Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

James William Peter Hirschfeld

A curve over a finite field, the number of whose points is not increased by a quadratic extension of the field, and sub-Hermitian forms

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 42 (1967), n.3, p. 365-367.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1967_8_42_3_365_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - A curve over a finite field, the number of whose points is not increased by a quadratic extension of the field, and sub-Hermitian forms. Nota di James W. P. Hirschfeld, presentata (") dal Socio B. Segre.

Riassunto. - Mediante semplici considerazioni geometriche si dimostra che la curva espressibile nel piano uguagliando a zero la somma delle potenze ($q+1$) me delle coordinate contiene lo stesso numero di punti sui campi di Galois di ordinate q^{2} e q^{4}, numero dato precisamente da $q^{3}+\mathrm{I}$. Il risultato viene poi esteso (da B. Segre) a forme sub-hermitiane arbitrarie.

Hermitian forms over finite fields have been the subject of recent papers by Segre [3] and Bose and Chakravarti [r]. For a suitable coordinate system, a Hermitian form in $\operatorname{PG}\left(r, p^{2 k}\right)$-the projective geometry of r dimensions over the Galois field $\operatorname{GF}\left(p^{2 k}\right)$--with index of singularity t can be written as

$$
\begin{equation*}
x_{0} \bar{x}_{0}+\cdots+x_{r-t} \bar{x}_{r-t}=0 \tag{I}
\end{equation*}
$$

where $\tau: x \rightarrow \bar{x}=x^{p^{k}}$ is the only involutory automorphism of $\operatorname{GF}\left(p^{2 k}\right)$; the form is non-singular if, and only if, $t=0$. In particular, the non-singular Hermitian curve H in the plane $\mathrm{PG}\left(2, p^{2 k}\right)$ has equation

$$
\begin{equation*}
x_{0}^{p^{k}+1}+x_{1}^{p^{k}+1}+x_{2}^{p^{k}+1}=0 . \tag{2}
\end{equation*}
$$

The curve H contains $p^{3 k}+$ I points, [3] p. 44. Every line of the plane is either tangent to H with ($p^{k}+\mathrm{I}$)-point contact or meets H in exactly $p^{k}+\mathrm{I}$ distinct points of the plane. Furthermore, Weil [4] has shown that the total number N of points on any algebraic curve satisfies the inequalities

$$
\begin{aligned}
\mathrm{L} & =q+\mathrm{I}-(n-\mathrm{I})(n-2) \sqrt{q} \leq q+\mathrm{I}-2 g \sqrt{q} \leq \mathrm{N} \leq \\
& \leq q+\mathrm{I}+2 g \sqrt{q} \leq q+\mathrm{I}+(n-\mathrm{I})(n-2) \sqrt{q}=\mathrm{U}
\end{aligned}
$$

where n is the order and g the genus of the curve. For $q=p^{2 k}$ and $n=p^{k}+\mathrm{I}$, $\mathrm{U}=p^{3 k}+\mathrm{I}$; so, as Segre ([3] p. 44) observed, the Hermitian curve H attains the upper limit U of Weil's estimate.

Segre [2] has also considered the number of points on primals in $\operatorname{PG}(r, q)$ with equations of the form

$$
\begin{equation*}
a_{0} x_{0}^{n}+\cdots+a_{r} x_{r}^{n}=\mathrm{o} \tag{3}
\end{equation*}
$$

where n divides q - I. In particular, the number of points on $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0$ over GF (q), where $q=p^{h}, h$ is even and $p \equiv-\mathrm{I}(\bmod 3)$, is shown ([2] p. 242) to be $q+\mathrm{I}-2(-\mathrm{I})^{h / 2} \sqrt{q}$; therefore, both over GF(4), the Her-
(*) Nella seduta dell'ıi marzo 1967 .
mitian case, and over $G F(16)$, the curve has 9 points. This phenomenon is repeated for the curve $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}=0$ over $\operatorname{GF}(q)$, where $q=q^{h}, h$ is even and $p \equiv 3(\bmod 4)$, which is shown ([2] p. 247) to have $q+\mathrm{I}-6(-\mathrm{I})^{k / 2} \sqrt{q}$ points; thus, over GF(9), the Hermitian case, and over GF(8I), the curve has 28 points.

The object of this Note is to show that the curve H^{\prime} with equation (2) in the plane $\operatorname{PG}\left(2, p^{4 k}\right)$ has exactly $p^{3 k}+\mathrm{I}$ points, as H does, i.e. all the points of H^{\prime} lie in a subplane $\operatorname{PG}\left(2, p^{2 k}\right)$.

Firstly, it seems reasonable to call the curve H^{\prime} in the plane $\operatorname{PG}\left(2, p^{4 k}\right)$ sub-Hermitian. It may be remarked that, if the proposed result is true, the number of points on H^{\prime} attains the lower limit L of Weil's estimate, i.e. for $q=p^{4 k}$ and $n=p^{k}+\mathrm{I}, \mathrm{L}=p^{3 k}+\mathrm{I}$.

