ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GAETANO FICHERA

Sul miglioramento delle approssimazioni per difetto degli autovalori. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **42** (1967), n.3, p. 331–340. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_3_331_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell'11 marzo 1967
Presiede il Presidente Beniamino Segre

NOTE DI SOCI

Analisi numerica. — Sul miglioramento delle approssimazioni per difetto degli autovalori (*). Nota II (**) del Corrisp. Gaetano Fichera.

SUMMARY. — A second formula of the same kind as the formula considered in Nota I is proved.

Both these formulas are applied to a concrete numerical example and their results compared with approximations given by known methods.

2. In luogo di adoperare i numeri $\lambda_1^{(n)}, \dots, \lambda_n^{(n)}$, radici della (5), per l'approssimazione per eccesso degli autovalori del problema (2) (metodo di Rayleigh–Ritz), potrebbero invece usarsi le radici di quest'altra equazione secolare

(20)
$$\det \{(Lv_h, Lv_k) - \tilde{\lambda}(v_h, Lv_k)\} = 0 \qquad (h, k = 1, \dots, n)$$

la quale ammette soltanto radici reali e positive. Siano esse $\tilde{\lambda}_{1}^{(n)} \leq \tilde{\lambda}_{n}^{(n)} \leq \cdots \leq \tilde{\lambda}_{n}^{(n)}$. Infatti, definendo w_{h} come nel precedente paragrafo (cfr. Nota I), cioè $w_{h} = Lv_{h}$ e ponendo $\tilde{\mu}_{h}^{(n)} = (\tilde{\lambda}_{h}^{(n)})^{-1}$, si vede immediatamente che i $\tilde{\mu}_{h}^{(n)}$ sono tutte le radici dell'equazione

$$\det\left\{\left(\mathsf{G}w_{\mathtt{h}}\,,w_{\mathtt{k}}\right)--\tilde{\mu}\left(w_{\mathtt{h}}\,,w_{\mathtt{k}}\right)\right\}=\mathsf{o}.$$

- (*) In questa Nota II la numerazione delle formule, dei paragrafi e delle note a piè di pagina prosegue quella della Nota I dallo stesso titolo (pubblicata nel precedente fascicolo). Inoltre i simboli impiegati in questa Nota II, ed in essa non definititi, sono già stati definiti nella Nota I.
 - (**) Presentata nella seduta del 14 gennaio 1967.

Ripetendo il ragionamento fatto nel precedente paragrafo, relativamente alle radici delle equazioni (5) e (6), per quelle delle equazioni (20) e (21), si vede che: $\tilde{\lambda}_{k}^{(n)} \geq \tilde{\lambda}_{k}^{(n+1)}$ e $\lim_{n \to \infty} \tilde{\lambda}_{k}^{(n)} = \lambda_{k}$. Usando i $\tilde{\lambda}_{k}^{(n)}$ in luogo dei $\lambda_{k}^{(n)}$ si ottiene, in luogo della (10), la seguente limitazione inferiore per λ_{k} :

$$(22) \hspace{1cm} \lambda_{k} > \left\{ \frac{1}{(\tilde{\lambda}_{k}^{(n)})^{2}} + \vartheta_{1}^{2}(G_{\varrho}) - \sum_{k=1}^{n} \frac{1}{\tilde{\lambda}_{k}^{(n)}} \right\}^{-1/2} \; .$$

Occorre subito dire che non è conveniente usare i $\tilde{\lambda}_{k}^{(n)}$ in luogo dei $\lambda_{k}^{(n)}$, dato che riesce $\tilde{\lambda}_{k}^{(n)} \geq \lambda_{k}^{(n)}$ $(k = 1, 2, \dots, n)$ (4), talché anche la (22) verrebbe a fornire una limitazione inferiore non superiore a quella ottenuta usando la (10).

