the charge di-
stribution is improperly assigned a 64-pole character like that of f—electrons;
nevertheless, the accuracy of reproduction of the actual charge distribution
turns out after all to be better for s than for p or & orbitals, owing to the finer
subdivision into fractional charges, and we shall take particular advantage of
this favourable circumstance in the optimization of our approximation, as
will be discussed below.

If the charge distribution {j {; has any radial nodes, we shall replace it,
with obvious extension of the above model of fractionation, through as many
sets of point charges of the symmetry above described as there are “ bells ”’
in the charge radial distribution curve, each set comprising the fraction of the
electronic charge lying under the corresponding ““ bell ”.  The point-charge
approximation will be particularly good here because of the finer subdivision;
furthermore, it will be better the narrower the “ bells ” are. By the same
token, when dealing with nodeless charge distributions (one radial  bell ”
only), the approximation will be better the less the charge distribution is
expanded; if therefore a Coulomb integral between two nodeless orbitals ¢,
and {, is to be calculated by our approximation, it will be more convenient to
replace the less expanded one through point charges, except possibly when
the more expanded of the two orbitals is of s—type, since the better fractiona-
tion of s—charge distributions, according to the proposed model, can overcome
the disadvantages arising from the point-charge simulation of the broader
of the two charge distributions. In any case, the point-charge approxima-
tion obviously works better the larger the internuclear distances are; we
shall discuss below the possible occurrence of lower limits of applicability
of the point-charge model.

EVALUATION OF THE INTEGRALS.

In our approximation, the essential step in the calculation of a Coulomb
integral is the evaluation of the integrals (3°), having the form of a nuclear
attraction integral. ¢, and {; can in principle be any kind of atomic orbitals.
i.e. hydrogenic, Slater-type, SCF type or else, but we shall deal here in larger
detail with the case of nodeless Slater orbitals (radial part R,; = (2 &)(+05).
[(2#)1]70% 71 exp (—ar), » in a.u.), since they represent a very simple
type of charge distribution where the general aspects of our model can be
most easily exemplified and discussed; on the other hand, SCF orbitals are
often expressed through linear combinations of Slater orbitals [13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]; so their use in integrals (3") can be reduced
again to the calculation of integrals of the same type, but with Slater radial
parts.
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Since the fractional charges ¢,; do not in general lie on the axes of the
functions ¢, or ¢/, it is not convenient to evaluate (3") in elliptic coordinates;
instead, we use polar coordinates centered on nucleus @, and expand 1/r;
in series of surface harmonics according to:

> (b—lm )} _r<t  plw] |
; i (e |m )], S G Py ' (cos d1) P, (cos 9 -

@

ylzé
- exp [im' (g1 — 9.5)] -

Expansion (4) allows useful group-theoretical simplifications: namely only
those terms of (4) which belong to the identical representation of the symmetry
group of the distribution of the ¢,;’s, or contain the same representation among
their reduction products, give non-vanishing contributions to (3); further
simplifications arise in the calculation of group Coulomb integrals in complex
molecules, when summing (3) over all atoms surrounding @. By the use of the
proposed model, we can therefore fully exploit the possibility of group theore-
tical aids in the computation of interatomic Coulomb integrals. We notice by
the way that the present type of reasoning closely follows the basic ideas of
the crystal-field model.

Confining ourselves to the case where {, and {, are real Slater orbitals of

the same 7 and same angular part, we obtain after inclusion of (4) into the
expression of the integrals (3):

(S | ‘SJ) == IOz’b

(218D = Tow+ 5 (3 059 — 1) L
(2| £2) = Lo — L (3 cos28;,— 1) Tis + -3_ > sin®9;, cos2 95 Tais
<Py| 2 = lpuy—— (3 cos?d;;— 1) Io,g,-——— sin2 9,5 cos 2 ;5 Loz

