Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Dennis Dunninger, Monroe Harnish Martin

On a uniqueness question of Levi-Civita

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 41 (1966), n.6, p. 452-459.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1966_8_41_6_452_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

NOTE PRESENTATE DA SOCI

Analisi matematica. - On a uniqueness question of Levi-Civita ${ }^{(4)}$. Nota di Dennis Dunninger ${ }^{(")}$ e Monroe H. Martin, presentata ${ }^{(* *)}$ dal Corrisp. G. Fichera.

Sunto. - Si considera un problema pòsto da Levi-Civita nella teoria delle onde periodiche irrotazionali in un fluido incompressibile. Esso consiste nel provare l'unicità di una funzione olomorfa nel disco unitario verificante una condizione al contorno non lineare. Vengono date diverse condizioni sotto le quali si ha la richiesta unicità.

Introduction.-In 1925 Levi-Civita [r] reduced the mathematical theory of periodic, irrotational waves of finite amplitude in an incompressible fluid of infinite depth to the following boundary problem.

Determine all functions

$$
\omega(\zeta)=\theta+i \tau, \quad \omega(\mathrm{o})=\mathrm{o}
$$

of the complex variable $\zeta=p e^{i \sigma}$ holomorphic in the unit circle $|\zeta|<1$ and subject to the condition

$$
\begin{equation*}
\frac{d \tau}{d \sigma}=p e^{-3 \tau} \sin \theta, \quad p=\text { const. } \tag{I}
\end{equation*}
$$

on its boundary.
The constant p is non-dimensional. Actually

$$
p=\frac{g \lambda}{2 \pi c^{2}},
$$

where λ is the wavelength, c is the velocity of propagation of the wave and g is the acceleration of gravity. To insure that the velocities of the fluid particles are small relative to c, one requires that $|\omega|<\delta$ for some sufficiently small positive number δ. Here θ is the angle of inclination of the flow to the horizontal and τ is related [$\mathrm{I}, \mathrm{p} .275$] to the speed q by $\tau=\log (q / c)$.

Levi-Civita demonstrated existence and uniqueness of the solution provided p is sufficiently close to unity. He pointed out further that if one is interested only in the existence of the solution, only the values $p \leqq$ i need be considered, since one can always regard n waves each of length λ as a single wave of length $\lambda_{1}=n \lambda$ for which $p_{1}=n p$.

On the other hand on p. 284 of his memoir [r] he writes " Toutefois il n'est pas immediatement évident que les seules solutions de (I) pour $p>\mathrm{I}$ soient

[^0]elles qui l'on peut construire de la sorte. Je crois bien qu'il ent soit ainsi, mais je n'ai pas analysé exactement la question ". The question was considered again in 193I by Lichtenstein [2] who using the theory of non-linear integral equations demonstrated existence and uniqueness for the solution if $p=m-x$, for any positive integer m provided x is sufficiently small. An excellent account of modern work on the subject and on water waves in general is given by Stoker [3].

Clearly the problem belongs to a general class of boundary problems which can be formulated for a holomorphic function $w(z)=u+i v$ of a complex variable $z=x+i y$, namely

Determine all functions $w(z)=u+i v$ of the complex variable $z=x+i y$, holomorphic in a region S bounded by an analytic arc C upon which

$$
\begin{equation*}
u_{n}=h(s) f(u, v), \quad s=\text { arc length of } \mathrm{C}, \tag{I'}
\end{equation*}
$$

where u_{n} denotes the external normal derivative of u on C, the functions $f(u, v), h(s)$, holomorphic in their arguments, being given in advance.