Tuttavia è opportuno, per motivi che illustreremo fra breve, dare un metodo per il miglioramento della (22) analogo a quello già considerato per la (10). Tale metodo verrà indicato come SECONDO METODO DI MIGLIORAMENTO. Esso viene fornito dal seguente

2º TEOREMA. – Siano verificate le ipotesi α) e β). Sia $\{v_h\}$ un sistema di vettori di V linearmente indipendenti e completo in V. Siano z_1, z_2, \dots, z_q ,

(4) Poniamo $\alpha_{hk} = (Lv_h, Lv_k)$, $\beta_{hk} = (Lv_h, v_k)$, $\gamma_{hk} = (v_h, v_k)$. Consideriamo i vettori $\eta^{(i)} \equiv \{\eta_1^{(i)}, \cdots, \eta_n^{(i)}\}$ $(i=1,2,\cdots,k-1)$ dello spazio vettoriale complesso C^n e diciamo $M^{(k-1)}$ la varietà lineare di C^n costituita dai vettori c di C^n verificanti la condizione $\sum_{k,k} \beta_{hk} c_h \, \overline{\eta}_k^{(i)} = o \, (i=1,\cdots,k-1)$. Poniamo

$$\sigma_{k}(\eta^{(1)}, \dots, \eta^{(k-1)}) = \max_{\mathbf{M}^{(k-1)} - \{0\}} \frac{\sum_{h,k}^{1,n} \gamma_{hk} c_{h} \bar{c}_{k}}{\sum_{h,k}^{1,n} \beta_{hk} c_{h} \bar{c}_{k}},$$

$$\tau_{\underline{k}}(\eta^{(1)}, \dots, \eta^{(k-1)}) = \min_{M^{(k-1)} - \{0\}} \frac{\sum_{h,k}^{1,n} \alpha_{hk} c_{h} \bar{c}_{\underline{k}}}{\sum_{h,k}^{1,n} \beta_{hk} c_{h} \bar{c}_{\underline{k}}}$$

Si ha $\lambda_k^{(n)} = \max\left[\sigma_k\left(\eta^{(1)}, \cdots, \eta^{(k-1)}\right)\right]^{-1}, \tilde{\lambda}_k^{(n)} = \max\tau_k\left(\eta^{(1)}, \cdots, \eta^{(k-1)}\right).$ I massimi essendo intesi al variare comunque di $\eta^{(1)}, \cdots, \eta^{(k-1)}$. Riesce $\frac{|\operatorname{L} v|^2}{(\operatorname{L} v, v)} \geq \frac{(\operatorname{L} v, v)}{|v|^2}$ e quindi (assumintesi al variare comunque di $\eta^{(n)}, \cdots, \eta^{(k-1)}$).

$$\text{mendo } v = \sum_{k=1}^{n} c_{k} \, v_{k} \bigg) \underbrace{\sum_{\substack{h,k \\ 1,n}}^{1,n} \alpha_{hk}^{-} \, c_{h}^{-} \, \bar{c}_{k}}_{\sum_{h,k}} \geq \underbrace{\sum_{\substack{h,k \\ 1,n}}^{1,n} \beta_{hk} \, c_{h}^{-} \, \bar{c}_{k}}_{\sum_{h,k}^{1,n} \gamma_{hk}^{-} \, c_{h}^{-} \bar{c}_{k}}. \text{ Ne segue } \tilde{\lambda}_{k}^{(n)} \geq \tau_{k}^{-} \, (\eta^{(1)}, \cdots, \eta^{(k-1)}) \geq \underbrace{\sum_{\substack{h,k \\ 1,n}}^{1,n} \gamma_{hk}^{-} \, c_{h}^{-} \, \bar{c}_{k}}_{\sum_{h,k}^{-} \gamma_{hk}^{-} \, c_{h}^{-} \bar{c}_{k}}.$$

q vettori $(q \ge 2)$ di V linearmente indipendenti. Riesce:

(23)
$$\lambda_{k} > \left\{ \frac{1}{\tilde{\lambda}_{k}^{(n)}} + \vartheta_{1}^{2}(G_{\varrho}) - \sum_{h=1}^{n} \frac{1}{\tilde{\lambda}_{k}^{(n)})^{2}} - \sum_{i=2}^{q} \tilde{\nu}_{i}^{(q)} \right\}^{-1/2} ,$$

essendo $\tilde{\lambda}_1^{(n)} \leq \cdots \leq \tilde{\lambda}_n^{(n)}$ le n radici dell'equazione (20) e $\tilde{v}_1^{(q)} \geq \tilde{v}_2^{(q)} \geq \cdots \geq \tilde{v}_q^{(q)}$ le q radici (tutte non negative) dell'equazione secolare

$$\det \left\{ (z_r, z_s) - \sum_{i,k}^{1,n} \gamma_{ik} (z_r, Lv_i) (Lv_k, z_s) - \tilde{\mathbf{v}} (Lz_r, Lz_s) \right\} = \mathbf{0}$$

$$(r, s = 1, 2, \dots, q).$$

Con γ_{ik} si è indicata la matrice $n \times n$ inversa della matrice $\{(L v_i, L v_k)\}$.

La dimostrazione è perfettamente analoga a quella del 1º teorema. Basta solo sostituire \tilde{G} con G ed il prodotto scalare $((\cdot,\cdot))$ con il prodotto scalare (\cdot,\cdot) , gli altri cambiamenti da fare risultando del tutto ovvî.

È assai utile osservare che l'applicazione del secondo metodo si presenta, in genere, più semplice rispetto a quella del primo, dato che i vettori z_r , impiegati nel secondo non debbono verificare la condizione $Lz_r \in V$, richiesta, invece, dal primo. Può inoltre accadere, e potrebbero darsi esempi, che la formula migliorata (23) fornita dal secondo metodo, pur migliorando in teoria solo la (22) che, in genere, è peggiore della (10), risulti, in taluni casi pratici, addirittura migliore della (11). Può anche accadere che in qualche caso la (23) risulti peggiore della (10).

3. Gli esempi numerici che considereremo sono relativi al seguente problema di autovalori:

$$(1 + \sin x)^{-1} v'' + \lambda v = 0$$
 , $v(0) = v(\pi) = 0$, $v(\frac{\pi}{2} - x) = v(\frac{\pi}{2} + x)$.

Tale problema, sebbene assai semplice e non suggerito da alcuna applicazione pratica, è stato tuttavia già considerato da diversi autori per sperimentare su di esso varî metodi di calcolo per gli autovalori (cfr. [1], [4], [6]).

Come spazio S assumeremo quello delle funzioni a valori complessi di quadrato sommabile in (o,π) , munito del seguente prodotto scalare

$$(u,v) = \int_{0}^{\pi} u(x) \overline{v(x)} (1 + \sin x) dx.$$

L'operatore L è così definito: $Lv = -(1 + \sin x) v''$ ed il suo dominio \mathfrak{D}_L è la varietà delle funzioni che hanno derivata prima assolutamente continua in (φ, π) e derivata seconda di quadrato sommabile in tale intervallo. La varietà V è l'insieme delle funzioni di \mathfrak{D}_L nulle agli estremi di (φ, π) e simmetriche rispetto al punto $\pi/2$. Diciamo $\varphi(x, y)$ la funzione di Green del problema: $-\varphi''(x) = f(x)$, $\varphi(\varphi) = \varphi(\pi) = \varphi(\pi) = \varphi(\pi) = \varphi(\pi)$. Il calcolo

della $\gamma(x,y)$ è del tutto elementare. Essa è funzione reale e simmetrica di x e y. Poniamo per ogni $u(x) \in S$

$$Gu = \int_{0}^{\pi} \gamma(x, y) u(y) (1 + \sin y) dy.$$

La G verifica l'ipotesi α), come immediatamente si constata. È altresì verificata l'ipotesi β), potendosi assumere $G_{\varrho} \equiv G$. Infatti $\vartheta_1^2(G)$ è esplicitamente noto, avendosi (cfr. [2] pag. 158):

$$\vartheta_1^2(G) = \int_0^\pi \int_0^\pi |\gamma(x, y)|^2 (1 + \sin x) (1 + \sin y) dx dy.$$

Per sperimentare i miglioramenti forniti nelle successive approssimazioni, sia del primo che del secondo metodo descritti in questo lavoro, sono stati applicati detti metodi facendo successivamente n=2, n=3, \cdots , n=15. Tanto applicando la (12) che la (23), è stato assunto q=n. Si è voluto cioè vedere quanto i metodi potevano dare calcolando unicamente autovalori di matrici di ordine n.