(do| ) = Toss+ — (300829, — 1) s + — (35 cost 9, — 30 cos2 95 + 3) Iy
7 28

(@ee | i) = Touis + ;IZ [2—3 sin® &y (cos 2 9 + D] Lz + H; oS 2 9 8in? D -

X - (1 — 7 cos? &) ———% cost ¥, + ~;~ cos? ¥ —_IIZ’ Iy

d,, | dye) = lois + [3 sin? &, (cos2 ¢;,—1) + 2] Lo + [:155 COS 2 Q5 8in2 &y -

. (7 cos? ¥ — 1) _Z cost ¥, + 7 cos? &, —:—4] Lyis
' I
(dar—ye | dusyr) = Tois— % (3cos? ¥y —1) Iosp+ <% cost &y — % cos? & + 6
—_ 2% sin* ¥, cos 4 @,‘é) |
, 5 I
(dyy| diy) = Lois— —;— (3 cos? ¥ — 1) Lo + (% cost &, — % cos? ¥ + % +

+ % sin® 9,5 cos 4 ‘Pib) Lyds
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where:
T \2m,+1
, ]/ o, o e ) (2ma+ £)!
= L) = LA e vE
Ly =1, C%a y %g s Og Rz&) “m( % ) | (2 na>!2k ng-ﬂ) +
(20 +1) 2n,—k—1
2\%"% (270a~+4;—1;9) — (2225— —1;—1;9) (20, —v—1)
JR— . —_— v \
—]—Wexp( 2Xzé>| ;0 (—1) (2D Xis'e +
2n,+k ’ ) - '
2na+rA;—1;y (2n,~v—1)
— 1)V X2 "a
+ v=2§-é-1 = (—2) D g J‘
. <xa + a;l .
with X, = a, Ry, o, = ——— and R;; equal to the distance between the
point charge g,, and the nucleus a.
[k (’711 Xg O o Ry) in au
N\ (2ng +1
«, /0(; 0’>( ng *+1)
05 "

1 k=0, n=2

2 k=2, n=2

3 k=0,n=3

0.4 4 k=2, n=3

5 k=4, n=3

6 k =0, n=4

7 k=2, n=24

0.3

0.2~

0.4

Fig. 1.

Quite analogous formulas can be easily derived for the case 7, ==7,.
fig. 1 shows the curves of
1z (14,04, 0‘;1 s Ri&)

Yo\ et D
gy \ ——

Xy

against X,; for some 4 and #,.
Before passing to illustrate the results of some actual calculations carried
out with the application of formulas (3) and (5), we want to discuss briefly the
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physical meaning of the terms in (5), together with some additional possibili-
ties of improving the proposed approximation without requiring any more
involved calculations than those of nuclear attraction integrals already em-
ployed in formulas (s).

~ As is evident from (5), all Coulomb integrals (§, ¥, | $5) contain a term

2 95 Lo (, , @, , oz, R;;) representing the electrostatic interaction of the point
-

charges ¢,, with the monopole of the charge distribution ¢, {,; for s, orbitals,
this is the only non-vanishing term. Terms with £> o represent interactions
of the g, ’s with the higher multipoles (of order 2#) of the charge distribution
Yy, §.; they are presumably smaller and often vanish, e.g. the last terms in
the expressions for p, or p, in (5), with £ = 2, éontaining cos 2 @,;, vanish
if the system of the point charges ¢;, has at least a C4 axis along the internu-
clear axis.

