ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

DAVID LOVELOCK

The Lanczos Identity and its Generalizations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 42 (1967), n.2, p. 187-194.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_42_2_187_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1967_8_42_2_187_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1967.



DAVID LOVELOCK, 7he Lanczos Identity and its Generalizations 187

Matematica. — 7%e Lanczos [dentity and its Generalizations.
Nota di Davip LoveLock, presentata ® dal Socio B. SEGRE.

SuNTo. — C. Lanczos ha stabilito in [1] una notevole relazione quadratica per le
componenti del tensore di curvatura di una varieth riemanniana a quattro dimensioni; ma
la sua dimostrazione non & estendibile alle varietd di dimensione qualsiasi. Nella presente
Nota una via per ottenere una siffatta estensione viene indicata coll’'uso opportuno del
tensore di curvatura conforme di H. Weyl; cid fornisce, accanto ad una diversa dimostra-
zione e formulazione dell’identita di Lanczos, una successione di nuove identita dipendenti
in modo essenziale dalla dimensione dello spazio, la complessita delle quali cresce colla
dimensione, Come applicazione, si ricava una delle condizioni di G. Y. Rainich [5] per il
tensore del momento di energia elettromagnetica.

1. INTRODUCTION.—OQur considerations are based on an #—dimensional
Riemannian space with line element @
ds? = g, dx" dx’ .
The curvature tensor is introduced by means of the commutation relations
X w—Xn = R X,

where a semi-colon denotes partial covariant differentiation and X’ is any
contravariant vector field. We shall define the Ricci tensor and the curva-
ture scalar by

Rz’j = Rz'hj}; ’
and
R = gij Rij ’

respectively. The Weyl conformal curvature tensor is defined by

l

(1.1) Cilim = Rjon +

I
n—2

(Rli gjm + ij 811' - sz an_ Rfﬂ gzj) —|_
R " A
ey 6 e — g,
and enjoys all the symmetry properties of the curvature tensor together with
(I.Z) le” = 0.
We shall always raise and lower indices by means of the contravariant and

covariant metric tensors, respectively.

(*) Nella seduta dell’r1 febbraio 1967.
(1) The summation convention is used throughout this paper.
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Lanczos @ has shown that if # = 4 then
(1.3) 2R, R% 4 2 R™ Rhikj — RR,— R RM
= % (4 Rllz R”l - Rg—‘ lekh leth 8; )

—a remarkable identity, which henceforth we shall term #ke Lanczos identity.
However, the proof suggested by Lanczos depends crucially on the dimension
of the space being four and does not admit of any obvious generalizations
for arbitrary #, either in the proof or in the form of the identity.
Nevertheless progress can be made since, by using the Weyl conformal

curvature tensor (1.1), the identity (1.3) may be expressed in the particularly
simple form

(I 4) Cz’hkl Cj},kl _ _;_ (Crhkl CMkl) 81] .

It is the generalizations of this form of the identity which we shall investigate
for arbitrary 7. In the next section identities between certain tensors involv-
ing an integral parameter 7 are established. In the final section it is shown
that by imposing restrictions on the dimensionality of the space generaliza-
tions of (1.4) are-obtainable. The evenness and oddness of dimensionality
appears to play an unexpectedly important role.

In order that our results be as general as possible, we shall consider a
tensor K%, which is anti-symmetric in (7,7) and (%,7) respectively, i.e.

(1:5) K= —K%=—K%,-
and which, furthermore, enjoys the following property
(1'6) zjjz = 0.

An example of a tensor which satisfies (1.5) and (1.6) is thesWeyl conformal
curvature tensor C¥%;,. We shall frequently use the properties (1.5) and (1.6)
without explicit reference to them. )

It is easily seen that the number of independent components of K7, is

[&”Q__’)r_nz — il:_(%»_y (n+1).

We thus have )

LEMMA 1: If n = 3 then KY,;= o.

In particular of course, this contains the well-known result due to Weyl ®
according to which the Weyl conformal curvature tensor vanishes for » = 3.

(2) In the notation of Lanczos, the vanishing of Sj’: (defined in [1], p. 847, equation
(4.10)) is equivalent to (1.3) above.
(3) See, for example [3], p. 306.
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2. IDENTITIES INVOLVING K’{;;.——In this section we shall derive certain
properties associated with the three tensors T%; [7] , S’; [7] and P’ [#] defined
for » an integer, m > 1, by

1 fylgr e m—1? J1da 7374 Jem—172
(2.1) T [m] =812 Emml g gAML giemetfm
7 7172 J2m—172m 1% 3% om—17
’:1’:2"'l:2m—1 Kjlj? L Kfz'n—w: ‘ KjZm—-Zj2mi—1 »
; 71727 Tam—1 1%2 2m—3'2m—2 2m—17
(2.2) S’ .[m] =
" for m>2,
o for m=1,
and
; i1 Tam? L, T1da Jam—17a
(2.3) Pi[m] =38 7R KT

J1deTams Yy “om—1%2m’

respectively, where 8:;” is the generalized Kronecker delta ([2], pp. 242
and 278) which may be written in the form

7

3

il z.1
5 ... 8

N

(2.4) 57N = det.