Come sistema v_h è stato assunto, nella approssimazione n—esima, quello delle funzioni $v_h(x) = \sin(2h-1)x$ $(h=1,2,\cdots,n)$. Le funzioni z_r del primo metodo sono state così scelte: $z_r = Gv_{n+r}$ $(r=1,2,\cdots,n)$. Infine per le z_r che intervengono nel secondo metodo si è preso $z_r = v_{n+r}$ $(r=1,2,\cdots,n)$.

Le seguenti tabelle relative alle varie approssimazioni (l'ordine dell'approssimazione si legge in testa ad ogni tabella) contengono nella prima colonna i risultati forniti dalla (10), nella seconda quelli dati dalla (11), nella terza quelli dati dalla (23) ed infine nell'ultima i valori per eccesso dati dal metodo di Rayleigh–Ritz, cioè risolvendo la (5). I numeri fra parentesi nella seconda e terza colonna indicano l'ordine fino al quale occorre spingere l'approssimazione perché, usando la formula non migliorata (10), si abbia un risultato non meno approssimato rispetto a quello fornito dal metodo di miglioramento impiegato.

Tutti i calcoli sono stati eseguiti presso il Centro di Calcolo della Facoltà di Scienze Matematiche, Fisiche e Naturali dell'Università di Roma, usando l'elaboratore elettronico I.B.M. 7040 attualmente in dotazione presso il Centro. L'autore desidera ringraziare la dott. M. Schaerf ed, in particolare, il dott. A. Fusciardi per la esecuzione dei calcoli.

I calcoli sono stati tutti condotti in quadrupla precisione. Nelle tabelle qui accluse i risultati forniti dall'elaboratore elettronico sono stati trascritti trascurando le ultime cifre di ogni numero, se trattavasi di una limitazione inferiore per il λ_k considerato. Anche per le limitazioni superiori [colonne (5)] sono state trascurate le ultime cifre, ma l'ultima cifra ritenuta è stata arrotondata per eccesso. Il numero complessivo delle cifre ritenute in ogni singola approssimazione è stato, volta a volta, fissato dall'esigenza di mostrare il progresso compiuto passando da una approssimazione alla successiva, nonché i miglioramenti ottenuti usando la (11) o la (23) in luogo della (10).

n = 2

	(10)	(11)	(23)	(5)
λ_1	0.5397	0.5398 (3)	0.5397 (2)	0.54033
λ_2	5	5.07 (3)	4.97 (2)	5 · 497

n = 3

	(10)	(11)	(23)	(5)
λ ₁	0.54015	0.54019 (4)	0.54018 (4)	0.54032
λ_2	5.28	5.32 (4)	5.3 (4)	5 · 449
λз	12.6	13.3 (4)	13.05 (4)	15.6

n = 4

	(10)	(11)	(23)	(5)
10				
λ_1	0.54024	0.54027 (5)	0.54026 (5)	0.5403189
λ_2	5 · 377	5.402 (5)	5.395 (5)	5.4487
λ3,	13.92	14.37 (5)	14.22 (5)	15.314
λ4	22.7	24.8 (5)	24.4 (5)	30.97

n = 5

1	(10)	(11)	(23)	(5)
λ_1	0.540282	o .540297 (6)	0.540296 (6)	0.54031887
λ_2	5.411	5.427 (6)	5.424 (6)	5.44865
λ3	14.54	14.85 (6)	14.79 (6)	15.3129
λ_4	25.29	27.04 (7)	26.68 (6)	30.1156
λ_5	34.6	39 · 5 (7)	38.9 (7)	51.8