According to (3) and (5), the said monopole interaction term is expressed
as:

©® X mn Dgaoxp (—2X,) £ (X

z ib

where f (X ;) is a polynomial of X ; and 1/X,;. Since the sum over the index 7
replaces, in our approximation, integration over the whole volume of the
charge distrbution ¢} of electron 2, the first term of (6) represents the point-

charge approximation of / $s (2) ——; (2) d7y; we can then calculate the exact

value of the latter integral accordlng to the appropriate formula of type (3),
after merely interchanging indexes @, 4, 1 and 2, and replace the first term
of the approximate expression (6) through its exact value. This leads in
general to a significant improvement in the accuracy of the whole Coulomb
integral, provided the first term of (6) is large with respect to the second one,
as it is usually the case, since the second term of (6) tends to zero when the point
charges ¢,; tend to be external, or at least to lie on the tail of the charge distri-
bution ¢, ¢, of electron 1. However the same procedure is not applicable,
when one of the point charges ¢;; falls very close to the nucleus @; then the
absolute values of both terms of (6) tend to infinite for X,; — o, while their
difference remains finite and is still a good approximation to the value of the
monopole interaction; under such circumstances, clearly an improvement in
the first term alone would make the overall result worse.

Furthermore, turning to the case «, = «,, the monopole interaction term
corresponds to the integral (2, ] 43), where ¢, is an s—type orbital, centered
on nucleus g, and havmg the same 7 and «.as {,; this integral, which is part of
all integrals (y5 | 4)5) can be evaluated according to optimization rules found
for the integrals (s2 | 3), e.g. taking advantage of the better approximation for
the charge distribution s, and then approx1rnat1ng 2, .

Referring hereafter to the case a, = «;, we shall discuss below, with regard
to the above problems, the limits of validity and the optimal conditions for our
point-charge model. We-compared, in some selected cases, exactly calculated
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values of Coulomb integrals with the approximate ones, making use of the
different possibilities discussed above, in order to decide what parametrization
procedure ensures the best agreement. We performed such a comparison
for some cases where numerical tables or at least master formulas for exact
calculation of the Coulomb integrals were given in the literature, namely
mostly for 7n,=n,= 2 [26] and also for a few integrals involving #, =7, = 3
with the restriction o, = a, [6]. The final conclusions as to the optimal
procedure, emerging from the comparison between approximate and exact
Coulomb integrals with # = 2, can be made valid also for higher quantum
numbers 7, provided we replace, in the expressions given below for the validity

limits of different approximations, « of the considered Slater orbital through
og = 2—7:3. This extensional method has been checked for the quantum numbers

n =2 and 3.

We present here a concise list of the results for the most relevant cases
and illustrate them by a few numerical examples; a more ample and detailed
description and discussion of all calculations, whose results are epitomized
below, will be given elsewhere.

REsSULTS.
(@) s, —s; Coulomb interaction.

Optimization of the point-charge approximation requires that the less
expanded of the two orbital charge distributions, namely the one with smaller 7
(hereafter indexed &), be approximated by point charges. The distance of
the point charges from the nucleus is better set equal to 7,, except if R, >
> (Zmax,a7max,s), When 7max s gives slightly better results. Substitution of the
first term of (6) by its exact value always improves the approximation, unless
one of the point charges falls too close to the nucleus @ (i.e. in this case, unless
Xois = o9, Ry < 1.45 for any of the #’s), as discussed in the preceding sec-
tion; if such is the case with 7, but not with 7may,5, use of 7max,s and substitution
of the first term of (6) gives better results than use of 7, without substitution;
if substitution with the use of 7 is possible, this procedure yields the best
solution. Following the above rules for optimization, the agreement between
exactly.and approximately calculated Coulomb integrals is better than 19.
Table I shows some characteristic examples of the above case.

(b 1) $,— s, Coulomb interaction () ==s; radial part of s, equally or less
expanded than that of ).

In this case, 57 has to be approximated by point charges. The Coulomb
integral is here a sum of two terms: a monopole-monopole interaction term
(upﬁlxg) which is again equivalent to an s—s Coulomb interaction, and will
therefore be calculated according to the rules given above under (a), and
the interaction of the higher multipoles of qﬁ with 57 , for which the best results
are usually obtained with 7pax s, except when the distance from any of the
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point charges to the positions of maximum density of 2 is small; 7, is namely
to be preferred in a region of az; (R,; — Rmax,a — Ruax,s) grossly limited bet-
ween —1.3 and 1.65, the actual limits varying slightly with the type of the
orbital {,. Accuracy is generally better than 2 9, , but somewhat poorer for
Y, = d; and «, = «; at short internuclear distances.

