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NOTE PRESENTATE DA SOCI

Analisi matematica. On a uniqueness question of Levi—Ci-

vita ©. Nota di DENNIsS DunNINGER ¢ ¢ MoNrROE H. MARTIN, pre-
sentata "7 dal Corrisp. G. FicHERA.

SUNTO. — Si considera un problema posto da Levi-Civita nella teoria delle onde perio-
diche irrotazionali in un fluido incompressibile. Esso consiste nel provare ’unicitid di una
funzione olomorfa nel disco unitario verificante una condizione al contorno non lineare. Ven-
gono date diverse condizioni sotto le quali si ha la richiesta unicita.

INTRODUCTION.—In 1925 Levi-Civita [1] reduced the mathematical theory
of periodic, irrotational waves of finite amplitude in an incompressible fluid of
infinite depth to the following boundary problem.

Determine all functions

o (@) =0+7, o (0) = o,

of the complex variable { = pe'c holomorphic in the unit circle |{| <1 and
subject to the condition
(D % = pe~37 sin 0, p = const.,
on its boundary.

The constant p is non-dimensional. Actually

A
P=7a

where A is the wavelength, ¢ is the velocity of propagation of the wave and g
is the acceleration of gravity. To insure that the velocities of the fluid particles
gré small relative to ¢, one requires that |w|< § for some sufficiently small
positive number 8. Here 6 is the angle of inclination of the flow to the hori-
zontal and 7 is related [1, p. 275] to the speed ¢ by T = log (¢/c).

Levi-Civita demonstrated existence and uniqueness of the solution provid-
ed p is sufficiently close to unity. He pointed out further that if one is inter-
ested only in the existence of the solution, only the values p < 1 need be
considered, since one can always regard » waves each of length A as a single
wave of length A = #A for which p, = #p.

On the other hand on p. 284 of his memoir [1] he writes  Toutefois il n’est
pas immediatement évident que les seules solutions de (I) pour p > 1 soient
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elles qui 'on peut construire de la sorte.. Je crois bien qu'il ent soit ainsi,
mais je n’ai pas analysé exactement la question”. The question was consi-
dered again in 1931 by Lichtenstein [2] who using the theory of non-linear
integral equations demonstrated existence and uniqueness for the solution if
p = m —x, for any positive integer 7 provided » is sufficiently small. An
excellent account of modern work on the subject and on water waves in general
is given by Stoker [3].

Clearly the problem belongs to a general class of boundary problems which
can be formulated for a holomorphic function w (¢) =+ of a complex
variable z = x + 7y, namely

Determine all functions w(2) = u-+iv of the complex variable == x-+ 7,
holomorphic in a region S bounded by an analytic arc C upon which

I u, = h(s)f(u,v), s = arc length of C,

where u, denotes the external normal derivative of u on C, the Junctions
S (w,v), k(s), holomorphic in their arguments, being given in advance.

This paper is devoted to the determination of conditions under which the
solution to problem (I') is unique, with special attention paid to Levi-Civita’s
problem (I).

2. THE INTEGRAL IDENTITY.—Consider two functions
w1 (2) = uy + dus ,  ws(2) = us + iug,

holomorphic in the region S. The unusual designation of their real and imag-
inary parts turns out to have advantages later on. Following Monge, we adopt
the notation

__Owup __ Qup

b= 96 =3,

’ (k:k1,2,3,4),

and observe that the Cauchy-Riemann equations for wi(¢) ,w2(2) take the
form

P1=93,91=—P3 ; P2=91,925=—p4.

A straightforward application of Gauss’ theorem verifies the formal inte-
gral identity

(2.1) A P
21 J ( Sn‘ Sn) !

where
(22) Q=api+2bpip2+ i+ 2d (paps— pr150) + aph + 2 bps pa +cpb
is a quadratic form in py, ps, ps, pa, with coefficients

(2:3) a=/fa7u, 26 = (oD (D, c=—5 T 2¢¥~(f1f)u,*(fzf)u.,



'4)/(%‘—Bfi:‘)df:”*%(ﬁ+ﬁ)+fz(ﬁ3+1>4> ds, fi=2L fi=
¢ g &
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in which the"function == 7 (#1, %2, u3, us) is at our disposal and
N=hAlun,us) , fo=r(u,w),

are functions, either specified in advance arbitrdrily, or related to the boundary

‘problem (I') by selecting

Sfi=fla,us) , fo=Ff(uz,ua).