n = 6

	(10)	(11)		(23)		(5)
λ_1	0.540297	0.5403	(7)	0.5403	(7)	0.540318862
λ_2	5 · 427	5 · 437	(8)	5.436	(8)	5.448639
λ3	14.85	15.06	(8)	15.03	(8)	15.3127
λ_4	27.02	28.36	(8)	28.18	(8)	30.1156
λ5	38.6	42.9	(8)	42.3	(8)	49.86
λ6	48	57	(8)	56	(8)	78.2

n = 7

	(10)	(11)		(23)		(5)
λ1	0.540305	0.540312	(9)	0.540312	(9)	0.540318861
λ_2	5 · 435	5.442	(9)	5.441	(9)	5.4486368
λ3	15.01	15.16	(9)	15.15	(9)	15.31263
λ_4	28.04	29.05	(9)	28.95	(9)	30.1152
λ_5	41.8	45.4	(9)	45	(9)	49.855
λ_6	53	61	(9)	60	(9)	74 - 55
λ ₇	63	78	(10)	77	(10)	111

n = 8

	(10)	(11)	(23)	(5)
λ_1	0.540309	0.540314 (10)	0.540314 (10)	0.5403188599
λ_2	5 · 439	5.444 (11)	5.444 (11)	5.4486364
λ3	15.11	15.22 (11)	15.21 (11)	15.31262
λ4	28.68	29.43 (11)	29.38 (11)	30.1151
λ_5	44.05	46.94 (11)	46.72 (11)	49.8536
λ ₆	58.4	65.7 (11)	65.1 (11)	74 · 53
λ7	69	83 (11)	82 (11)	104.3
λ_8	79	101 (11)	100 (11)	148

n = 9

	(10)	(11)	(23))	(5)
					1
λ_1	0.540312	0.540316 (1	2) 0.540316	(12)	0.5403188597
λ_2	5.442	5.445 (1	1) 5.445	(11)	5.4486363
λ ₃	15.17	15.25 (1	2) 15.24	(12)	15.312611
λ4	29.08	29.66 (1	2) 29.62	(12)	30.11501
λ ₅	45.56	47.87 (1	2) 47.73	(12)	49.8534
λ ₆	62.08	68.36 (1	2) 67.95	(12)	74.528
λ ₇	76	89 (1	2) 88	(12)	104.14
λ8	87	107 (1	2) 106	(12)	138.9
λ9	96	128 (1	3) 126	(13)	192

n = 10

	(10)	(11)		(23)		(5)
		1.				
λ_1	0.540314	0.540317	(14)	0.5403169	(14)	0.54031885962
λ_2	5 · 443	5.446	(13)	5.446	(13)	5.4486362
λ3	15.20	15.27	(14)	15.26	(13)	15.31261
λ_4	29.35	29.79	(14)	29.77	(14)	30.115
λ_5	46.61	48.46	(14)	48.37	(14)	49.85331
λ_6	64.83	70.1	(14)	69.82	(14)	74.527
λ_7	81.6	92.9	(14)	92.3	(14)	104.137
λ8	95	115	(14)	113	(14)	138.7
λ9	105	135	(14)	133	(14)	179
λ_{10}	115	157	(15)	155	(14)	243

n = 11

	(10)	(11)	(23)	(5)
λ_1	0.540315	0.5403175 (15)	0.5403174 (15)	0.54031885959
λ_2	5 · 445	5.447 (15)	5.447 (15)	5.44863618
λз	15.23	15.28 (15)	15.28 (15)	15.312609
λ_4	29.53	29.88 (15)	29.87 (15)	30.11499
λ_5	47 - 35	48.84 (>15)	48.78 (15)	49.85329
λ_6	66.88	71.28 (>15)	71.08 (15)	74.5269
λ7	85.8	95.78 (>15)	95.32 (15)	104.136
λ8	102	120 (15)	119 (15)	138.68
λ_9	115	143 (15)	142 (15)	178.2
λ_{10}	125	164 (>15)	162 (15)	224
λ_{11}	135	189 (>15)	187 (>15)	299