TABLE .
(Y2 | 43)
9, o ¥, %, R, Approximate methods
Exact i} F4osub- | 7 max+ sub-

r stitution max stitution
2s 1.8 2¢ 2.7 | 4.0 .24988 .24995 .24992 .24995 24994
» 1.0 » 1.5 3.5 .26697 .26938 .26748 .27238 .27136
» 1.0 » 1.5 2.08| .3523% .35565 .20543 .36914 .33236
3s 2.0 3¢ 2.0| 4.5 .22156 .22223 .22190 .22220 .22204
» 1.0 » 1.0 5.0 .17981 .18178 .16837 4+ .18633 .I7918
» 4.0 » 4.0| 0.5 .96371 .96643 1.07710 1.03194 .92048
» 2.0 » 2.0 1.6 43832 | .43944 .08246 46210 | —.16749
25 1.0 2¢ 1.5 | 0.8 41441 41894 .52009 .44310 .38301

Note.—1In this and the other tables, all the quantities are expressed in a.u., and the values of the integrals in
best agreement with the theoretical ones are shown in italics.

(b 2) s, — Y, Coulomb interaction (Y == s; radial part of Y, less expanded than
that of s,).

In this case, it does not appear obvious which one of the two charge distri-
butions s> and ¢j has to be simulated through point charges since the finer
subdivision of s> into fractional charges contrasts with the smaller expansion
of §; . If we approximate s-, we must change just a little the rules under (b1),
and calculate the monopole-monopole interaction by replacing, on the contrary,
the less expanded charge distribution ¢}, by point charges. A survey of
many numerical examples has shown that the point-charge approximation of
s2 gives better results if §, is of p rather than & type, and if #,, «, are not
vastl}} different from 7z, , a;; on the contrary, it is more convenient to have
W reialaced through point charges if the two principal quantum numbers
and the two radial exponents are very different, and if ¢, is of & rather than
2 type. In the latter case, the rules of parameter choice are slightly modified
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TaBLE II.
(v 93)
Approximate methods
Val %o | 95 | % | R Exact U,)f approximated sz approximated
T 751:?1;—112;}:;1- " max 7:;::;;:’:01;1) 4 Vmax
25|1.48/22, 1!48 5.0 | .2I0II | .22516 .2I03I | .21550 .21065 .21074 | .21074
Yooy (2P| > » .194'45 18947 .19451 | .19306 .10451 19442 | .I9442
» | 1.0 25, 1.0 2.7 |.30054 | .34587 | —1.83796 | .35256 —.05578 | .30055 | .31629
» » (28,1 » » 1 .27879 | (26541 .29562 | .28685 .29120 | .28650 | .27863
» 1.0 |2p,11.5 |1.9 |.37215 .38628 —1.30401 | .39636 | —.04788 | .36690 | .36949
Yooy |2 0 » | .35840 | .35386 -39553 | -37254|  .37905 | .36582 | .36452
» |[T.0(2p,|1.0|0.8 |.35778 | .36040 .45758 | .39975 34733 | .34970 | .35086
» » o281 » » | .35383 | .34526 .42818 | .38799 .38764 | .35059 | .3500I
» 11.0 |20, 11.5 |2.08| .36277 | .38004 | — .41473 | .38758 211980 | .356013 | .36239
Yooy (2851 » | 34714 | .34174 .37762 | .35804|  .30526 | .35540 | .35227
» | 1.8 125, 12.7 (4.0 | .25619 | .26390 .256018 | .25873 .25629 | .25646 | .25638
» » |25 » » | .24673 | .24354 .24676 | .24579 24676 | .24665% 24669
35(3.0132513.0 (3.5 |.20979 | .32114 .29993 | .31098 .30009 | .30028 | .3002I
» » (3P| » » | .27842 | .27105% 27845 | 27472 27845 | .27835 | .27838
» » |3d5| » » | .29759 | .30186 .29801 | .29702 .29810 | .29830 | .29819
» y 13d, 1 » » | .28938 | .29214 .28045 | .29073 28046 | .28942 | .28943
» » |3dy| » » | .27568 | .27105 .27570 | 27472 .27569 | .27560 | .27563
» |2.0 |355(2.0|1.0|.49082 | .50773 .41572 | .52867 .08515 48102 | 48603
» » |32 » » | .47737 | .46813 .54490 | .50545 52366 | .48431 | .48180
» » |3d5| » » | .49559 | .49249 .55432 | .51974 .34281 .48702 | 48695
» » 3| » » | .48017 | .49211 .54208 | .52302 47899 | .47884 | .48307
» » |3ds| » » | 47667 | .46813 .52754 | .50545 .50630 | .50662 | .50144
» |1.0 |38, |1.0 |3.4 |.22567 | .23902 | —4.50793 | .24455 | —.75806 | .21968 | .22693
» » |38, » » | .20966 | .20058 .22583 | .21349 .22313 | .21360 | .20998
» » [3ds| » » | .22251 | .22422 | —2.63580 | .23259 | —.33030 | .25629 | .21925
» » 134, » » | .21888,| .22562 .22156 | .23470 .21191 .19189 | .22263
» » |3ds| » » | .20736 | .20058 21747 | .21349 21478 | .22457 | .21098
» 13.0 |32513.0 (2.2 | .47952 | .56159 -43895 | .53571 47254 | .48560 | .48967
» » |38, » » | .42209 | .40130 .42510 |..41341 42499 | .4T1949 | .41745
» » 13d,| » » | .47359 | .49989 .46842 | .48864 .48904 | .48072 | .48627
» » 13d | » » | .45156 | .46408 45413 | .46393 .45545 45212 | .45182
» » |3dg| » » | .41473 | .40130 41612 | .41341 41600 | 41207 | .40925
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with respect to case (a), in such a way as to avoid, whenever possible, bringing
any of the point charges ¢;; too close to the positions of maximum density
of s2: 7, is to be preferred to #max,s Whenever R,; < (#max,a + #max,s) if $5 is po , @