The identity (2.1) is the source of our uniqueness theorems. Let D denote
the set of points of the four-dimensional Euclidean space E4 upon which Q
is positive definite. The functions /1, /2 being given, D obviously depends
on the choice of 7. This function © should, of course, not be confused with
the function 7 introduced by Levi-Civita and referred to in the introduction.

The following theorem illustrates the type of uniqueness theorem we can
expect.

THEOREM 2.1.—1f w1 =wu1-} tus is a non-constant solution of the boundary
problem

Au=o0 inS |, wu,=h(s)f(u,v) onC,

no other solution ws = us ~+ dus exists for which the integrals in (2.1) exist and
the manifold

Me: wm=wi(x,9), wa=uwu2 (x,%), us=us (x,5) , ua=1us(x,9) (x,9)eS

lies in the set D of points of Ey in which Q is positive definite.

If a second solution ws exists, both sides of (2.1) vanish. Since MzeD,
this implies p1 = pa = p3 = ps = o and both w;,ws would be constant,
contrary to hypothesis.

As an example consider the identity [4].

@

S

which arises from (2.1) when © = (f1/2)~1. Q is positive definite in
D: fi<o , fa>o

and the integrals in (2.1) exist provided flz}:o , fo==o0 in S 4 C.
In this way we obtain.

THEOREM 2.2.—[f w1 =wu1+7tug 7s a non-constant solution of the boundary
problem
Au=o0inS , wu,=h()f(u,v) on C,

for which f(u1,us)==0 , f'(ur,u3) < o hold in S + C, no other solution
wy = uy + tug exists for which f (uz,us)==0, f'(u2, us) >0 hold in S + C.
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The requirement that Mg lie in D places restrictions on the uniqueness
‘theorem and one quite naturally seeks to make these restrictions as light. as
possible by appropriate choice of. 7.

3. THE QUADRATIC FORM Q.—From (2.3) Q changes its sign if = changes
its sign. Consequently if Q is definite, one can assume it is stiti\}e definite
with no loss in generality. The matrix of Q) has a curious property, for its
rank can be even but not odd. Q) will be positive definite, as is well known [8],
if the principal minors in the leading positions are all positive. These turn out
to equal

a,ac— 0%, a(ac— 62 —d?), (ac— b2 — d2)2,
and consequently QQ will be positive definite, provided

(3.1) a>0 , A=8+4+d2—ac<o.

4. PARTIAL DIFFERENTIAL INEQUALITIES.—From (2.3) the two. ine-

qualities (3.1) represent partial differential inequalities for 7. Let us write
the second in the form

(4.1) B2 <
where, after referring to (2.3) we have put

42 a=At—Frt A= . y=ATt+At+At+R)T
Z:fl Ty +f2 Tuy ) 4 =f1’rul*—f27u3 .

Here, and throughout the paper we use the abbreviations

A= p=2 4= 4

dua Jus Sua
When the point x, y, z is confined to the octagon
lz[ + 7]+ el =7

it will, vertices excepted, lie in the spherical ball (4.1).
If we select the.face x + v+ 2z = », we are led, from (4.2), at once to
the linear partial differential equation of first order

43)  ATa et ATt A T (A—fit At T=0.
If f(x,v) is multiplicatively separable, i.e., if
flau,0)=02@d@ , A=0w)Ys) , fo=9@u)y(u),

the method of Lagrange yields a solution

. P (u2) _
(44) T = :é m ) b= const.,
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of (4.3). With this selection for = from (2.3) and (3.1) the inequalities (3.1)
become

@.5) a=Lprso . A=filh—fre<o.

From Theorem 2.1 we obtain
THEOREM 4.1.—1f the boundary problem

4=k 9@ (@) on C,

has a solution wuy + dus regular analytic in S + C, it cannot possess a second
such solution us + tus for whickh the inequalities (4.5) hold in S and the mtegm/s
in (2.1) exist for © chosen as in (4.4).

This theorem forms the starting point for the treatment of the problem
of Levi-Civita in the next section.