Tt .. . .
DR
1 e In

In the sequel it is usually easier to follow the arguments if the right hand

side of (2.4) is used explicitly whenever the generalized Kronecker delta

occurs. In connection with (2.1), (2.2) and (2.3) we remark that the quantity

in square brackets s indicates the degree of linear homogeneity of K%

while the determinantal parts of T [m] S%;[m] and P%;[m] are respectively

2mX2m, (2m—1)X(2m—1) and (2m + 1)X(2m +1).

We now establish a relation between (2.1) and (2.2) which we state in
the form of

THEOREM 1: For m > 1
(2.5)  T[m] = — 4(m—1) K¥ T m —1] + 2 (m —1) S*;[m].

Proof: By expanding T?;[#] about the last row of its determinant, and
using (1.6), we find that

; e fam—1 1, J170 Jam—17
T [m] = 28" K™ ... K _ .
J[ ] J1 T2 m—1 1% tam—17 +

11 .......... 9 m—1 ]1]2 Jop—1*t Jom—172
+2 X3, ” K LR T G
1
w

=1 "'J2p—1/2p,+1"'j2m 1% in,‘lin, imelj
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By expanding the first term on the right hand side about the last column
of its determinant we have

-1 .. i . . . - i N
(2.6) T[] =4 & 82 owefwbnsiins gl e
p=1

F% SRR PP Jom—2 i1y ig p—1 iy w
KjZm—3j2m—2 Ki2p,—1i
‘am—3'2mi—2 ‘om—17
m—1 . . . . . .
+2 E 8’1""2»1—1 KJ112 Kfzp,-—ﬂ K-72m—1-72m
=1 U Tap—12pt1 Vam i 2u—1t2y ‘om—17

In each of these sums we change the dummy indices according to the follow-
ing scheme:

Z.2;1,——1 <> z‘2m—3 3
Z'zp, <~ lem—2,
ij,—l <> j2m—3 ’
].Zp <> j2m—2 .

Hence (2.6) may be written in the form

PR

m—1 .. . . . . . .. ..

i 1% fap—2tem—2t2u+1 tem—at2p—1'2p2m—1 1, 7172

(7) Tylm]=4 X3 K™%
p=

JiaJap—272m—3l2m—2l2u4 1 Tam—al2p—172y ity
KjZF,—l]Zp, K72m~sfzm—2 ‘om—3t +
‘2 p—172y ‘am—3tam—2 2m—17

m—1 . . . . . . . . .. ..
42 E 8’1‘2""2;;.—2’2»;—3’2m—2’2p,+1""2m—4’2p,—1’2u’2m—1 I172

p=1 J1/2  Jep—272m—372pu+1 " I2m—al2p—172u72m—172m 1%
Kj2y.—1j2p, K/'Zm—ai Kfz m—172m
fap—1tap lom—3%2m—2 tom—17

By suitable interchange of rows with rows and columns with columns in
the determinants of the right hand side of (2.7), it is easily seen that

_|..

m—1 .. . . : RS . . .
: O PN ) 1 z ki
~Z 1%2 2m—a'2m—2"2m—1 y,7172 J2m—3/2m—2
(2.8) T [m]=4 X, 82 ; ; K" ....K 4 : .
p=1 712 7em—alam—372m—2 1% 2m—2 2m—17
m—1 i i ; .. . ; s .
1% am—2%2m—1 7172 J2m—3 J2m—172m
42 Y 5 R e K . . K L
p=1 172 Jem—al2m—3/2m—172m 179 om—3%2m—2 2m—17

In view of (2.1) and (2.2), (2.8) is (2.5) for m > 2. However, for m = 1 (2.5)
also holds since in this case both sides vanish identically. This completes
the proof of Theorem 1.
It is easily seen that Theorem 1 enables us to calculate T%;[#] in terms
of S%;[m],S ;[m—1],---,S;[2], by an iterative procedure since
S [1] = o,
and

(2.9) T [1] = o.
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In the sequel we shall consider the special cases of m = 2 and m = 3 in
some detail in order to illustrate the general theory. It is not difficult to show
that

(2:10) S’:,; [2] = 2 K", K4,
and
(2.11) S'.[3] = 4 K™, K™% K", + 16 K%, K" K™, .

From (2.5), (2.9), (2.10) and (2.11) we therefore find

(2.12) T [2] = 4 K" K¥;
and
(2.13) T%[3] = 32 K%, K™, K% + 16 K™, K™, K", + 64 K%, K", K™ .

We shall now prove a result which relates (2.3) to (2.1) and (2.2), and
which will subsequently form the cornerstone of our general theory.
THEOREM 2: For m >1

(2.14) Pii[m] = 2 (m — 1) 8;S%[m] — 2m T [m].