ot dy,or Ry<7max,. if Y5 is pp or ds; furthermore, Rl
i i
through its exact value seems to have a less beneficial effect than in the
s,— $; and in the ¢, — s, case; it really improves the approximation only if
all Xy ’s are relatively large (> 3.5—4.5, depending on / and A of {¢,), is
practically without effect for smaller Xy ’s (3.5—4.5=> X945 > 1.5-3.4) and,
as in case (a), is not applicable for even smaller Xg;’s..  Following the
above rules for optimization, the accuracy is generally better than 2 9,
except if ¢, = p,, where the error may be somewhat larger, especially for
short distances ( <~—) between one or two of the charges ¢;, and the posi-
%
tions of maximum density of s (error 7-8 %,). Table II shows some cha-

racteristic examples for the cases (b 1) and (b 2).

(©) b, — by Coulomb interaction (both § different from s).

Point-charge approximation will be applied to replace the less expanded
of the two orbital distributions (still indexed 4). The complete integral
(2 | {3) can be separated into two terms: the interaction of the monopole of {7
with the point charge system simulating qu§, represented by 3,5 Io (7, , o, Ry,

namely by the point-charge approximation of ({2, | {3), to be calculated
accordmg to paragraph (b2), and the interaction of the higher multipoles of
LIJa with the point charges ¢,;; in the latter term 7may,; gives the better results
except for — 1.6 < a3 (R,3— Rmax,o— Rumax,5) < 0, when use of 7, instead of 7y 5
gives slightly better accuracy. Here too, the case of §, = p, is unfavourable for
short distances between one ( < ;—9 ; error 4—6 %) or two (< ;—7 ; error 10 %)
25 25

of the charges g¢,;'s and the positions of maximum density of {?.