Au=o0 in S

5. THE PROBLEM OF LEVI-CIVITA.—This problem comes within the
scope of Theorem 4.1, for by writing the boundary condition in (I) in the
form '

0, = pe=3% sin O p = const.,
the problem is identified with Iy by placing
u=0 , v=1 , k(s)=2p,

by takmg S to be the interior of the unit circle p<<1 and C to be its boundary
e =1. On placing

(5.1) f=e3sinu , fi=e3wsinur , fo= e 3“sinug,

the solution (4.4) becomes

_ 3 (gt ay) _ sinwu
(5.2) T = Fre3Gatuw) ) S
from which it is easy to verify that
a=—/2eS%cosus , b=rhNeBwcosus , ¢=-—keScosuy , d=o0,

and that

A = £2)2 8% cos ug (¢3% cos ug — e3* cos u1) .

Thus the inequalities (3.1) will be satisfied by choosing £< o and reqﬁiring
that ‘

COS %2

|u1]<; , \uz|<% A i

Furthermore the integrals in (2.1) will exist, provided  is regular in S + C.
Introducing the dlrectxons 01,02 and the speeds of ¢;,¢, of the two
flows by placing

(5-3) w =90, w="0 |, %3=logg—c1 , u4=10g%2—
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the inequalities become

3 COS %2

(5.4) 0<%, |00<Z , g>g

COs %1

If we take, ¢, 0 to be polar coordinates in a ‘“ hodograph plane ", the
inequalities (5.4) attach the shaded region in the figure below to the hodograph
point (g7, 0;), and the following theorem becomes apparent.

THEOREM 5.1.—If the problem of Levi-Civita has a solution o = w1 ({)
no second solution o = w2 ({) exists for which the hodograph point (gs,9y)
always lies in the shaded region attached to the point (¢;,90,) in fig. 5.1 by
the inequalities (5.4), and the ratio N = sin Osfsin 01 is regular.

[
cos 8 7

Fig. 5.1,

%
)

The solution (5.2) has the form
=T (ul , u2> 63(?a+”4) .

Any function =t of this form with /1, /2 given by (5.1) renders & = o in (3.1),
as is readily seen from (2.3), and from [5, p. 10] we are led to take

( ) T*cdsuzmcosul,_ X7t —a
5-5 T sinwisinws . COS #1 -+ COS u2

A simple calculation based on (2.3) verifies that

1 — COS #3. -COS %2 sin us sin 71
.6 Q= — " "7 2 26 = — = 72 - 72
<5 ) ’ sin? 71 1 ’ sinz; 1 + sinwug  2)°

I — COS 241 COS %2
c=———y—r2 , d=o0,
SN~ %2’
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or, if one desires to bring out the dependence on the ratio A = sin us/sin 21, that

. X4 cos®us 9 A 2 -1.,2
(5-7) 2= T coswicosms 1 ? 2b= g+ o
7\—2+c052u1 2
€= I+ coswicosus 2 d=o.

where, in both cases, from (3.3),

3 3

; 2 8uy — (91 2 3uy — (92

(5.8) rl—e”—-(£> , 7’2—6”,—(£>.

Using (5.6) we compute A from (3.1) and (5.6) as
A= (71 cos? % — #g cos? %) (7’1 sin2 % — 79 sin2 —Z;I—> .

[(r1 + 72)2 — (71 cos ua + 73 cos u1)?] csc2 1 csc ug,

and consequently A< o provided

. o 4/3 0 4/3
Sin ? gz COS 7 .
(5.9) o] << . if 02< 0,
sin % 71 cos -~
2 2
0 \*3 .0 \43
cos — 7 sin —
or <= <| — if 03> 6;.
01 7 . O
cos — 1, sin —

The inequalities (5.9) are portrayed by the shaded areas in fig. 5.2 below

(qlrel)
(q2,6,)
7/
8
COS+ 4
q=q,(—=2-)"
cosf'

Fig. 5.2.
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Given two flows
Qz':gi(p:G) ) ez'=6i<9:6>: (Z-:I)2>:

for which [0:| 4 |02] <= and A1, A = sin Oy/sin 6 are regular, it is clear
from (5.5) and (5.7) that the integrals in (2.1) exist. Consequently since
A <o in the shaded region in Fig. 5.2 we have

THEOREM 5.2.—1If the problem of Levi-Civita has a solution o1(§) = 01477,
no second solution wz (L) = 02+ ity exists for which the hodograph point (gs , 05)
always lies in the shaded region attached to the point (¢, ,9,) in fig. (5.2) by the
tnequalities (5.9) and for which the ratios X1, \ = sin Oy/sin 01 are regular
m |{] <1 and [01] + 02| < .
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