This paper is devoted to the determination of conditions under which the solution to problem (I^{\prime}) is unique, with special attention paid to Levi-Civita's problem (I).
2. The integral identíty.-Consider two functions

$$
w_{1}(z)=u_{1}+i u_{3} \quad, \quad w_{2}(z)=u_{2}+i u_{4}
$$

holomorphic in the region S . The unusual designation of their real and imaginary parts turns out to have advantages later on. Following Monge, we adopt the notation

$$
p_{k}=\frac{\partial u_{k}}{\partial x} \quad, \quad q_{k}=\frac{\partial u_{k}}{\partial y}, \quad(k=\mathrm{I}, 2,3,4)
$$

and observe that the Cauchy-Riemann equations for $w_{1}(z), w_{2}(z)$ take the form

$$
p_{1}=q_{3}, q_{1}=-p_{3} \quad ; \quad p_{2}=q_{4}, q_{2}=-p_{4} .
$$

A straightforward application of Gauss' theorem verifies the formal integral identity

$$
\begin{equation*}
\int_{\mathrm{C}} \tau\left(f_{2} \frac{\partial u_{1}}{\partial n}-f_{1} \frac{\partial u_{2}}{\partial n}\right) d s=\int_{\mathrm{S}} \mathrm{Q} d \mathrm{~S}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=a p_{1}^{2}+2 b p_{1} p_{2}+c p_{2}^{2}+2 d\left(p_{2} p_{3}-p_{1} p_{4}\right)+a p_{3}^{2}+2 b p_{3} p_{4}+c p_{4}^{2} \tag{2.2}
\end{equation*}
$$

is a quadratic form in $p_{1}, p_{2}, p_{3}, p_{4}$, with coefficients

$$
\begin{equation*}
a=f_{2} \tau_{u_{1}}, 2 b=\left(f_{2} \tau\right)_{u_{2}}-\left(f_{1} \tau\right)_{u_{1}}, c=-f_{1} \tau_{u_{2}}, 2 d=-\left(f_{1} \tau\right)_{u_{3}}-\left(f_{2} \tau\right)_{u_{4}} \tag{2.3}
\end{equation*}
$$

in which the function $\tau=\tau\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ is at our disposal and

$$
f_{1}=f_{1}\left(u_{1}, u_{3}\right) \quad, \quad f_{2}=f_{2}\left(u_{2}, u_{4}\right)
$$

are functions, either specified in advance arbitrarily, or related to the boundary problem (I^{\prime}) by selecting

$$
f_{1}=f\left(u_{1}, u_{3}\right) \quad, \quad f_{2}=f\left(u_{2}, u_{4}\right)
$$

The identity (2.I) is the source of our uniqueness theorems. Let D denote the set of points of the four-dimensional Euclidean space E_{4} upon which Q is positive definite. The functions f_{1}, f_{2} being given, D obviously depends on the choice of τ. This function τ should, of course, not be confused with the function τ introduced by Levi-Civita and referred to in the introduction.

The following theorem illustrates the type of uniqueness theorem we can expect.

THEOREM 2.I.-If $w_{1}=u_{1}+i u_{3}$ is a non-constant solution of the boundary problem

$$
\Delta u=0 \text { in } \mathrm{S}, \quad u_{n}=h(s) f(u, v) \text { on } \mathrm{C},
$$

no other solution $w_{2}=u_{2}+i u_{4}$ exists for which the integrals in (2.1) exist and the manifold
$\mathrm{M}_{2}: \quad u_{1}=u_{1}(x, y), u_{2}=u_{2}(x, y), u_{3}=u_{3}(x, y), u_{4}=u_{4}(x, y) \quad(x, y) \varepsilon \mathrm{S}$
lies in the set D of points of E_{4} in which Q is positive definite.
If a second solution w_{2} exists, both sides of (2.1) vanish. Since $M_{2} \varepsilon D$, this implies $p_{1}=p_{2}=p_{3}=p_{4}=0$ and both w_{1}, w_{2} would be constant, contrary to hypothesis.