An alternative way (c 1) to evaluate ({2 | {7) may follow from the reduc-
tion of {2 to basic charge distributions [3, 26] and results in the approximate

relationship:
(7) <LI) I “]"b) (‘Ptz [ %:) + (‘I"a: l Lpb) (LPE.: ‘ "IJE:)

where the three terms of the right-hand side can be evaluated according to
(a) /(b 1) and/or (b 2). Ife. g. both {, and ¢, are 2 p orbitals, the two mem-
bers of eq. (7) are identical except for a term corresponding to interactions
of two basic charge distributions of type 3D, which should be added to the
right-hand side, but which, by direct calculation, turns out to be negligible for
R, (ﬁ%a_” > 2; the same limit, expressed as R, fi‘%—fiz’_ >2, was found
to hold for orbitals of higher 7. This method is particularly useful in case of

L oo L
proximity of one (always R,; (%24“)> 2) or two of the point charges ¢;;

27. — RENDICONTTI 1967, Vol. XLII, fasc. 3.
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TABLE III.
(w2 ¥3)
Ya o o, o, R, Approximate methods
Exact
7 " max formula (7)
24 1.0 2?0 1.5 0.8 .44184 .48670 .47636 .42623
25, » 2. » » 41351 .39951 41031 42492
24, » 25, » » .40298 .38300 .38817 .41323
28, » 2P, » » .43346 .48563 47419 41193
224 1.0 | 27, .51 3.5 31794 -34156 -34137 -3I315
25 » 2p,. » » .29242 .28841 .29445 .29754
28, » 28, » » .26149 .25716 .25726 .25880
28, » 24, » » -24729 .24937 .24484 .24319
28, 1.8 | 25, 4.2 | 3.0 .37295 .37780 .37563 .37316
25, » 24, » » .36021 .35867 .35987 .36128
24, » 25, » » .32060 -31939 .3204y .32422
28, » 25, » » .31446 .31531 .3I141 .31235
3dy 4.0\ 34, | 4.0| 4.0| 24774 724765 -24770 -24787
3 dy » 3d, » » .24997 .24984 .25001 .25039
35, » o | 3d, » » .24881 .24870 24877 .24898
374 » | 3ds » » 25112 .25089 .25107 .25101
3%, » 34y » » .24366 .24377 .24368 .24341
3ds 2.0 | 34, 2.0 3.1 .29736 .29523 .29098 29815
3dy » 3d; » » .30860 .30808 .30780 .31637
35, » 34, » » .29800 .28990 .29037 .30694
324 » | 3dy » » .31319 - -30929 31377 -32096
37, » 3ds » » .27917 .28024 .27799 .28045
3d; 3.0 /34, | 3.0 [0.7 .71685% 76222 75311 .68980
3dy » 34, » » .70252 .69563 .69938 - .71036
38, » 3d, » » .68616 .63737 .63547 7IT44
3% » 3d, » » .71295 .67960 .60455 70124
38, » 3dy » » .70747 .70382 .69635 .69301
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to the positions of maximum density of {2, since it does not give even under
the unfavourable condition errors larger than 5-6 %, whereas both the me-
thods (¢) and (c 1), in their respective favourable cases, give results of com-
parable accuracy (better than 2 9,). Table III shows some examples of
cases (c) and (c1).

CONCLUDING REMARKS

The approximation here proposed gives results of fairly uniform quality
in all investigated cases; the attained accuracy becomes poor (= 59%) only
for very low values of X, i.e. for unusually short internuclear distances or
for unusually expanded orbital charge distributions. In most cases of prac-
tical interest, namely for valence orbitals and for distances close to or larger
than the usual order of magnitude of bond distances, the agreement between
exactly and approximately calculated values of two-center Coulomb integrals
is never worse than 1 %, , the higher limit occurring with p orbitals; from some
cases where comparison with exactly calculated values could be made for
both quantum numbers z = 2 and 3, we observed that the accuracy, at equal
oz values, is even slightly better for the higher 7, and we therefore reached the
conclusion that the proposed extension to higher quantum numbers 7 of
validity limits, actually checked for 7 = 2, can be regarded as entirely
feasible. We thus confidently assume that our model can give results accurate

within 4 1 9, for any principal quantum number in most cases of practical
interest.

