Atti Accademia Nazionale dei Lincei

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GLORIA CIALDI, EGIZIO CORAZZA, CESARE SABELLI

La struttura cristallina della kernite, $Na_2B_4O_6(OH)_2 \cdot 3 H_2O$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **42** (1967), n.2, p. 236–251. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_2_236_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Cristallografia. — La struttura cristallina della kernite, Na₂B₄O₆(OH)₂· $_{3}$ H₂O ^(*). Nota di GLORIA CIALDI, EGIZIO CORAZZA e CESARE SABELLI, presentata ^(**) dal Socio G. CAROBBI.

SUMMARY. — The crystal structure of kernite, Na₂[B₄O₆(OH)₂] 3 H₂O has been determined by means of *x*-ray diffraction, using the Weissenberg equiinclination technique. The structure was solved from direct methods, giving the signs to 25% of the observed structure factors, and from a three-dimensional Fourier synthesis. Least squares refinement with 951 independent reflections yielded a reliability index of 0.083, based on the observed reflections only. The approximate positions of the hydrogen atoms could be deduced from stereochemical considerations.

The monoclinic cell has dimensions, a = 7.022, b = 9.151, c = 15.676 Å; $\beta = 108.8^{\circ}$. The space group is $P_{21/c}$. For a cell containing four units of Na₂[B₄O₆(OH)₂]·3 H₂O, the calculated density is $1.904 \text{ g} \cdot \text{cm}^{-3}$. The atoms within the square brackets are interconnected along the y axis so as to form an infinite chain complex $[B_4O_6(OH)_2]_n^{-2n}$. Both sodium atoms coordinate five oxygens according to a distorted trigonal bipyramid. The Na(1) and Na(2) coordination polyhedra are connected by a corner, and Na(1) shares an edge with its centro-symmetrical one, to form a four-membered group. The boron-oxygen chains, two per cell, are linked three-dimensionally by the Na polyhedra groups and by hydrogen bonds.

Lo studio strutturale della kernite si inquadra nel programma di ricerche sui borati già da tempo in corso presso questo Centro.

Già vari autori si erano interessati allo studio della kernite. Garrido [1] determinò le costanti reticolari ed assegnò il minerale al gruppo spaziale P 2/c. Minder [2], in uno studio riguardante alcuni borati di Na a vario grado di idratazione, ottenne per la kernite dei parametri reticolari leggermente diversi da quelli di Garrido e confermò il gruppo spaziale. Amoros [3] ipotizzò un modello strutturale basato su una catena costituita da bori tutti in coordinazione triangolare, sviluppantesi secondo l'asse y e costituita da gruppi alternati B₃O₆ e B₂O₃. I due atomi di sodio indipendenti avrebbero coordinazione 4 e 3. Christ e Garrels [4] hanno studiato comparativamente alcuni borati idrati di sodio e in base ad alcune ipotesi cristallochimiche hanno concluso che la kernite deve avere caratteristiche strutturali diverse da quelle del borace e della tincalconite: gli autori postulano per la kernite catene del tipo $[B_4O_6(OH)]_n^{-2n}$. Bray ed altri [5] contemporaneamente a Petch ed altri [6], in base a studi di risonanza magnetica nucleare, hanno constatato l'esistenza di due atomi di boro a coordinazione triangolare e degli altri due a coordina-

(*) Lavoro eseguito presso la Sezione di Firenze del Centro Nazionale di Cristallografia del C.N.R., Istituto di Mineralogia di Firenze. Mentre il presente lavoro era in corso di stampa è pervenuto il fascicolo del dicembre 1966 di «Science», Vol. 154, nº 3755; a pag. 1453 è riportata una nota preliminare sulla struttura della kernite, di cui è autore R. F. Giese, Jr. Il modello strutturale proposto da Giese è sostanzialmente lo stesso di quello del presente lavoro, tranne che per alcune differenze nella coordinazione degli atomi di sodio.

(**) Nella seduta dell'11 febbraio 1967.

zione tetraedrica, come già affermato da Christ. Ross e Edwards [7] hanno nuovamente determinato le costanti reticolari ed il gruppo spaziale che, in base alle estinzioni sistematiche osservate, risulta essere il P_{21}/c e non il P_2/c . I dati di questi autori, utilizzati anche per il presente lavoro, sono i seguenti:

a = 7,022 , $b = 9,151 \pm 0,002$, c = 15,676 Å , $\beta = 108^{\circ} 50' \pm 05'$.

La densità calcolata in base a questi valori, per quattro molecole nella cella elementare, è di 1,904 g cm⁻³, mentre i valori della densità misurata riportati da altri autori variano da un minimo di 1,908 g cm⁻³ ad un massimo di 1,953 g cm⁻³.

I cristalli utilizzati per il presente studio provengono dal giacimento di Coast Borax Mine, Boron, California (campione n. 16791 del Museo di Mineralogia dell'Università di Firenze). Il cristallo scelto per le riprese ai raggi X (λ (Cu K_{α}) = 1,5418 Å) era un sottile prisma allungato secondo l'asse y, scelto come asse di rotazione. Le intensità sono state registrate per mezzo di un apparecchio Weissenberg integratore, con il metodo dell'equiinclinazione e con la tecnica delle pellicole multiple. Sono state raccolte le intensità dei riflessi della stratolinee da $h \circ l$ ad $h \leq l$. Dei 1370 riflessi indipendenti compresi nella zona di sen ϑ/λ esplorata ne sono stati osservati 951 le cui intensità sono state apportate le correzioni per il fattore di Lorentzpolarizzazione e per l'allungamento delle macchie; date le piccole dimensioni del cristallo, non è stata apportata alcuna correzione di assorbimento ($\mu = 24,95$ cm⁻¹). Gli F² delle sei stratolinee sono stati convertiti in scala assoluta mediante il metodo di Wilson.

DETERMINAZIONE DELLA STRUTTURA.

L'indagine strutturale è stata affrontata mediante l'applicazione di un metodo statistico per attribuire i segni ai fattori di struttura. Questo metodo si basa sulla formula di probabilità di Cochran e Woolfson [8].

$$P_{+} = I/2 + I/2 \tanh \left[\left(\epsilon_{3}/\epsilon^{3} \right) \left| U_{h} U_{h'} U_{h+h'} \right| \right]$$

dove ε_3 ed ε sono costanti dipendenti dalla natura e dal numero di atomi presenti nella cella. Una volta calcolati i fattori unitari di struttura U, si costituiscono dei gruppi di tre riflessi, tali che gli indici h, k ed l del terzo risultino somma dei corrispondenti indici dei primi due, e tali che il prodotto dei rispettivi U, cioè U_k U_{k'} U_{k+k'}, dia in base alla formula sopra riportata, un valore di P₊ maggiore di una certa soglia. P₊ esprime la probabilità che il prodotto dei segni dei tre fattori di struttura sia positivo. Per la kernite è stata imposta una soglia del 95 %. Il numero di riflessi soddisfacenti a tale soglia di probabilità è risultato essere 254, pari circa al 25 % del numero totale dei riflessi osservati. In base alle combinazioni tra i tripletti i 254 riflessi sono risultati distribuiti in quattro gruppi: il primo costituito dagli invarianti di struttura e gli altri tre da famiglie di riflessi dello stesso tipo di paritàe disparità degli indici. A ciascuno di questi tre gruppi è stato imposto un segno arbitrario, determinando così univocamente l'origine. A 29 fattori di struttura non è stato possibile attribuire con certezza il segno; gli altri 225, cioè in numero sufficiente per ottenere una discreta risoluzione, sono stati introdotti nel calcolo di una Fourier tridimensionale.