To prove the result, take non-homogeneous coordinates $(\mathrm{X}, \mathrm{Y})=$ $=\left(x_{1} / x_{0}, x_{2} / x_{0}\right)$ in the plane and a point (A, B) on H^{\prime}. Thus, H^{\prime} has equation

$$
\begin{equation*}
\mathrm{X}^{p^{k}+1}+\mathrm{Y}^{p^{k}+1}+\mathrm{I}=0 \tag{4}
\end{equation*}
$$

and the tangent at (A, B) has equation

$$
\begin{equation*}
\mathrm{A}^{p^{k}} \mathrm{X}+\mathrm{B}^{\boldsymbol{p}^{k}} \mathrm{Y}+\mathrm{I}=0 ; \tag{5}
\end{equation*}
$$

this tangent meets H^{\prime} where
i.e.

$$
\begin{gathered}
\mathrm{X}^{p^{k}+1}-\mathrm{A}^{p^{2 k}} \mathrm{X}^{p^{k}}-\mathrm{A}^{p^{k}} \mathrm{X}+\mathrm{A}^{p^{k}\left(p^{k}+1\right)}=0 \\
(\mathrm{X}-\mathrm{A})^{p^{k}}\left(\mathrm{X}-\mathrm{A}^{p^{2 k}}\right)=\mathrm{o} .
\end{gathered}
$$

Substituting in (5), we obtain that the tangent meets the curve p^{k} times at (A, B) and once at $\left(\mathrm{A}^{p^{2 k}}, \mathrm{~B}^{p^{2 k}}\right)$. If it is not true that both $\mathrm{A}^{p^{2 k}}=\mathrm{A}$ and $\mathrm{B}^{p^{2 k}}=\mathrm{B}$, then the two points are different. In this case, the tangent to H^{\prime} at $\left(\mathrm{A}^{p^{2 k}}, \mathrm{~B}^{p^{2 k}}\right)$ meets the curve p^{k} times at the point of contact and once at $\left(\mathrm{A}^{p^{4 k}}, \mathrm{~B}^{p^{4 k}}\right)$, which, the field being $\mathrm{GF}\left(p^{4 k}\right)$, is our original point (A , B). Thus, the tangent to H^{\prime} at (A, B) is the same as the tangent at $\left(\mathrm{A}^{p^{2 k}}, \mathrm{~B}^{p^{2 k}}\right.$) and meets H^{\prime} at least $2 p^{k}$ times, giving a contradiction. Therefore, both $\mathrm{A}^{p^{2 k}}=\mathrm{A}$ and $\mathrm{B}^{p^{2 k}}=\mathrm{B}$, the tangent at (A, B) has $\left(p^{k}+\mathrm{I}\right)$-point contact with H^{\prime}, every point of H^{\prime} lies in a subplane $\mathrm{PG}\left(2, p^{2 k}\right)$ and the number of points on (2) is the same in $\operatorname{PG}\left(2, p^{4 k}\right)$ as in $\operatorname{PG}\left(2, p^{2 k}\right)$, viz. $p^{3 k}+\mathrm{I}$.

The sub-Hermitian curve H^{\prime} differs from the Hermitian curve H in that the $\mathrm{PG}\left(2, p^{2 k}\right)$ containing H has $p^{3 k}+\mathrm{I}$ lines which are $\mathrm{I}-$ secant to H and $p^{4 k}-p^{3 k}+p^{2 k}$ lines which are $\left(p^{k}+1\right)$-secant to H , whereas $\operatorname{PG}\left(2, p^{4 k}\right)$ has these lines as well as a further $p^{7 k}-p^{5 k}+p^{4 k}-p^{2 k}$ lines which are I-secant to H^{\prime} and $p^{8 k}-p^{7 k}+p^{5 k}-p^{4 k}$ lines which do not meet H^{\prime} at all.

Professor Segre has pointed out to me the following extension (including also an alternative proof) of the results above.

Let $\mathrm{H}=\mathrm{H}_{r, q}^{t}{ }^{(*)}$ be any Hermitian form of $\mathrm{S}_{r, q}$, having the speciality index $t(\geq 0)$. If P denotes an arbitrary point of the quadratic extension $\mathrm{S}_{r, q^{2}}$ of $\mathrm{S}_{r, q}$, but not of $\mathrm{S}_{r, q}$, then the conjugate P^{\prime} of P in that extension is again a point of $\mathrm{S}_{r, q^{2}}$, but not of $\mathrm{S}_{r, q}$. The points $\mathrm{P}, \mathrm{P}^{\prime}$ are distinct and their join is a line of $S_{r, q}, l$ say; hence (B. Segre [3], §29), either (i) l lies on H, or (ii) l meets H in $\sqrt{q}+\mathrm{I}$ distinct points of $\mathrm{S}_{r, q}$, or (iii) l meets H in a single point of $\mathrm{S}_{r, q}$ to be counted $\sqrt{\bar{q}}+\mathrm{I}$ times.

It follows that, if the above point P (and so also its conjugate point P^{\prime}) lies on the quadratic extension H^{*} of H, then (since H and H^{*} have the same order $\sqrt{q}+\mathrm{I}$) (i) necessarily must occur. Therefore,

The points of the sub-Hermitian form H^{*} are precisely those of the corresponding Hermitian form H and the points P of the lines l of H , if any, which are defined over the ground field $\mathrm{GF}\left(q^{2}\right)$ of H^{*}, but not over $\operatorname{GF}(q)$.

The numbers of points of either type are immediately obtainable from Segre [3], §§ 30-33, after having remarked that each of these lines l contains $\left(q^{2}+\mathrm{I}\right)-(q+\mathrm{I})=q(q-\mathrm{I})$ points P , while each P lies on just one l. In particular, if $t=0, r=2$, no such line l (hence no such point P) exists, and so the only points of H^{*} are now those of H .

Bibliography.

[r] Bose R.C. and Chakravarti I. M., Hermitian varieties in a projective space $\mathrm{PG}\left(\mathrm{N}, q^{2}\right)$, «Canad. J. Math.», I8, II6I-1182 (1966),
[2] Segre B,, Arithmetische Eigenschaften von Galois-Raümen I, «Math. Ann.», 154, 195256 (1964).
[3] SEgre B., Forme e geometrie hermitiane, con particolare riguardo al caso finito, «Ann. Mat. Pura Appl.», 70, 1-202 (1965).
[4] Weil A., Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann, Paris 1948.
(*) We use the notation of [3].