REFERENCES.

[1] M. WoLFSBERG and L. HELMHOLZ, « J. Chem. Phys.», 20, 837 (1952).

[2] R. PARISER and R.G. PARR, « J. Chem. Phys. », 21, 466 (1953); 21, 767 (1953).

[3] C.C. J. ROOTHAAN, « J. Chem. Phys.», 19, 1445 (1951); A. C. WAHL, P. E. CADE and
C.C.J. ROOTHAAN, «J. Chem. Phys.» 41, 2578 (1964).

[4] M. P. BARNETT and C. A. COULSON, « Phil. Trans. Roy. Soc. London », 4243, 221 (1951).

[5]1 M. KOTANI et al., 7able of Molecular Integrals, Maruzen Co. Ltd., Tokyo, 1955.

[6] G. GUIDOTTI and M. MAESTRO, « Ric. sci.», 33 (Z74), 253 (1963).

[7] E. GIANINETTI, S. PoLEZzO, E. RUscoNI, M. P. STABILINI and I. VANDONI, « Ann.
Chim. (Italy)», 54, 1316 (1964); 54, 1330 (1964).

[8] R: G. PARR, «J. Chem. Phys.», 20, 1499 (1952).

[9] R. PARISER, « J. Chem. Phys.», 24, 250 (1956).

[10] J. R. HOYLAND and L. GOODMAN, « J. Chem. Phys.», 36, 12 (1962).

[11] I. FISCHER-HYALMARS, in Molecular Orbitals in Chemistry, Physics and Biology, edited
by P.O. Léwdin and B. Pullman, Academic Press, New York and London, 1964.

[12] E. A. MASON and J.O. HIRSCHFELDER, « J. Chem. Phys.», 26, 173 (1957).

[13] F. W. BROWN, « Phys. Rev.», 44, 214 (1933).

[14] C. FROESE, « Proc. Cambridge Phil. Soc.», 53, 206 (1957).

[15] B. H. WORSLEY, «Can. J. Phys.», 36, 289 (1958).

[16] R. E. WATSON, « Phys. Rev.», 118, 1036 (1960); I19, 1934 (1960).

[17] L.C. ALLEN, « J. Chem. Phys.», 34, 1156 (1961).



414 Lincei - Rend. Sc. fis. mat. e nat. - Vol. XLII — marzo 1967

[18] E. CLEMENTI, C.C. J.. ROOTHAAN and M. YOSHIMINE, « Phys. Rev. », 127, 1618 (1962).

[19] J. W. RICHARDSON, W.C. NIEUWPOORT, R. R. POWELL and W. F. EDGELL, « J. Chem.
Phys. », 36, 1057 (1972).

[20] J. W. RICHARDSON, R.R. POWELL and W. C. NIEUWPOORT, « J:Chem. Phys.», 38, 796
(1963).

[21] L.M. SAcHS, « Phys. Rev.», 127, 1283 (1962).

[22] M. SVYNEK, « Phys. Rev.», 131, 1572 (1963).

[23] E. CLEMENTI and A.O. MCLEAN, « Phys. Rev.», 133, 419 (1964).

[24] E. CLEMENTI, « J. Chem. Phys.», 40, 1944 (1964).

[25] H. BascH and H. B. GRAY, « Theoret. Chim. Acta (Berl.)», 4, 367 (1966).

[26] C.C.]J. ROOTHAAN, Special Technical Report of the Laboratory of Molecular Structure
and Spectra, Univ. Chicago, 1955.