I due massimi più forti apparsi in questa sintesi, posti fra loro ad una distanza tale da non poter creare alcun legame, sono stati attribuiti ai due atomi di sodio indipendenti. Intorno a questi erano presenti alcuni altri picchi di varia intensità: ai sette più intensi sono stati assegnati altrettanti atomi di ossigeno. L'indice R di disaccordo risultante dal contributo di questi nove atomi, che rappresentano più della metà del numero totale di elettroni presenti nella cella, era del 50%, mediamente su tutti gli strati, ed è stato ritenuto abbastanza indicativo circa l'attendibilità della ipotesi iniziale. È stata eseguita una seconda sintesi di Fourier che non ha dato indicazioni contrarie per gli atomi già attribuiti ed ha confermato alcune posizioni considerate dubbie, perché corrispondenti a massimi troppo deboli, sulla prima Fourier. Gli atomi di ossigeno restanti ed i quattro atomi di boro sono stati quindi attribuiti ad altrettanti massimi ed è apparsa chiara la configurazione del gruppo borico e dei poliedri del sodio. L'indice R è così sceso al 33%.

RAFFINAMENTO.

Le posizioni degli atomi sono state raffinate inizialmente per mezzo di due successive Fourier tridimensionali. Dalle coordinate ottenute dall'ultima sintesi l'indice R risulta del 17%. I fattori di temperatura, introdotti nei calcoli finora eseguiti, sono di 1,8 Å² per gli atomi di sodio ed ossigeno e di 1,5 Å^2 per gli atomi di boro, per analogia con strutture simili. I fattori atomici di diffusione usati nel calcolo dei fattori di struttura sono quelli di Cromer e Waber [9] per Na, O e B; per l'idrogeno quelli riportati dalle International Tables [10]. I fattori termici e le ultime coordinate sono stati utilizzati per un primo ciclo di raffinamento con il metodo dei minimi quadrati. Il programma di raffinamento, scritto da Albano ed altri [11] per l'elaboratore I.B.M. 1620, applica lo schema di pesaggio di Cruickshank [12]. Il calcolo dei minimi quadrati viene effettuato, risolvendo con l'approssimazione dei blocchi diagonali, la matrice che raffina le coordinate atomiche ed i parametri termici. Sono stati eseguiti quattro cicli di raffinamento che hanno portato l'indice R ad un valore di 8,8%. In base alla regola di Christ [13] è stato possibile distinguere tra atomi di ossigeno ed ossidrili. Gli ossigeni non legati agli atomi di boro appartengono a molecole d'acqua. Allo scopo di localizzare gli otto atomi di idrogeno è stata calcolata una Fourier delle differenze. Le posizioni in cui avrebbero dovuto trovarsi gli atomi di idrogeno, in base a considerazioni stereochimiche, cadono in regioni con densità elettronica positiva, ma scarsamente risolte. Sono state quindi assegnate agli idrogeni le posizioni ipotizzate. A questi atomi è stato attribuito un parametro termico di 6 ${\rm \AA}^2$ e, includendo il loro contributo nel calcolo dei fattori di struttura, si è proceduto ad un ultimo ciclo di raffinamento. L'indice R di disaccordo è sceso ad un valore finale di 8,3% per tutti i riflessi osservati.

Le coordinate di tutti gli atomi, con le relative deviazioni standard, sono riportate in Tabella I. I valori dei fattori di struttura osservati e calcolati sono elencati in Tabella II.

TABELLA I.

Атомо	x	σ (x)	у	σ (y)	Z	σ (z)	В	σ (B)
Na(1)	0,3142	0,0004	0,6341	0,0005	0,4277	0,0002	3,14Å2	0,06 Å2
Na(2)	0,1807	0,0004	0,9652	0,0004	0,6890	0,0002	2,24	0,05
Ο(1)	0,0350	0,0006	0,6497	0,0006	0,2911	0,0003	1,23	0,07
O(2)	0,0120	0,0006	0,4751	0,0007	0,3970	0,0003	1,56	0,08
$O(3)$ — H_2O	0,4619	0,0007	0,5624	0,0007	0,5849	0,0003	2,42	0,10
O(4)	0,0606	0,0006	0,9013	0,0006	0,2592	0,0003	1,33	0,07
O(5)	0,2674	0,0006	0,2938	0,0007	0,2685	0,0003	1,68	0,08
O(6)	0,2915	0,0006	0,4483	0,0007	0,7155	0,0003	1,86	0,09
O(7)—H ₂ O	0,3335	0,0007	0,8821	0,0008	0,4234	0,0003	2,49	0,10
O(8)	0,0649	0,0006	0,2279	0,0007	0,3626	0,0003	1,66	0,08
О(9)—ОН	0,4366	0,0007	0,7101	0,0007	0,2592	0,0003	2,37	0,10
О(10)—ОН	0,0849	0,0007	0,2941	0,0008	0,5101	0,0003	2,50	0,10
O(11)—H2O	0,2749	0,0007	0,0341	0,0007	0,5681	0,0003	2,62	0,10
B(1)	0,0543	0,0009	0,2662	0,0011	0,2692	0,0004	I,22	0,11
B(2)	0,0737	0,0010	0,4815	0,0012	0,6994	0,0004	1,46	0,12
B(3)	0,3692	0,0010	0,3128	0,0013	0,7418	0,0005	1,69	0,13
B(4)	0,0524	0,0010	0,3313	0,0012	0,4220	0,0005	1,60	0,12
H(I)	0,940		0,620		0,460		6,00	
H(2)	0,780		0,868		0,448		6,00	
Н(3)	0,700		0,485		0,980		6,00	
H(4)	0,540		0,417		0,075		6,00	
H(5)	0,760		0,395		0,135		6,00	1.
H(6)	0,615		0,490		0,377		6,00	
H(7)	0,445		0,370		0,365		6,00	
H(8)	0,690		0,275		0,240		6,00	

C 1		•	r · ·	7.	7 . •	7 77	77
(nordinate	atomiche	111	tragioni	dor	Inti	dolla	rolla
Coorainaic	woment	010	11 0000000	acc	00000	activa	cenu.