As an example consider the identity [4].

$$
\begin{equation*}
\text { 4) } \int_{\mathrm{C}}\left(\frac{\partial u_{1}}{\partial n} \frac{\frac{\partial u_{2}}{\partial n}}{f_{1}}-\frac{f_{\mathrm{S}}}{f_{2}}\right) d s=\int_{\mathrm{S}}\left[-\frac{f_{1}^{\prime}}{f_{1}^{2}}\left(p_{1}^{2}+p_{3}^{2}\right)+\frac{f_{2}^{\prime}}{f_{2}^{2}}\left(p_{2}^{2}+p_{4}^{2}\right)\right] d \mathrm{~S}, \quad f_{1}^{\prime}=\frac{\partial f_{1}}{\partial u_{1}}, f_{2}^{\prime}=\frac{\partial}{\dot{\partial}} \tag{2.4}
\end{equation*}
$$

which arises from (2.1) when $\tau=\left(f_{1} f_{2}\right)^{-1} \cdot \mathrm{Q}$ is positive definite in

$$
\mathrm{D}: f_{1}^{\prime}<\mathrm{o} \quad, \quad f_{2}^{\prime}>\mathrm{o}
$$

and the integrals in (2.1) exist provided $f_{1} \neq 0, f_{2} \neq 0$ in $S+C$.
In this way we obtain.
THEOREM 2.2.-If $w_{1}=u_{1}+i u_{3}$ is a non-constant solution of the boundary problem

$$
\Delta u=0 \text { in } \mathrm{S} \quad, \quad u_{n}=h(s) f(u, v) \text { on } \mathrm{C}
$$

for which $f\left(u_{1}, u_{3}\right) \neq 0, f^{\prime}\left(u_{1}, u_{3}\right)<0$ hold in $\mathrm{S}+\mathrm{C}$, no other solution $w_{2}=u_{2}+i u_{4}$ exists for which $f\left(u_{2}, u_{4}\right) \neq 0, f^{\prime}\left(u_{2}, u_{4}\right)>0$ hold in $\mathrm{S}+\mathrm{C}$.

The requirement that M_{2} lie in D places restrictions on the uniqueness theorem and one quite naturally seeks to make these restrictions as light as possible by appropriate choice of τ.
3. The quadratic form Q.-From (2.3) Q changes its sign if τ changes its sign. Consequently if Q is definite, one can assume it is positive definite with no loss in generality. The matrix of Q has a curious property, for its rank can be even but not odd. Q will be positive definite, as is well known [8], if the principal minors in the leading positions are all positive. These turn out to equal

$$
a, a c-b^{2}, a\left(a c-b^{2}-d^{2}\right),\left(a c-b^{2}-d^{2}\right)^{2}
$$

and consequently Q will be positive definite, provided

$$
\begin{equation*}
a>0 \quad, \quad \Delta=b^{2}+d^{2}-a c<0 \tag{3.I}
\end{equation*}
$$

4. Partial differential inequalities.-From (2:3) the two inequalities (3.1) represent partial differential inequalities for τ. Let us write the second in the form

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}<r^{2} \tag{4.I}
\end{equation*}
$$

where, after referring to (2.3) we have put

$$
\begin{array}{ll}
a=f_{1} \tau_{u_{1}}-f_{2} \tau_{u_{2}}+\left(f_{1}^{\prime}-f_{2}^{\prime}\right) \tau & , \quad y=f_{1} \tau_{u_{3}}+f_{2} \tau_{u_{4}}+\left(\dot{f}_{1}+\dot{f_{2}}\right) \tau \tag{4.2}\\
z=f_{1} \tau_{u_{1}}+f_{2} \tau_{u_{2}} & , \quad r=f_{1} \tau_{u_{1}}-f_{2} \tau_{u_{2}}
\end{array}
$$

Here, and throughout the paper we use the abbreviations

$$
f_{1}^{\prime}=\frac{\partial f_{1}}{\partial u_{1}}, f_{2}^{\prime}=\frac{\partial f_{2}}{\partial u_{2}}, \dot{f_{1}}=\frac{\partial f_{1}}{\partial u_{3}}, \dot{f_{2}}=\frac{\partial f_{2}}{\partial u_{4}} .
$$

When the point x, y, z is confined to the octagon

$$
|x|+|y|+|z|=r
$$

it will, vertices excepted, lie in the spherical ball (4.1).
If we select the face $x+y+z=r$, we are led, from (4.2), at once to the linear partial differential equation of first order

$$
f_{1} \tau_{u_{1}}+f_{2} \tau_{u_{2}}+f_{1} \tau_{u_{3}}+f_{2} \tau_{u_{\mathrm{s}}}+\left(f_{1}^{\prime}-f_{1}^{\prime}+\dot{f_{1}}+\dot{f_{2}}\right) \tau=0 .
$$