Proof: The proof of this Theorem is very similar to that of Theorem 1 and
we shall merely display the salient features. P’;[] is initially expanded
about the last column of its determinant and subsequently that determinant
which is associated with 8} is expanded about its last row. This gives rise
to the relation

m—1

. : P PO i i 7, 7 ;
i i 172 2m—1 7172 J2m—172m
Pl[m] =2 8] E 8] A 172 17 Jg 179 K RS K i2m—1j2p, +
p=1 71 w—172u+ m—1/2m
2 2 811'"’2p—112p+1'”’2m—1’2m’ Kflfg ) K]2p,——1]2|.|, Kfzm—lfzm_ )
o' jljz ................ j2m 219 2u—1/ lom—1tam

which, with a similar change of dummy indices as in Theorem 1, leads pre-
cisely to (2.14).

3. IDENTITIES ARISING FROM DIMENSIONALITY RESTRICTIONS.—We
shall here discuss the consequences which follow from restricting the dimensio-
nality 7 by inequalities involving #, the linear homogeneity of T[] , S*, []
and ;Pf,- [#] in K*,. The results of this section depend on the fact that éf
n<N—1 then

iy iy
3. " =o.
J1UN
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We apply this result to (2.1), (2.2) and (2.3) and obtain
LEMMA 2:

If n<2m then P'm] = o.
If n<2m—1 then T':j[m] = 0.

If n<z2m—2 then S’,[m] = o.

We combine these results with Theorems 1 and 2 to prove our main
result.

THEOREM 3: If n = 2m then

(3.1) T [m] = =L 558", m].
If w=2m—1 then
(3.2) Stilm] = 2K, T [m — 1].

Proof: 1f w = 2 m then (§ 1) follows from Lemma 2 and Theorem 2.

If 7 = 2m — 1 then (3.2) follows from Lemma 2 and Theorem 1.

Of course (3.1) and (3.2) are also valid for » < 2 wiand n <z2m—1

respectively, but in each case the left hand sides of the corresponding iden-
tities vanish identically.

COROLLARY: If n < 2m then K%, Th[m]=o.
Ifn<2m—1 then Sh[m]l=o.
In order to illustrate Theorem 3 we shall consider the special cases of
m = 2 and m = 3.
Case 11 m = 2.

In this case (3.1) will be valid for # = 4 and in view of (2.10) and (2.12)
will reduce to

(33) K%K = - 5 (K K.

(3.2) provides nothing new when » = 2, since in this case » = 3 and,
by Lemma 1T,
ij;éz: O.
Case 2: m = 3.

For 2 =6 we find from (3.1), (2.11) and (2.13) that
(3-4) 4 KKK+ 2 K7 K, Ky 4 8 K%, K, K7 =

=§8;1(K'”2kK o Kms + 4 K5 K5 K70
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For n = 5, (3.2) reduces to
(3-5) K" K™% K"+ 4 K", K%, "= 2 K%, K% K%,

Naturally (3.5) is also valid for » = 4. However, by virtue of (3.3)
it simplifies to
(3.6) K" K" K’ 4 4K K" K™ = o

!
In fact (3.6) follows directly from Lemma 2 since #» = 2m —2 for n = 4
and m = 3.

We stress that (3.1) and (3.2), and therefore (3.3)-(3.6), are (dimen-
sionaly dependent) identities for any tensor satisfying (1.5) and (1.6). We
shall briefly discuss two applications of (3.3) which, with very little further
calculation, gives rise to well-known results for » = 4.

Firstly, we replace K7, by the Weyl conformal curvature tensor CZ,.
Under these circumstances (3.3) reduces to (1.4)—the Lanczos identity @,

We may therefore regard (3.1) and (3.2) as genmeralizations of the Lanczos
identity. )
Secondly, we consider the tensor HY,; defined by

HYy= —12f7f0 + 6 (353 Ti+ 8{T) — 8 Th — 8T +
+ (fro ™) (01 8 — 8 %),
where

fz'j = __].jz'

and
T=/"fo— S

If f; is the electromagnetic field tensor then T; is the energy momentum
tensor for the electromagnetic field in General Relativity ([4], p. 227). When
n = 4, HY,, has the properties

HY% = —H"%=—H%,
and
H"jj,é =o0.
Thus we may replace K"’},k by H’.’},k in (3.3). To do this we require

(3-7) H7 HY = — (24 T Ti + 87 [30 (f,. /)P + 72 (T2 T .

(4) A very short proof of this result is obtained directly from the expansion of P‘:J. [2] =0
with K7, replaced by C7,.
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When (3.7) is substituted in (3.3) we find
(3.8) TiTi= % S/ (T.TY).

(3-8) is a well-known result whick arises when electromagnetic fields are intro-
duced in the General Theory of Relativity. It is of fundamental importance
to the so-called ““ already unified ™ field theory since it is (3.8) (together with
the field equations) which gives rise to the Rainich conditions [3]. However,
we have obtained (3.8) without using either the concept of duality rotations
([4], p. 237, et seq.) or eigenvalue properties of certain 4 X 4 matrices ([6],
p- 417, et seq.).

1t is remarkable that both the Lanczos identity (1.4) and the identity (3.8)
involving the square of the electromagnetic energy momentum tensor T; are
derivable from (3.3).

In a subsequent paper [7] we hope to discuss certain applications of the
above results with particular reference to variational principles of the type
employed in General Relativity ®).
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