h	k	l	Fo	$\mathbf{F_{c}}$	h	k	l	Fo	Fc	h	k l	Fo	Fc
O	0 1 1 1 1 1 1 1 0 -1 1 -1 -1 -1 -1 -1 -1 -1 -1	2 4 6 1 8 0 2 4 6 8 8 6 4 2 0 8 6 4	79,7 66,6 16,6 13,9 22,9 31,2 28,2 14,2 16,9 8,0 21,5 16,1 28,4 46,7 80,8 27,2	$-92,2 \\ 70,4 \\ -135,8 \\ -17,4 \\ 19,4 \\ 29,2 \\ 25,8 \\ 13,2 \\ -15,8 \\ -8,0 \\ 5,8 \\ -21,0 \\ 13,4 \\ 28,4 \\ 43,0 \\ 90,4 \\ 28,9 \\ 90,4 \\ 28,9 \\ 90,4 \\ 90$	3	0	$ \begin{array}{c} -2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ -16 \\ -14 \\ -12 \\ -10 \\ -8 \\ -6 \\ \end{array} $	28,9 90,2 31,6 18,1 54,3 13,2 22,5 40,4 25,4 43,0	$\begin{array}{c} -27,8\\89,8\\34,0\\-16,4\\-51,0\\-6,2\\3,2\\-11,8\\13,4\\-4,2\\-23,8\\2,6\\5,2\\42,2\\27,2\\-44,6\end{array}$	6 7 8	$ \begin{array}{c} 0 & 10 \\ 0 & -16 \\ -14 \\ -12 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -2 \\ 0 \\ 2 \\ 4 \\ 0 \\ -14 \\ -12 \\ -10 \\ 0 \end{array} $	18,5 14,1 14,7 16,8 11,6 8,3 19,3 12,7	$ \begin{array}{r} 14,6 \\ -16,4 \\ -8,4 \\ 11,8 \\ 3,2 \\ 2,8 \\ -15,0 \\ -22,0 \\ -8,6 \\ -5,8 \\ 12,0 \\ 8,0 \\ -3,6 \\ -3,6 \\ -20,0 \\ -7,8 \\ -10,8 \\ \end{array} $
2		4202468024680864208642	37,3 41,3 75,6 25,6 59,1 25,1 7,5 27,1 50,6 15,8 22,6 33,2 24,6 75,6 28,1 5,4 11,5	$-39,8 \\ -48,6 \\ 85,2 \\ -29,0 \\ 58,6 \\ 21,4 \\ 4,0 \\ 29,0 \\ -52,0 \\ 18,4 \\ -3,0 \\ 5,0 \\ 15,4 \\ 0,4 \\ 0,4 \\ 0,4 \\ -22,0 \\ 27,8 \\ -27,2 \\ 78,4 \\ 27,6 \\ 6,6 \\ -8,4 \\ -8,4 \\ -8,4 \\ -8,6 \\ -8,4 \\ -8,6 \\ -8,4 \\ -8,6 \\ -8,6 \\ -8,4 \\ -8,6 \\ $	5		$ \begin{array}{c} -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ -18 \\ -16 \\ -14 \\ -12 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \end{array} $	15,5 78,8 39,6 48,1 14,9 25,8 10,1 17,3 9,9 10,1 21,9 43,7 27,3 17,4 14,7 46,1 30,9 27,2 41,0	$-17,4 \\ -82,6 \\ 36,6 \\ 48,0 \\ 3,6 \\ -16,4 \\ -23,0 \\ -6,8 \\ -13,4 \\ 8,8 \\ -9,2 \\ 21,2 \\ -44,0 \\ 3,0 \\ -29,6 \\ 16,8 \\ 14,0 \\ 41,4 \\ -31,6 \\ -27,6 \\ -12,2 \\ -44,2 \\ -44,2 \\ -44,2 \\ -44,2 \\ -44,2 \\ -8,6 \\ -12,2 \\ -44,2 \\ -44,2 \\ -8,6 \\ -12,2 \\ -44,2 \\ -12,2 \\ -44,2 \\ -12,2 \\ -44,2 \\ -12,2 \\ -44,2 \\ -12,2 \\ -44,2 \\ -12,2 \\ -44,2 \\ -12,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -12,2 \\ -12,2 \\ -14,2 \\ -12,2 \\ -14,2 \\ -12,$	0	$ \begin{array}{c} -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	20,3 9,1 27,8 12,2 39,5 15,7 28,9 13,6 55,0 27,9 15,8 46,7 9,7 9,9	$ \begin{array}{r} 18,0\\1,6\\-2,4\\7,0\\-28,4\\12,8\\37,2\\-2,6\\-16,2\\-31,0\\-14,0\\-55,6\\-29,6\\16,8\\47,2\\9,2\\-4,0\\1,8\\11,4\\-2,0\\-5,6\\-6,8\end{array} $
3	I I I I I I I I I I I I I I I I I I I	0 2 4 6 8 0 2 4 6 0 8 6 4 2 0 8 6 4	32,4 24,8 24,0 32,0 41,3 37,9 16,8 16,3 35,3 30,8 19,5 24,4 83,6 32,2	$\begin{array}{c} 33,0\\ -22,8\\ -19,0\\ -30,2\\ 40,6\\ 33,6\\ -16,4\\ 1,2\\ -12,8\\ -0,6\\ 4,6\\ -5,8\\ 34,4\\ 29,0\\ -19,6\\ 19,8\\ -88,0\\ 29,8 \end{array}$	6	0	$ \begin{array}{c} 6 \\ 8 \\ 10 \\ 12 \\ -18 \\ -16 \\ -14 \\ -12 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ \end{array} $	21,6 28,6 13,7 6,5 14,9 17,2 11,7 16,5 18,5 30,6 28,7 19,5 27,3	$ \begin{array}{r} 19,0\\ -7,4\\ 27,0\\ -12,4\\ 8,2\\ -12,2\\ -11,8\\ 9,0\\ 11,6\\ -18,2\\ -4,4\\ -32,6\\ -3,8\\ -4,6\\ 26,6\\ -16,8\\ 1,4\\ -29,8\\\end{array} $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15,4 11,2 14,2 17,9 16,0 12,2 32,3 18,6 12,1 39,2 34,5 24,8 9,4 44,4	$\begin{array}{c} -13,6 \\ -1,4 \\ 11,4 \\ -16,2 \\ -18,2 \\ 8,8 \\ 16,4 \\ -3,6 \\ -12,0 \\ 32,6 \\ 19,2 \\ 11,4 \\ 39,8 \\ -36,8 \\ -26,4 \\ 3,0 \\ -10,2 \\ -52,8 \end{array}$

TABELLA II.Fattori di struttura osservati e calcolati.

and the second second

h	k	l	Fo	$\mathbf{F_{c}}$	h	k l	Fo	$\mathbf{F_c}$	h	k	l	Fo	$\mathbf{F_c}$
I	I	3	28,1		3	I —19		1,8	4	I	. 5	,	3.0
		-2	11,2	-9,6			-0.6	4,8			6		6,0
		1	0,1 13.7	-16.6		-17 -16	18,0	10,0			7	20,7	-21,0
		I	24,2	26,0		-15		-2,4			9	2/,4	8,0
		2	61,1	65,2	•	-14	18,0	—16,6			IO		6,4
		3	37,7	39,4 		-13	16,1	-14,0 -3.6			II 12		5,2
		5	- 3, 3	<u> </u>		— <u>11</u>		-9,4			13		-3,2
		6	38,5	-35,8		10	31,1	-32,4			14	11,4	8,6
		7	20,7	29,0 -30,6		9	12,3	-24.0	5	I	-19		-2,4
		9	11,6	-12,4		7	22,6	-23,8			-17	12,4	10,6
		10		0,6		6	15,9	-14,0	1		—16	8,0	
		11	13.2	-3,0			59,2	04,4 54.8			15 14	19,0	-17,8
		13	10,4	-9,2			28,5	-26,8			-13	13,1	IO,4
		14		3,6		2	34,9	-31,8			—I2	9,6	-9,8
		15 16		-4,8		II	39,8	43,8			—II	12 7	-2,6
		17		1,6		I	5,6	6,6			9	13,7	0.2
_	_	18		4,0		2	74,4	-76,2			Ŕ		7,2
2	I	-19		2,4		3	49,4	-52,8			7	24,4	22,8
		-17		5,4		5	8,5	9,6			5	38.8	-38.4
	· ·	—16	16,4	—16,6		ě	46,2	-47,4			-4	J	,4
		—15 —14	17.0	6,4		7	18,7	-17,8			-3	<u> </u>	3,0
		-13	17,9	-15,2 -16,6		ç	14,0	12,2			—I	20,7	29,0
	20	—I2		—8,o		IC	12,9	9,2	1		· · · ·	16,5	18,0
		—11 —10	24,3	23,2		II	16,7	17,8			I	14,0	- <u>1</u> 3,4
		9	27,I	27,0		12	15,0	-16,4			3	10,4	-10,2 20.2
		Ŕ	10,3	-7,6		I4		-4,6			4	28,7	25,8
		<u> </u>	39,3	-37,2		15	5,3	6,6			5	15,3	—17,0
		5	16,4	-11,8	4		7.9				7		3,2
		-4	43,7	-43,4		-17	,	Ι,4	÷		8		5,0
		3	20,4 87.6	-22,0		16	25 4	6,0			9		3,4
		—I	47,3	47,6		—15 —14	45,4 19,0	-23,2 -15.4			II	11,1	
		0	62,4	-62,2		13		2,0	1.1		12		4,2
		. I	80,4	85,8		12	26.2	4,4	6	I	-18	7,4	9,0
		3	14,1	-14,0			20,3	20,2 —0.4			-17	10,2	10,8
		4	62,8	64,0		, · · · · · · · · · · · · · · · · · · ·	28,5	30,2			-15	20,7	
		5	31,1	-31,2	•-	<u> </u>	26,7	-27,8				10.0	0,0
		7	11,1				11.8	-16.2			-13 -12	32.0	
		8		0,6		— <u>-</u>	12,9	-14,8				32,5	
		9	22,3	-25,4			26,6	-24,4	1.		-10	12,2	8,6
		II	22,3 34,2	-21,4 36,4			15,3	-01,0 9.8			<u> </u>	16.3	24,0 —14.6
		12	19,8	-17,6	1.5	1	46,7	44,8			7	,,	
		13	17 4		. ÷.	(31,8	-30,8			6	14,9	13,0
		14	1/,4 7.3	-15,0		्र <u>।</u>	19,8	-18,0 10.8			—5 —1	18,0	16,4
		16	6,3	6,8			31,6	31,6			3	12,8	10,8
		17	9,9	-7,0		۲ <u>۲</u>	L.	—1,8	18.1		2		4,0

Continua:	TABELLA	II.