If $f(u, v)$ is multiplicatively separable, i.e., if

$$
f(u, v)=\varphi(u) \psi(v) \quad, \quad f_{1}=\varphi\left(u_{1}\right) \psi\left(u_{3}\right) \quad, \quad f_{2}=\varphi\left(u_{2}\right) \psi\left(u_{4}\right)
$$

the method of Lagrange yields a solution

$$
\begin{equation*}
\tau=k \frac{\varphi\left(u_{2}\right)}{\varphi\left(u_{1}\right) \psi\left(u_{3}\right) \psi\left(u_{4}\right)}, \quad k=\text { const. }, \tag{4.4}
\end{equation*}
$$

of (4.3). With this selection for τ from (2.3) and (3.1) the inequalities (3.1) become

$$
\begin{equation*}
a=\frac{-f_{1}^{\prime}}{f_{1}} f_{2} \tau>0 \quad, \quad \Delta=f_{2}^{\prime}\left(f_{2}^{\prime}-f_{1}^{\prime}\right) \tau^{2}<0 \tag{4.5}
\end{equation*}
$$

From Theorem 2.I we obtain
Theorem 4.I.-If the boundary problem

$$
\Delta u=0 \text { in } \mathrm{S} \quad, \quad u_{n}=h(s) \varphi(u) \psi(v) \text { on } \mathrm{C}
$$

has a solution $u_{1}+i u_{3}$ regular analytic in $\mathrm{S}+\mathrm{C}$, it cannot possess a second such solution $u_{2}+i u_{4}$ for which the inequalities (4.5) hold in S and the integrals in (2.1) exist for τ chosen as in (4.4).

This theorem forms the starting point for the treatment of the problem of Levi-Civita in the next section.
5. The problem of Levi-Civita.-This problem comes within the scope of Theorem 4.I, for by writing the boundary condition in (I) in the form

$$
\theta_{n}=p e^{-3 \tau} \sin \theta \quad p=\text { const. }
$$

the problem is identified with (I^{\prime}) by placing

$$
u=\theta \quad, \quad v=\tau \quad, \quad h(s)=p
$$

by taking S to be the interior of the unit circle $\rho<\mathrm{I}$ and C to be its boundary $\rho=\mathrm{I}$. On placing

$$
\begin{equation*}
f=e^{-3 v} \sin u \quad, \quad f_{1}=e^{-3 u_{3}} \sin u_{1} \quad, \quad f_{2}=e^{-3 u_{4}} \sin u_{2} \tag{5.1}
\end{equation*}
$$

the solution (4.4) becomes

$$
\begin{equation*}
\tau=k \lambda e^{3\left(u_{3}+u_{\mathrm{u}}\right)} \quad, \quad \lambda=\frac{\sin u_{2}}{\sin u_{1}} \tag{5.2}
\end{equation*}
$$

from which it is easy to verify that
$a=-k \lambda^{2} e^{3 u_{3}} \cos u_{1} \quad, \quad b=k \lambda e^{3 u_{3}} \cos u_{2} \quad, \quad c=-k e^{3 u_{4}} \cos u_{2} \quad, \quad \dot{d}=0$, and that

$$
\Delta=k^{2} \lambda^{2} e^{6 u_{3}} \cos u_{2}\left(e^{3 u_{3}} \cos u_{2}-e^{3 u_{\mathrm{s}}} \cos u_{1}\right) .
$$

Thus the inequalities (3.1) will be satisfied by choosing $k<0$ and requiring that

$$
\left|u_{1}\right|<\frac{\pi}{2}, \quad\left|u_{2}\right|<\frac{\pi}{2} \quad, \quad e^{3 u_{4}}>e^{3 u_{3}} \frac{\cos u_{2}}{\cos u_{1}} .
$$