n = 12

	(10)	(11)	(23)	(5)
λ_1	0.540316	0.5403178	0.5403178	0.54031995059
λ_2	5.4459	5.4476	5.4475	0.54031885958 5.44863617
λ_3	15.25	15.29	15.28	15.3126087
λ_4	29.66	29.94	29.93	30.114988
λ_5	47.89	49.1	49.06	49.85327
λ_6	68.43	72.09	71.95	74.52682
λ_7	89.1	97.78	97 - 44	104.1355
λ_8	108	124	123	138.6793
λ_9	124	150	149	178.16
, λ ₁₀	136	175	173	223
λ ₁₁	146	197	194	274
λ_{12}	155	223	221	362

n = 13

	(10)	(11)	(23)	(5)
λ_1	0.5403167	0.5403181	0.540318	0.54031885957
λ_2	5.4465	5.4478	5 · 4478	5.44863616
λ_3	15.26	15.295	15.294	15.3126085
λ_4	29.76	29.98	29.98	30.114986
λ_5	48.29	49.28	49.25	49.853262
λ_6	69.60	72.66	72.56	74.52679
λ ₇	91.83	99.23	98.98	104.1354
λ_8	112,	127	127	138.679
λ_9	131	156	155	178.158
λ_{10}	146	184	182	222.6
λ_{11}	158	209	206	272
λ_{12}	167	231	229	329
λ_{13}	177	260	257	431

n = 14

	(10)	(11)	(23)	(5)
λ1	0.5403171	0.5403182	0.5402182	0.54007997-76
λ_2	5.4469	5.448	0.5403182 5.448	5.448636154
λ3	15.27	15.299	15.299	15.31260842
λ_4	29.83	30.01	30.01	30.1149854
λ_5	48.59	49.41	49.39	49.853259
λ_{6}	70.51	73.07	73 °C 444	74.52678
λ_7	93.94	100.2	100.1	104.13533
λ_8	116	129	129	138.6789
λ9	137	160	159	178.1574
λ_{10}	155	191	189	222.58
λ_{11}	169	219	217	271.92
λ_{12}	181	245	242	327
λ ₁₃	190	269	266	390
λ ₁₄	199	299	296	506

n = 15

	(10)	(11)	(23)	(5)
-				
λ_1	0.5403175	0.5403184	0.5403184	0.540318859562
λ_2	5.4472	5.4481	5.4481	5.448636152
λ3	15.28	15.3	15.3	15.31260838
λ4	29.88	30.03	30.03	30.114985
λ_5	48.82	49.49	49.48	49.853257
λ_6	71.21	73 · 34	73.32	74.52677
λ.	95.62	100.9	100.9	104.1353
λ8	120	131	131	138.6788
λg	143	163	163	178.1572
λ_{10}	163	195	195	222.571
λ_{11}	180	227	226	271.919
λ_{12}	194	255	255	326.21
λ13	204	281	281	386
λ_{14}	213	305	305	456
λ_{15}	223	338	338	588

BIBLIOGRAFIA.

- [I] COLLATZ L., Eigenwertprobleme und ihre Numerische Behandlung, «Chelsea Publ. Comp.» (1948).
- [2] FICHERA G., Linear elliptic differential systems and eigenvalue problems, «Lecture Notes in Mathematics No 8», Springer (1965).
- [3] FICHERA G., Approximation and Estimates for Eigenvalues, in «Numerical Solution of Partial Differential Equations», Academic Press (1966).
- [4] FICHERA G., Sul calcolo degli autovalori, «Simp. Int. sulle Applicaz. dell'Analisi alla Fisica Matematica», Cagliari-Sassari (1964), Ediz. Cremonese, Roma.
- [5] Trefftz E., Ueber Fehlerschätzung bei Berechnung von Eigenwerten, «Math. Annalen» Bd. 108 (1933).
- [6] WEINSTEIN A., On the Sturm-Liouville theory and the eigenvalues of intermediate problems, «Numerische Math.» Bd. 5 (1963).