											-			
h	k	l	Fo	Fc	h	k	l	$\mathbf{F_o}$	F_{c}	h	k	l	Fo	$\mathbf{F_{c}}$
6	I	—I 0	10,8	—5,8 —10,4	0	2	7	43,5	-42,8 -76.0	2	2	<u>9</u> 8	23,0	26,4
		I 2 3	9,0 19,9	10,4 -18,2 7,8 2,6			9 10 11	5,7 43,6 26,8	6,6 46,6 -25,0			7 6 5	21,9 31,7 8,7	23,0 22,2 -30,4 -9,4
		567	21,9 9,8	-23,2 9,6 4,8			13 14 15	20,5 13,4	10,0 18,4 -9,6 -0,8			-4 -3 -2 -1	41,7 36,0 36,6	
7	I	9 —17 —16	7,4 8,3	-8,8 -1,0 9,0	, , , ,	2.	10 17 18 —19	4,4	0,2 2,0 2,0 3,8			0 1 2 3	42,7 17,5 13,1	-42,4 -15,6 -0,8 12,2
		-15 -14 -13 -12		-4,4 -0,8 4,2 -1,8			-18 -17 -16 -15	6,2 9,0 23,5	4,6 4,6 10,6 21,8			4 5 6 7	13,8 12,4 22,3	15,2 9,2 21,8 1,8
		—11 —10 —9 —8	18,5 24,5	-15,2 2,2 22,0 -4,4			-14 -13 -12 -11	40,2 14,0 12,5 29,6	$ \begin{array}{r}36,4 \\13,4 \\8,8 \\ 30,0 \end{array} $			8 9 10 11	8,6 11,3 24,2	7,0 7,4 11,4 20,8
		-7 -6 -5 -4	17,4 14,8 10,1	-16,4 -14,4 2,8 10,0			—10 —9 —8 —7	49,5 36,6 36,6	0,0 51,8 36,0 38,6			12 13 14 15		1,0 4,8 0,2 2,4
		3 2 1	20.6	-2,0 2,2 -6,6 20,0			6 5 4	25,7 65,5 19,2	29,0 -74,2 -20,2	3	2	16 19 18	10,7 7,0	
		1 2 3	11,1 10,9	10,4 10,2 7,8 8 4			2 1 0	15,6 3,7 11,6	14,6 -3,4 -11,2 7,6			-16 -15 -14	11,6 8,6	-2,0 10,2 -7,4
R		5 6 7	5,3	$-6,4 \\ -2,8 \\ 4,0 \\ 4,0$			2 3 4	7,7 101,3 7,4 44,8	-119,0 -4,6 48,0			-13 -12 -11 -10	20,9	-25,0 -7,8 -5,6 -0,8
0	1	-13 -12 -11	9,2	-4,0 -9,0 -5,6 3,4			5 6 7 8	12,5 56,8 30,4 23,2	-62,8 -30,2 24,8			9 8 7 6	7,6 23,8 49,4	5,4 24,4 —1,4 —46,6
		-10 -9 -8 -7	13,4 7,7	5,0 15,8 8,4 6,2			9 10 11 12	21,8 10,7	1,0 6,0 21,2 10,4			-5 -4 -3 -2	22,5 13,9 30,0 27,1	$ \begin{array}{r} 24,2 \\ -14,4 \\ -27,4 \\ 28,8 \end{array} $
		-0 -5 -4 -3	12,7	5,0 3,4 0,2 15,4			13 14 15 16	14,5 20,2	$ \begin{array}{r} 12,4 \\ -21,0 \\ -3,4 \\ 3,0 \end{array} $			—I 0 I 2	9,5 17,1 17,4 11,2	—11,8 —16,8 —19,0 13,0
		2 1 0 1	10,0 6,4	2,2 -10,6 -2,2 8,6	2	2 -	17 —19 —18 —17	9,4 10,4	$ \begin{array}{r} -2,0\\ 8,2\\ 3,6\\ -10,6 \end{array} $			3 4 5 6	28,3	-29,0 2,8 5,0
0	2	2 I 2 3	21,8 25,5 59,3	-2,0 -19,4 24,6 55,2		-	-16 -15 -14 -13	10,9 38,0 20_4	-6,4 0,2 -35,0 -18,2			7 8 9	9,7 14,0	4,0 10,4 11,4
		4 5 6	55,4 19,4 11,0	$\begin{array}{c} -53, -2 \\ -61, 2 \\ 16, 2 \\ -5, 4 \end{array}$		-	-12 	14,7	15,4 —0,2 —1,4			11 12 13	7,7	8,4 0,2 3,2

h	k	l	Fo	Fc	h	k l	Fo	Fc	h	k	l	Fo	Fc
3 4	2	$\begin{array}{c} 14 \\ 15 \\ -19 \\ -17 \\ -16 \\ -15 \\ -14 \\ -13 \\ -17 \\ -16 \\ -15 \\ -14 \\ -13 \\ -17 \\ -16 \\ -5 \\ -4 \\ -7 \\ -7 \\ -6 \\ -5 \\ -4 \\ -7 \\ -\mathbf$	5,5 8,0 8,8 8,3 23,4 33,1 23,0 15,0 24,5 29,7 19,1 16,2 8,2 15,0 24,5 29,7 19,1 16,2 8,2 15,4 18,0 30,6 8,1 19,6 7,0 13,3 8,1 7,2 9,5 7,6 6,7 21,5 7,8 6,7 21,5 7,8 6,7 27,7 26,3 16,0 8,5 10,0 8,5 10,0 8,8 9,8	$\begin{array}{c} 3,2\\ -6,6\\ 7,6\\ 7,8\\ -9,0\\ 8,8\\ 23,0\\ -4,6\\ 14,4\\ 24,2\\ -31,4\\ -22,6\\ 14,4\\ 24,2\\ -31,4\\ -3,0\\ 15,2\\ -8,8\\ -13,6\\ -19,2\\ 31,8\\ -9,2\\ 20,4\\ 6,2\\ 14,6\\ -3,2\\ -8,6\\ 8,2\\ -9,6\\ -5,8\\ 9,0\\ -6,8\\ -5,8\\ 9,0\\ -6,8\\ -5,8\\ 9,0\\ -6,8\\ -5,8\\ 9,0\\ -6,8\\ -4,0\\ 21,4\\ -4,0\\ 6,0\\ -5,8\\ 9,0\\ -6,8\\ 7,4\\ 0,2\\ -1,6\\ -26,8\\ 3,0\\ 25,4\\ -11,2\\ -13,6\\ -26,8\\ 3,0\\ 25,4\\ -11,2\\ -13,6\\ -28,8\\ 2,2\\ -11,0\\ -29,6\\ 27,0\\ 13,6\\ 11,8\\ -3,8\\ -9,6\\ 7,2\\ -9,2\\ -1,0\\ \end{array}$	5 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,6 5,7 10,5 19,9 13,2 15,9 16,9 27,1 11,2 28,3 11,4 15,5 6,6 11,2 9,6 10,0 11,3 21,3 19,1 9,9 8,9 5,5 6,6 7,1 4,7 1,5,7 1,4,7 1,4,7 1,4,7 1,4,7 1,5,	$\begin{array}{c} 4,4\\ -0,8\\ 17,2\\ -3,2\\ -2,2\\ 5,2\\ -5,6\\ 9,2\\ -0,6\\ -15,4\\ 13,4\\ -15,4\\ 13,4\\ -15,4\\ 13,4\\ -15,4\\ 13,4\\ -15,4\\ 13,4\\ -15,6\\ 4,2\\ 6,6\\ 28,8\\ 11,2\\ -28,8\\ -15,6\\ -15,6\\ -15,6\\ -15,6\\ -15,6\\ -15,6\\ -15,6\\ -28,8\\ 27,8\\ -22,6\\ -5,0\\ 29,8\\ 5,8\\ 2,2\\ 5,8\\ 1,4\\ 6,0\\ 3,2\\ 5,0\\ 7,6\\ 4,2\\ -2,2\\ 4,0\\ -16,2\\ 2,4\\ 2,0\\ -16,2\\ 2,4\\ 3,0\\ 0,2\\ -4,2\\ -8,0\\ 7,4\\ 5,8\\ -5,2\\ \end{array}$	8 0	3	$\begin{array}{c} -11 \\ -10 \\ -98 \\ -7 \\ -6 \\ -5 \\ -4 \\ -32 \\ -1 \\ 0 \\ 12 \\ 12 \\ 34 \\ 56 \\ 78 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ -19 \\ -16 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 \\ -11 \\ -10 \\ -11 $	7,7 8,2 7,2 6,1 12,9 11,2 4,9 48,44 44,8 12,0 49,52 26,2 36,4 21,9 8,6 15,1 18,2 9,7 11,2 7,6 5,7 7,4 15,3 6,2 15,0 20,1 11,8 12,9 11,2 7,6 5,7 7,4 15,3 6,2 15,0 11,2 7,6 5,7 7,4 15,3 6,2 15,0 11,2 7,6 5,7 7,4 15,3 6,2 15,0 11,2 7,6 5,7 7,4 15,3 6,2 15,0 11,2 7,6 11,2 7,6 11,2 7,6 11,2 7,6 11,2 7,6 11,2 7,6 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,3 12,3 11,2 11,3 12,3 11,2 12,0 11,2 12,0 11,2 12,0	$\begin{array}{c} -6,6 \\ -1,0 \\ 6,2 \\ 9,4 \\ -7,2 \\ 6,4 \\ 8,6 \\ -13,4 \\ -2,0 \\ 11,8 \\ -0,6 \\ 1,4 \\ 3,0 \\ 7,2 \\ -38,8 \\ -39,8 \\ -9,6 \\ -2,2 \\ -52,4 \\ -26,0 \\ 40,0 \\ 23,0 \\ 8,6 \\ -16,0 \\ -2,2 \\ -52,4 \\ -26,0 \\ 40,0 \\ 23,0 \\ 8,6 \\ -16,0 \\ -1,2 \\ 46,6 \\ -17,8 \\ -3,4 \\ -7,6 \\ -3,6 \\ -17,8 \\ -3,4 \\ -7,6 \\ -3,4 \\ -17,8 \\ 4,6 \\ -17,8 \\ -3,4 \\ -16,0 \\ 2,8 \\ -3,4 \\ -15,8 \\ 4,6 \\ 1,2 \\ 9,0 \\ -13,2 \\ -6,4 \\ -15,8 \\ 4,4 \\ -14,4 \\ -12,2 \\ -6,4 \\ -15,8 \\ 4,4 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -13,4 \\ -22,8 \\ -3,4 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -13,4 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -14,4 \\ -12,2 \\ -6,4 \\ -14,8 \\ -15,8 \\$