Furthermore the integrals in (2.1) will exist, provided λ is regular in $S+C$.
Introducing the directions θ_{1}, θ_{2} and the speeds of q_{1}, q_{2} of the two flows by placing

$$
\begin{equation*}
u_{1}=\theta_{1} \quad, \quad u_{2}=\theta_{2} \quad, \quad u_{3}=\log \frac{q_{1}}{c} \quad, \quad u_{4}=\log \frac{q_{2}}{c} \tag{5.3}
\end{equation*}
$$

the inequalities become

$$
\begin{equation*}
\left|\theta_{1}\right|<\frac{\pi}{2}, \quad\left|\theta_{2}\right|<\frac{\pi}{2} \quad, \quad q_{2}^{3}>q_{1}^{3} \frac{\cos u_{2}}{\cos u_{1}} . \tag{5.4}
\end{equation*}
$$

If we take, q, θ to be polar coordinates in a "hodograph plane", the inequalities (5.4) attach the shaded region in the figure below to the hodograph point (q_{1}, θ_{1}), and the following theorem becomes apparent.

Theorem 5.I.-If the problem of Levi-Civita has a solution $\omega=\omega_{1}(\zeta)$ no second solution $\omega=\omega_{2}(\zeta)$ exists for which the hodograph point $\left(q_{2}, \theta_{2}\right)$ always lies in the shaded region attached to the point $\left(q_{1}, \theta_{1}\right)$ in fig. 5.1 by the inequalities (5.4), and the ratio $\lambda=\sin \theta_{2} / \sin \theta_{1}$ is regular.

Fig. 5.1.

The solution (5.2) has the form

$$
\tau=\mathrm{T}\left(u_{1}, u_{2}\right) e^{3\left(u_{3}+u_{4}\right)} .
$$

Any function τ of this form with f_{1}, f_{2} given by (5.I) renders $d=0$ in (3.1), as is readily seen from (2.3), and from [5, p. Io] we are led to take

$$
\begin{equation*}
\mathrm{T}=\frac{\cos u_{2}-\cos u_{1}}{\sin u_{1} \sin u_{2}}=\frac{\lambda^{-1}-\lambda}{\cos u_{1}+\cos u_{2}} . \tag{5.5}
\end{equation*}
$$

A simple calculation based on (2.3) verifies that

$$
\begin{gather*}
a^{\prime}=\frac{1-\cos u_{1} \cos u_{2}}{\sin ^{2} u_{1}} r_{1}^{2} \quad, \quad 2 b=-\left(\frac{\sin u_{2}}{\sin u_{1}} r_{1}^{2}+\frac{\sin u_{1}}{\sin u_{2}} r_{2}^{2}\right), \tag{5.6}\\
c=\frac{1-\cos u_{1} \cos u_{2}}{\sin ^{2} u_{2}} r_{2}^{2} \quad, \quad d=0,
\end{gather*}
$$

or, if one desires to bring out the dependence on the ratio $\lambda=\sin u_{2} / \sin u_{1}$, that

$$
\begin{gather*}
a=\frac{\lambda^{2}+\cos ^{2} u_{2}}{\mathrm{I}+\cos u_{1} \cos u_{2}} r_{1}^{2} \quad, \quad 2 b=-\left(\lambda r_{1}^{2}+\lambda^{-1} r_{2}^{2}\right), \tag{5.7}\\
c=\frac{\lambda^{-2}+\cos ^{2} u_{1}}{\mathrm{I}+\cos u_{1} \cos u_{2}} r_{2}^{2} \quad, \quad d=0 .
\end{gather*}
$$

where, in both cases, from (5.3),

$$
\begin{equation*}
r_{1}^{2}=e^{3 u_{3}}=\left(\frac{q_{1}}{c}\right)^{3} \quad, \quad r_{2}^{2}=e^{3 u_{4}}=\left(\frac{q_{2}}{c}\right)^{3} . \tag{5.8}
\end{equation*}
$$