and the second of the

h	k	l	Fo	Fc	h	k	l	Fo	Fc	h	k	l	Fo	Fc
I	3	8 9 0 1 2	7,2 18,9 9,4 30,3	7,2 0,2 	3	3	-5 -4 -3 -2 -1	11,1 17,8 56,3	11,8 1,8 	5	3	-13 -12 -11 -10 -9	12,4 8,9 5,8 16,1	13,0 11,0 7,4 5,8 16,0
2		54567987	5,4 17,9 10,5 14,3 8,9	$ \begin{array}{r}8,6 \\20,0 \\ 10,4 \\ 14,5 \\8,8 \\ 0,0 \\ 4,2 \\ \end{array} $			I 2 3 4 5 6 7	57,3 8,4 40,6 23,2 9,7 28,6 5,3	$ \begin{array}{r} 40,2 \\ -9,0 \\ -38,0 \\ -24,2 \\ 3,8 \\ 7,0 \\ -30,4 \\ 3,6 \\ \end{array} $				41,0 18,5 13,7 15,2 5,5 36,2 42,6	$ \begin{array}{r} 45,2 \\ 3,8 \\ 17,6 \\ 14,4 \\ 12,8 \\ 2,4 \\ 36,8 \\ 44,6 \\ \end{array} $
		6 5 4 3 2 1 0	18,5 11,8 7,1 9,4	2,6 1,418,810,40,4 10,4 9,217,2			8 9 10 11 12 13 14	30,0 24,5 6,5 14,1	30,0 26,0 4,6 7,8 11,0 			0 1 2 3 4 5 6	7,9 19,6 14,3 40,3 31,7 8,0	$\begin{array}{c} 9,2 \\ -15,6 \\ 12,4 \\ 42,2 \\ 0,2 \\ -32,8 \\ 6,6 \\ 6 \end{array}$
		98 76 54 32	17,4 57,2 19,5 12,9 30,0 17,3 15,0 78,3	$\begin{array}{c} -17,0\\ 62,6\\ -19,0\\ 13,8\\ -31,4\\ -17,6\\ -16,2\\ -78,4 \end{array}$	4	3	$ 19 \\ -19 \\ -18 \\ -17 \\ -16 \\ 15 \\ 14 \\ 13 $	 3,9 4,9 8,1 7,3 20,7 	$ \begin{array}{r} -3,8 \\ 2,4 \\ 2,4 \\ 4,4 \\ 3,6 \\ -5,4 \\ 8,0 \\ -23,0 \end{array} $	6	3	8 9 10 11 	5,4 5,3 11,8	0,4 4,4 8,0 5,0 1,0 4,0 11,8 4,8
		-I 0 1 2 3 4 5	13,9 38,3 51,7 18,3 9,6 66,1 28,1	12,2 36,6 51,0 		-	-12 -11 -9 -8 -7 -6	25,9 18,2 31,3 34,6 41,9	5,4 $-18,4$ $-32,6$ $36,2$ $42,6$ $-4,0$			-14 -13 -12 -11 -10 -9 -8	6,2 7,2 15,4 12,2	3,4 3,4 -5,4 5,4 -17,6 3,2 13,8
	1	6 7 8 9 0 1 2	29,5 5,4 5,6 14,1 9,1 9,9	28,8 5,4 1,0 5,6 13,0 10,2 10,0			-5 -4 -3 -2 -1 0 I	7,8 12,7 9,8 27,1 30,4 21,0	$ \begin{array}{r}6,8 \\ 2,6 \\13,6 \\ -9,2 \\ 27,6 \\ 3^{1},4 \\21,0 \end{array} $			-7 6 5 4 3 -2 -1	13,8 20,8 32,8 20,5 31,1 11,1	$ \begin{array}{r} 15,4 \\ -0,8 \\ -18,8 \\ 34,2 \\ 21,0 \\ -34,8 \\ -7,8 \\ \end{array} $
3		3 4 5 6 8 7 6 5	6,5 8,7 7,6 5,4 13,0	0,0 6,6 -4,8 6,0 7,4 5,6 9,6 -7,0			2 3 4 5 6 7 8 9	11,7 29,3 9,8 32,2 22,1 27,8	$\begin{array}{r} -3,2 \\ 14,6 \\ 28,6 \\ -7,4 \\ -32,0 \\ -6,2 \\ 25,6 \\ 29,6 \end{array}$			0 1 2 3 4 5 6 7	17,8 15,5 16,7 5,8	$ \begin{array}{r} 17,4 \\ 16,2 \\13,6 \\ 6,6 \\ 0,2 \\7,2 \\1,0 \\6,8 \end{array} $
		4 3 2 1 0 9 8	16,9 30,3 10,4 15,2 14,7 22,4 15,3	$ \begin{array}{r} 18,0 \\ -29,8 \\ -12,6 \\ 13,8 \\ -15,8 \\ -21,8 \\ -15,6 \\ \end{array} $	5	3 -	10 11 12 13 	25,4 14,0 6,2 4,1 11,1 5,6	-27,4 -27,4 15,2 5,2 -5,2 10,0 -4,8	7	3	8 —16 —15 —14 —13 —12 —11	5,0 4,9 8,2 7,6	2,4 7,2 4,4 3,4
	· · · · · · · · · · · · · · · · · · ·	-7 -6	28,9 33,0	30,8 33,6		-	—15 —14	6,9	—1,8 4,8			—10 —9		—1,6 4,6

h	k l	F_{o}	F_{c}	h k	e l	Fo	Fc	h	k	ι F _o	Fc
7 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,5 10,3 6,5 16,2 4,5 5,6 6,2 14,2 8,5 7,7 7,0 6,0 9,2 12,7 11,4 23,5 38,3 57,3 27,9 35,8 34,3 26,3 18,4 11,5 13,5 12,2 11,4 6,7 6,7 13,5 12,2 11,4 6,7 6,7 13,5 12,7 17,0 10,1 22,3 24,1 19,5 19,3 22,9 5,2	$\begin{array}{c} -14,0\\ 2,0\\ 0,0\\ 10,8\\ -3,4\\ 7,8\\ -6,4\\ 2,6\\ 16,2\\ -0,6\\ 4,0\\ -0,2\\ -4,4\\ -10,8\\ -9,8\\ -6,0\\ 5,2\\ 13,2\\ -9,6\\ 0,8\\ 7,8\\ -6,0\\ 5,2\\ 13,2\\ -9,6\\ 0,8\\ 7,8\\ -6,0\\ 5,2\\ 13,2\\ -9,6\\ 0,8\\ 7,8\\ -6,0\\ 5,2\\ 13,2\\ -9,6\\ 0,8\\ 7,8\\ -5,8\\ 12,0\\ -5,8\\ 10,0\\ -12,2\\ 12,2\\ 12,2\\ 12,2\\ 2,2\\ 2,2\\ 2,2\\ 2$	I 4	$ \begin{array}{c} -6 \\ -5 \\ -3 \\ -3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	44,3 17,4 49,0 88,8 14,8 37,5 4,3 13,9 29,4 63,0 38,3 21,5 10,8 20,6 39,6 12,9 10,0 8,1 5,5 8,5 10,8 20,6 39,6 12,9 10,0 8,1 5,5 8,5 10,8 20,6 39,6 12,9 10,0 8,1 5,5 8,5 17,1 10,4 14,5 28,8 10,6 76,6 75,5 14,8 20,6 39,6 12,9 10,0 8,1 5,5 8,5 17,1 10,4 14,5 28,8 13,4 9,6 12,9 10,0 7,5 14,5 12,9 10,0 7,5 14,8 13,9 10,0 13,6 12,9 10,0 7,5 14,8 13,9 10,0 13,6 12,9 10,0 7,5 14,8 13,9 10,0 13,6 12,9 10,0 7,5 14,8 13,9 10,0 13,6 12,9 10,0 7,5 14,8 13,6 12,9 10,0 8,1 15,5 8,5 11,1 10,4 14,5 28,8 13,6 12,9 10,0 8,1 15,5 8,5 11,7 11,1 10,4 12,6 13,6 13,6 13,6 13,6 13,6 13,6 12,9 10,0 8,1 15,5 8,5 14,8 13,6 12,9 10,0 8,1 15,5 14,8 13,6 12,9 10,0 75,5 14,8 13,6 13,6 13,6 13,6 13,6 13,6 13,6 13,6	$\begin{array}{c} 44.4\\ -2.4\\ -16.2\\ 47.8\\ 85.4\\ 12,8\\ 31,8\\ -5.2\\ -16.0\\ 28,0\\ -63.2\\ -39,0\\ -21.6\\ 11,0\\ 10,2\\ 19,0\\ 40,6\\ 13,4\\ -2,0\\ 8,0\\ -21.6\\ 11,0\\ 10,2\\ 19,0\\ 40,6\\ 13,4\\ -2,0\\ 8,0\\ -2,4\\ 3,8\\ -18,0\\ 29,0\\ -2,4\\ 3,8\\ 28,8\\ -18,0\\ 10,2\\ 29,0\\ -2,4\\ 3,8\\ 28,8\\ -18,0\\ 10,2\\ 29,0\\ -2,4\\ 3,8\\ 28,8\\ -18,0\\ 10,2\\ 29,0\\ -7,6\\ 12,2\\ -82,0\\ 75,6\\ 12,2\\ -82,0\\ 75,6\\ 12,2\\ -82,0\\ 75,6\\ 12,2\\ -82,0\\ 75,6\\ 52,4\\ -5,8\\ 13,4\\ 9,6\\ 12,4\\ 3,6\\ 1,2\\ 5,6\\ -12,6\\ -12,6\\ \end{array}$	4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}9,4\\ 17,6\\8,8\\3,0\\9,6\\ 19,8\\ 3,6\\ 7,4\\ 30,8\\5,2\\ -2,4\\ 11,2\\ -25,0\\ 14,8\\ -15,2\\ -6,0\\ -33,6\\ 26,4\\ 16,6\\ 15,6\\ 4,4\\ -5,2\\ -2,4\\ 10,6\\ 28,2\\ -5,8\\ 16,8\\ -13,2\\ 3,4\\ -6,6\\ 6,2\\ 14,8\\ 11,0\\ -5,2\\ -2,4\\ 10,6\\ 28,2\\ -5,8\\ 16,8\\ -13,2\\ 3,4\\ 4,4\\ -5,2\\ -2,4\\ 10,6\\ 28,2\\ -5,8\\ 16,8\\ -13,2\\ 3,6\\ -18,4\\ 14,0\\ -22,6\\ 2,0\\ 5,0\\ 27,6\\ 22,0\\ -18,2\\ 20,0\\ 6,0\\ 11,0\\ -3,8\\ -3,6\\ 29,8\\ -20,6\\ 29,6\\ -32,4\\ 8,2\\ 16,2\\ -17,8\\ \end{array}$

16. – RENDICONTI 1967, Vol. XLII, fasc. 2.