Using (5.6) we compute Δ from (3.1) and (5.6) as

$$
\begin{aligned}
& \Delta=\left(r_{1} \cos ^{2} \frac{u_{2}}{2}-r_{2} \cos ^{2} \frac{u_{1}}{2}\right)\left(r_{1} \sin ^{2} \frac{u_{2}}{2}-r_{2} \sin ^{2} \frac{u_{1}}{2}\right) . \\
& \cdot\left[\left(r_{1}+r_{2}\right)^{2}-\left(r_{1} \cos u_{2}+r_{2} \cos u_{1}\right)^{2}\right] \csc ^{2} u_{1} \csc ^{2} u_{2},
\end{aligned}
$$

and consequently $\Delta<0$ provided

$$
\begin{align*}
& \left(\frac{\sin \frac{\theta_{2}}{2}}{\sin \frac{\theta_{1}}{2}}\right)^{4 / 3}<\frac{q_{2}}{q_{1}}<\left(\frac{\cos \frac{\theta_{2}}{2}}{\cos \frac{\theta_{1}}{2}}\right)^{4 / 3} \text { if } \theta_{2}<\theta_{1} \tag{5.9}\\
& \text { or }\left(\frac{\cos \frac{\theta_{2}}{2}}{\cos \frac{\theta_{1}}{2}}\right)^{4 / 3}<\frac{q_{2}}{q_{1}}<\left(\frac{\sin \frac{\theta_{2}}{2}}{\sin \frac{\theta_{1}}{2}}\right)^{4 / 3} \text { if } \theta_{2}>\theta_{1}
\end{align*}
$$

The inequalities (5.9) are portrayed by the shaded areas in fig. 5.2 below

Fig. 5.2.

Given two flows

$$
q_{i}=q_{i}(\rho, \sigma) \quad, \quad \theta_{i}=\theta_{i}(\rho, \sigma), \quad(i=\mathrm{I}, 2)
$$

for which $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$ and $\lambda^{-1}, \lambda=\sin \theta_{2} / \sin \theta_{1}$ are regular, it is clear from (5.5) and (5.7) that the integrals in (2.1) exist. Consequently since $\Delta<0$ in the shaded region in Fig. 5.2 we have

Theorem 5.2.-If the problem of Levi-Civita has a solution $\omega_{1}(\zeta)=\theta_{1}+i \tau_{1}$, no second solution $\omega_{2}(\zeta)=\theta_{2}+i \tau_{2}$ exists for which the hodograph point $\left(q_{2}, \theta_{2}\right)$ always lies in the shaded region attached to the point $\left(q_{1}, \theta_{1}\right)$ in fig. (5.2) by the inequalities (5.9) and for which the ratios $\lambda^{-1}, \lambda=\sin \theta_{2} / \sin \theta_{1}$ are regular in $|\zeta| \leqq \mathrm{I}$ and $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$.

Bibliography.

[i] T. Levi-Civita, Détermination rigoureuse des ondes permanentes d'ampleur finie, "Math. Ann.», 93, 264-3I4 (1925).
[2] L. Lichtenstein, Nichtlineare Integral gleichungen, Leipsig (i93i), pp. 47-54.
[3] J. J. Stoker, Water Waves, Interscience publishers, New York (1957), pp. 5I3-543.
[4] D. Dunninger, Uniqueness and Comparison theorems for harmonic functions under boundary conditions, Thesis, University of Maryland (1966).
[5] M. H. Martin, On the uniqueness of harmonic functions under boundary conditions "J. Math. and Physics», XLII I-I3, (I963).
[6] A. I. Nekrassov, On steady waves, «Izv. Ivanovo-Voznesensk. Politekhn», No. 3 (1921).
[7] T. V. Davies, Symmetrical, finite amplitude gravity waves, U. S. National Bureau of Standards Circular 52I (1952), pp. 55-60.
[8] W. L. Ferrar, Algebra, Oxford University Press (1950).

[^0]: (*) Part of this work was carried out while this author was an NSF pre-doctoral fellow at the University of Maryland.
 (**) Research supported in part by Contract OOR-DA-AROD-31-124-G676 with the U. S. Army Research Office, Durham.
 (***) Nella seduta del io dicembre 1966.