h	k	l	Fo	$\mathbf{F_{c}}$	h	k	l	Fo	Fc	h	k	l	Fo	Fc
4 5	4	$\begin{array}{c} & & \\$	9,5 7,9 10,3 9,6 14,4 8,5 15,0 11,4 17,3 12,0 18,1 10,0 7,1 16,5 15,4 27,5 10,8 18,1 18,2 9,3 15,4 15,9 7,4 15,9 7,4 9,2 7,5 9,8 19,0 18,4 9,3 15,2 7,5 9,8 19,0 18,4 9,3 15,2 7,5 7,4 9,5 5,0 6,1	$\begin{array}{c} 6,0\\ 10,4\\ 10,0\\ -0,4\\ 10,2\\ 14,6\\ 9,0\\ 1,0\\ -14,6\\ 9,0\\ 1,0\\ -14,6\\ 11,4\\ 20,2\\ 11,0\\ 4,4\\ -17,4\\ -10,6\\ 6,4\\ -8,8\\ -17,6\\ 28,8\\ -6,4\\ -17,6\\ 28,8\\ -6,4\\ -17,6\\ 28,8\\ -6,4\\ -17,6\\ 28,8\\ -6,4\\ -13,4\\ -17,6\\ 28,8\\ -6,4\\ -12,8\\ -6,4\\ -2,8\\ -3,8\\ -0,8\\ -16,2\\ -18,2\\ -4,6\\ -2,8\\ 1,0\\ -2,9\\ -21,4\\ 7,8\\ 5,2\\ -7,2\\ 9,6\\ 8,4\\ 0,6\\ 11,2\\ 19,2\\ -1,6\\ -19,4\\ 0,8\\ -11,0\\ -4,6\\ -15,4\\ -9,4\\ 0,0\\ 8,2\\ 8,8\\ 4,2\\ -2,8\\ -5,6\\ 4,4\\ \end{array}$	7 7 8 8	4	$\begin{array}{c} & & \\ & -15 \\ & -14 \\ & -13 \\ & -12 \\ & -11 \\ & -10 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -98 \\ & -76 \\ & -54 \\ & -32 \\ & -11 \\ & -10 \\ & -98 \\ & -76 \\ & -54 \\ & -12 \\ & -11 \\ & -11 \\ & -99 \\ & -11 \\ & -11 \\ & -11 \\ & -99 \\ & -11 \\ & -11 \\ & -11 \\ & -99 \\ & -11 \\ & -11 \\ & -11 \\ & -99 \\ & -11 \\ &$	8,3 8,3 8,3 8,3 13,3 15,7 8,1 7,3 9,8 15,3 11,0 6,0 8,1 7,3 8,5 18,3 66,0 10,0 20,7 12,9 16,8 35,5 8,8 17,8 16,8 9,4 11,3 15,4 20,0 19,4 20,0 19,4	1,8 $-9,4$ 0,6 7,4 5,6 $-13,2$ 6,6 $-2,0$ $-14,4$ 1,8 $-4,2$ $3,6$ $-0,2$ $-3,8$ $-8,8$ $-8,0$ $17,00$ $3,8$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,2$ $-11,4$ $-5,6$ $-11,4$ $-3,6$ $-6,8$ $1,2,6$ $56,8$ $8,00$ $-11,6$ $38,4$ $-8,8$ $-9,4$ $13,6$ $-16,8$ $0,6$ $11,6$ <td>2</td> <td>5</td> <td>$\begin{array}{c} -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$</td> <td>9,3 27,8 18,9 41,8 33,7 32,3 11,6 48,8 59,5 40,4 19,3 33,2 15,9 6,8 26,2 5,4 24,5 5,1 9,5 7,7,7 6,8 26,2 5,4 24,5 5,1 9,5 7,7,7 6,9 14,9 7,1 16,5 16,5 23,2 15,9 14,9 7,1 16,5 16,5 16,5 16,5 16,5 16,5 16,5 16</td> <td>$\begin{array}{c} 10,0\\ 1,6\\ 29,0\\ -20,2\\ 42,6\\ 31,0\\ -29,0\\ -9,6\\ 37,8\\ 51,4\\ -3,4\\ -1,6\\ -41,4\\ 17,4\\ 34,6\\ -16,2\\ 28,6\\ 4,6\\ 3,2\\ 28,6\\ 4,6\\ 3,2\\ 28,6\\ -16,2\\ 28,6\\ -17,4\\ -7,2\\ 10,2\\ 28,6\\ -1,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 22,2\\ 2,0\\ -7,0\\ 8,6\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -7,4\\ -7,0\\ -7,0\\ -0,4\\ -7,4\\ -7,0\\ -7,0\\ -0,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7$</td>	2	5	$ \begin{array}{c} -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	9,3 27,8 18,9 41,8 33,7 32,3 11,6 48,8 59,5 40,4 19,3 33,2 15,9 6,8 26,2 5,4 24,5 5,1 9,5 7,7,7 6,8 26,2 5,4 24,5 5,1 9,5 7,7,7 6,9 14,9 7,1 16,5 16,5 23,2 15,9 14,9 7,1 16,5 16,5 16,5 16,5 16,5 16,5 16,5 16	$\begin{array}{c} 10,0\\ 1,6\\ 29,0\\ -20,2\\ 42,6\\ 31,0\\ -29,0\\ -9,6\\ 37,8\\ 51,4\\ -3,4\\ -1,6\\ -41,4\\ 17,4\\ 34,6\\ -16,2\\ 28,6\\ 4,6\\ 3,2\\ 28,6\\ 4,6\\ 3,2\\ 28,6\\ -16,2\\ 28,6\\ -17,4\\ -7,2\\ 10,2\\ 28,6\\ -1,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 28,6\\ -14,0\\ -7,2\\ 10,2\\ 22,2\\ 2,0\\ -7,0\\ 8,6\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -15,8\\ -6,8\\ -15,0\\ -7,4\\ -7,0\\ -7,0\\ -0,4\\ -7,4\\ -7,0\\ -7,0\\ -0,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,0\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,4\\ -7,6\\ -7,4\\ -7$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u></u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h k l F _o	$\mathbf{F_{c}}$	h k l F _o	F_{c}	<i>k k l</i> F _o	F_{c}
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,6\\ 5,2\\ 1,2\\ -2,6\\ -1,8\\ -9,8\\ 29,4\\ 23,8\\ -15,2\\ 11,4\\ -4,4\\ 4,6\\ -21,6\\ -19,6\\ -9,4\\ 9,8\\ 13,2\\ 7,4\\ 9,2\\ 19,4\\ -15,0\\ 19,2\\ 12,8\\ -30,4\\ -24,6\\ -13,2\\ 7,6\\ 2,6\\ -4,8\\ 3,6\\ 7,8\\ 10,4\\ -15,0\\ 19,2\\ 12,8\\ -30,4\\ -9,8\\ 20,4\\ -16,4\\ -6,6\\ 4,0\\ 6,2\\ -21,2\\ 4,2\\ 30,0\\ 14,8\\ 20,4\\ -16,4\\ -7,8\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 16,8\\ 1,4\\69,8\\9,2\\ 21,0\\ -10,4\\5,8\\ 9,2\\ 6,0\\ -13,8\\ 7,6\\ 7,2\\ -4,2\\ -10,4\\ 10,0\\ 0,8\\0,4\\ 2,4\\ -10,8\\ 5,6\\ 14,8\\ -10,8\\ 5,6\\ 14,8\\ -11,4\\ -17,0\\ 6,4\\ 26,0\\ -30,0\\ -53,0\\ 13,0\\ 17,4\\ 17,4\\ -17,2\\ -16,0\\ 19,4\\ 28,8\\ -15,4\\ -24,6\\ 6,2\\ 2,2\\ -19,0\\ -9,0\\ 6,6\\ 0,2\\ 1,2\\ 2,4\\ 5,2\\8,0\\ \end{array}$	$ \begin{bmatrix} 6 & 5 & -12 & 6, 1 \\ & -11 & \\ & -10 & 12, 9 \\ & -9 & \\ & -8 & \\ & -7 & \\ & -6 & 15, 7 \\ & -5 & 17, 2 \\ & -3 & \\ & -2 & 12, 6 \\ & -1 & \\ & -3 & \\ & -2 & 12, 6 \\ & -1 & 12, 6 \\ & -1 & 12, 6 \\ & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DESCRIZIONE DELLA STRUTTURA.

In fig. 1 è mostrata la disposizione degli atomi nella cella. Ambedue gli atomi di sodio coordinano cinque ossigeni (distanza media Na—O = 2,40 Å) secondo due poliedri molto simili ad una bipiramide trigonale. In prossimità dell'atomo Na(1) vi sono altri due ossigeni a distanza rispettivamente di 3,1 e 3,3 Å; tali valori sembrano però eccessivi per formare legami sodio-ossigeno. I poliedri di coordinazione dei due atomi di sodio indipendenti hanno in comune il vertice corrispondente all'ossigeno O(1), mentre il poliedro del Na(1) ha in comune con il suo centrosimmetrico lo spigolo O(3)-O(3). Nel complesso vengono a costituirsi dei gruppi di quattro poliedri di sodio che formano « isole » intorno ai centri di simmetria a $1/2 \circ 0$ e 1/2 1/2 1/2.

Fig. 1. – Proiezione della struttura secondo [100].

I cerchi piccoli rappresentano gli atomi di boro, quelli di dimensione intermedia gli atomi di sodio e quelli più grandi gli ossigeni (i cerchi doppi indicano gli ossidrili, quelli tripli le molecole di acqua). I legami a idrogeno sono schematizzati con linee tratteggiate.

Dei quattro atomi di boro presenti nella unità asimmetrica due sono in coordinazione triangolare e due tetraedrica, a formare un polione del tipo $[B_4O_6(OH)_2]_n^{-2n}$. Come mostrato in fig. 2, tali poliedri sono disposti secondo una catena che si sviluppa parallelamente all'asse y ed è composta da anelli esagonali, ciascuno dei quali è pressoché perpendicolare a quelli adiacenti. Le catene si avvolgono a spirale intorno alle elicogire a o y 1/4 e o y 3/4. Esse

Fig. 2. – Proiezione di una catena boro-ossigeno secondo la diagonale dell'angolo β. Le notazioni sono quelle di Fig. 1. La linea orizzontale è la traccia dell'elicogira. Il tratteggio indica l'elemento asimmetrico della catena.

TABELLA III.

Distanze di legame.

Атомі	Distanza	σ	Атомі	Distanza	σ
	<u>م</u>	Ŷ		\$	
$Na(1) - O(3) \cdot \cdot \cdot \cdot \cdot$	2,434 A	0,004 A	$Na(2) - O(4) \dots \dots$	2,431 A	0,005 A
O(3')	2,438	0,006	O(11)	2,288	0,004
O(2)	2,488	0,006	O(8)	2,418	0,00 6
O(1)	2,395	0,004	O(9)	2,395	0,006
O(7)	2,275	0,008	O(I)	2,402	0,004
B(1)—O(4)	1,464	0,010	B(2)—O(4)	1,446	0,009
O(5)	1,521	0,007	O(6)	1,498	0,007
O(8)	1,483	0,005	O(I)	1,456	0,010
Ο(Ι)	1,428	0,009	O(2)	1,488	0,006
B(3)—O(5)	1,353	0,010	B(4)—O(8)	1,350	0,010
O(9)	1,384	0,008	O(2)	1,376	0,012
O(6)	1,363	0,012	O(10)	1,368	0,007

sono collegate l'una all'altra dai gruppi di poliedri di sodio sopra descritti. Le distanze medie B—O risultano di 1,37 Å per gli atomi di boro in coordinazione triangolare ed 1,47 Å per quelli in coordinazione tetraedrica.

TABELLA IV.

4 7.	7.	1
anacia	10	Inaanna
ANYOU	ui	Legame.

Атомі	Angolo	σ	Атомі	Angolo	σ
O(3)— $Na(1)$ — $O(3')$	78,9°	0,3 ⁰	O(4)—Na(2)— $O(11)$.	123,90	0,20
$O(2)\ldots$	95,5	0,2	O(8)	88,9	0,2
O(1)	151,5	0,2	O(9)	133,1	0,2
O(7)	106,8	0,2	O(1)	60,3	0,2
O(3')—Na(1)— $O(2)$	94,9	0,2	O(11)—Na(2)—O(8)	106,8	0,2
O(1)	109,5	0,2	O(9)	101,0	0,2
O(7)	133,4	0,2	O(I)	166,3	0,2
O(2)—Na(1)—O(1)	57,4	0,2	O(8)—Na(2)—O(9)	90,7	0,2
O(7)	129,2	0,2	O(I)	59,5	0,2
O(1)—Na(1)— $O(7)$	87,3	0,2	O(9)— $Na(2)$ — $O(1)$	79,5	0,2
$O(4) - B(1) - O(5) \dots$	107,7	0,6	$O(4) - B(2) - O(1) \dots$	113,6	0,4
O(8)	110,3	0,5	O(2)	111,8	0,7
O(1)	110,3	0,4	O(6)	108,5	0,5
$O(5) - B(1) - O(1) \dots$	110,0	0,5	O(6)—B(2)—O(1)	110,8	0,7
O(8)	108,1	0,4	O(2)	106,3	0,4
O(8)—B(1)—O(1)	110,4	0,6	O(1) - B(2) - O(2)	105,7	0,5
$\Omega(r) - B(r) - \Omega(6)$	122.2	0.6	O(8) - B(4) - O(2)	121.8	0.5
O(a)	123,3	0,0	$0(0) - D(4) - O(2) \dots$	121,0	0,,
O(9)	121,0	0,9		119,7	0,9
$U(9) - B(3) - U(6) \dots$	115,7	0,7	U(2) - B(4) - U(10) .	118,5	0,7

Nelle Tabelle III e IV sono riportate le distanze e gli angoli di legame con le relative deviazioni standard. Degli otto atomi di idrogeno, sei appartengono alle tre molecole d'acqua i cui ossigeni sono indicati come O(11), O(7)ed O(3) in Tabella I; le coppie di idrogeni relative sono H(2) e H(3), H(4)e H(5), H(6) e H(7). H(2) ed H(3) formano ponti ad idrogeno con O(10) e O(7), H(3) ed H(4) con O(11) e O(4), H(6) ed H(7) con O(6) e O(5) rispettivamente. Le distanze fra gli ossigeni delle molecole d'acqua e gli ossigeni interessati dal legame ad idrogeno variano da un minimo di 2,67 Å ad un massimo di 2,90 Å. Fra questi valori rientra anche la distanza fra l'ossigeno O(10) appartenente ad un ossidrile e l'ossigeno O(2), collegati per mezzo dell'idrogeno H(1). Fa eccezione invece la distanza O(9)—H(8) \cdots O(4) che risulta essere di 3,17 Å. Questa distanza, troppo grande per essere considerata un vero e proprio legame a idrogeno, può essere indicativa per localizzare l'idrogeno H(8) nella direzione della congiungente i due ossigeni.

La kernite presenta le sfaldature {100} e {001} perfette, e la $\{\overline{2}01\}$ buona. Queste hanno luogo secondo piani in zona con l'asse y che, come detto prima, è l'asse di allungamento delle catene B—O. La sfaldabilità del minerale è dovuta, oltre che alla labilità dei legami a idrogeno, anche alla repulsione fra i due Na(1) centrosimmetrici (Na—Na = 3,76 Å).

L'ipotesi di Christ e Garrels [4], ripresa da Tennyson [14] per la sua sistematica dei borati, viene confermata dai risultati ottenuti da questo studio strutturale. Infatti la kernite era stata classificata nel secondo gruppo degli inoborati, costituiti da catene con complessi planari $B(O, OH)_3$ e tetraedrici $B(O, OH)_4$.

BIBLIOGRAFIA.

- [1] J. GARRIDO, Symmetrie und raumgruppe des Kernits (Na₂B₄O₇·4 H₂O), «Zeit. für Krist.», LXXXII, 468 (1932).
- W. MINDER, Über den Bau einiger Hydrate von Natriumdiborat, «Zeit. für Krist.», XCII, 301 (1935).
- [3] J. L. AMOROS, Nota sobre la macla (011) de la Kernita, « Estudios Geològicos », VII, 21 (1947).
- [4] C. L. CHRIST e M. N. GARRELS, Relations among sodium Borate hydrates at the Kramer deposit, Boron, California, «Am. Jour. Sci. », 257, 516 (1959).
- [5] P. J. BRAY, J. O. EDWARDS, J. G. O'KEEFE, V. F. ROSS e I. TATSUZAKI, Nuclear magnetic resonance studies of B¹¹ in crystalline borates, « Jour. Chem. Phys. », 35, 435 (1961).
- [6] H. E. PETCH, K. S. PENNINGTON e J. D. CUTHBERT, On Christ's postulated boron-oxygen polyions in some hydrated borates of unknown crystal structures, «Am. Min.», 47, 401 (1962).
- [7] V. Ross e J. O. EDWARDS, On the crystal structure of kernite, Na₂B₄O₇·4 H₂O, «Acta Cryst. », 12, 258 (1959).
- [8] M. M. WOOLFSON, Direct methods in crystallography, Clarendon Press, Oxford (1961).
- [9] D. D. CROMER e J. T. WABER, Scattering factors computed from relativistic Dirac-Slater wave functions, «Acta Cryst. », 18, 104 (1965).
- [10] International Tables for x-ray crystallography, Vol. III, Kynoch Press, Birmingham (1962).
- [11] V. ALBANO, P. L. BELLON, F. POMPA e V. SCATTURIN, Programmi cristallografici per l'elaboratore I.B.M. 1620. Nota IV: Affinamento di una struttura cristallina col metodo dei minimi quadrati, « Ric. Sci. », 3 A, 1067 (1963).
- [12] D. W. I. CRUIKSHANK, D. E. PILLING, A. BUJOSA, F. M. LOVELL e M. R. TRUTER, Crystallographic calculations on the Ferranti Pegasus and Mark I computer. In: Computing methods and the phase problem in x-ray crystal analysis, Pergamon Press, London 32 (1961).
- [13] C. L. CHRIST, Crystal chemistry and systematic classification of hydrated borate minerals, «Am. Min.», 45, 334 (1960).
- [14] C. TENNYSON, Eine systematic der Borate auf Kristallchemischer grundlage, « Fortschr. Miner. », 41, 64 (1963).