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Chimica (Principi di Ingegneria Chimica). — Boundary Layer  
Flows o f viscoelastic materials. Nota di G i a n n i  A s t a r i t a  e G i u s e p p e  

M a r r u c c i , presentata dal Corrisp. G . M a l q u o r i .

R iassunto. — Sulla base dei concetti sviluppati in una recente analisi dei flussi stazio- 
narii di liquidi viscoelastici, viene esaminato il caso di flussi di strato limite. Tale analisi mostra 
che lo strato limite si estende in modo tale da far sì che il campo di flusso esterno o idrodina­
mico sia « lento ».

L’analisi viene successivamente ristretta al caso del flusso lungo una lastra piana ad 
angolo di incidenza nullo. Viene dimostrato che lo strato limite si sviluppa a monte del punto 
di ristagno, e che la zona interessata a tale comportamento anomalo ha dimensioni dell’ordine 
di grandezza del prodotto della velocità del campo esterno per il tempo naturale del liquido 
considerato. Tali dimensioni sono assai maggiori di quelle della zona di non validità delle 
analisi di strato limite per liquidi Newtoniani. La distribuzione di velocità nella zona del punto 
di ristagno viene valutata qualitativamente.

I n t r o d u c t io n .

B oundary layer flows of viscoelastic m aterials have been considered by seve­
ral A uthors [1—5]. A lthough these analyses are of considerable interest, and 
show both the difficulty of the problem  to be studied and the possible ways of 
fruitful attack, the approach chosen has been in general a trad itional one. The 
custom ary boundary  layer approxim ations have been m ade, and the resulting 
equations of m otion have been integrated after insertion of m ore or less sophist­
icated constitutive equations of the viscoelastic type. Such a procedure, although 
obviously correct in analyzing m aterials whose rheological behavior is indeed 
governed by the assum ed constitutive equation, avoids attacking two funda­
m ental i problem s. These are:

(1) A re the usual boundary  layer approxim ations valid for viscoelastic 
liquids, a t least as m uch as for N ew tonian liquids, and, if not, w hat type of 
approxim ations need to be m ade instead?

(2) Considering th a t constitutive equations usually assum ed in ana ly ­
zing flow phenom ena have only asym ptotic validity  for real fluids, is a boun­
dary  layer flow one for which such constitutive equations m ay indeed be used 
with some degree of confidence?

A  partia l answer to these problem s has recently been presented by  M et- 
zner and A starita  [1 ] ; in this note, a fu rther step in this direction is hopefully 
contributed.

T he analysis given below is based on the results recently published by 
A starita  [6]. A nalyzing in general term s steady flows of viscoelastic m aterials, (*)

(*) Nella seduta del 12 novembre 1966.
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A starita  defines two dimensionless groups, Ni and N 2, which are relevant in 
the analysis of such flows. If  lx  is the invarian t of a tensor X^- defined by:

(1) lx  =  2 X,;,. X *

and if e{j  and w is- are the rate-of-strain  and the vorticity  tensor, respectively, 
the groups N i and N2 are defined as:

(2) Ni =  |/X e

(3) n 2 =  iT ~ ^ T w e

where 0 is the “ natu ra l tim e ” of the liquid [7-10].
The two m ost im portan t conclusions reached by A starita  [6] are:

A) W hen the group Ni is sm aller than  unity , the flow is “ slow ” , in 
th e  sense th a t asym ptotic expansions of the “ n-o rd er fluid ” type [11] are 
valid.

B) Fluids which are characterized by an asym ptotically exponential 
ra te of stress relaxation m ay flow steadily at any value of N i , but will develop 
infinite stresses at values of N2 approaching some critical upper limit of the 
order of unity .

Concepts derived from recent analyses of unsteady  flows [2, 6, 9, 10, 
1 ^ 14] will also be used. In  particular, if t*  is the time elapsed from startup  
of flow, a D eborah num ber t */0 can be defined; the following general con­
clusion is now generally accepted:

C) W hen the D eborah num ber approaches unity , the rheological re ­
sponse of viscoelastic m aterials is solidlike.

I nternal  and  external  flow  f ie l d s .

In  considering a boundary  layer flow, the flow field m ay conceptually 
be divided into an “ external ” and an “ internal ” field. The external field is 
defined as th a t region of space where the hydrodynam ic (or in viscid) equa­
tions of m otion correctly po rtray  the actual flow field; the internal field is 
the rem ainder of the entire flow field. The term  “ boundary  layer ” is equiva­
lent to internal field.

If  the flow field is uniform  at infinity, the entire external field is irrota- 
tional, because the hydrodynam ic equations of m otion are circulation-preserv­
ing. Thus, in the entire external field:

(4) Iw =  o

and, considering equations 2 and 3:

(5) Ni =  N2 .

On the basis of conclusion B), equation 5 implies th a t Ni is bound to be 
less than  un ity  in the external field. Thus, considering A), the flow in the
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external field is slow. The boundary  layer region extends far enough so tha t 
the entire external field is slow.

This conclusion was in p art envisaged is a discussion of flow around spher­
ical gas bubbles [15], as well as in the analysis of M etzner and A starita  [1] 
of the flow around small diam eter cylinders, such as used in hot-wire velocity 
probes. In  the m ore general form obtained here, this conclusion implies ano­
malous kinem atics of m otion in every stagnation region.

Now restrict the attention to flow past a flat plate at zero incidence. 
L et x  be the distance from the leading edge, y  the distance from the plate, 
m and v  the velocity com ponents in the x  and y  directions, and y < 8  (x) the 
boundary  layer region.

T he custom ary boundary  layer approxim ation is the assum ption that:

In  the following, it will be shown th a t equation 6 m ay lead to appreciable 
errors in the case of liquids characterized by non-negligible values of 6.

The flow pattern  considered is a two-dim ensional one, so th a t only four 
components of the rate-of-strain tensor are to be considered. Of these, by 
definition of the boundary  layer thickness 8 , du/ $y  is:

where U  is the free stream  velocity. On the basis of hypothesis 6 one obtains:

Flat pla t e . P e r m issib le  a ppro x im atio ns .

.(6) 8 (o) =  o .

(7)

(8)

and, by requirem ent of continuity,

(9)

Integration of equation 9 yields:

(10)

and thus:

0 0

Substitution of Equations 7-11 into 2 and 3 yields:

(13) n 2 =  tre/*.
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E quation [13] is, in view of conclusion B), impossible to hold true at 
x  <  U 0. Thus, the only hypothesis m ade, nam ely, equation 6, m ust be 
rejected, or at least an analysis based on the same can be accepted only at
* > ue.

There m ay be some difficulty in accepting results obtained from an ana ly ­
sis of steady flows, such as A) and B), as applied to a boundary  layer flow, 
which is unsteady in a L agrangian  sense. A lthough in fact the physical reason- 
ing leading to A) and B) suggests th a t at least qualitative validity  is to be 
expected also for unsteady  flows, it is worthwhile considering the problem  from 
a different viewpoint.

I f  equation 6 is accepted, a m aterial element is essentially undeform ed up 
to the leading edge. Thus, the boundary  layer flow can be regarded as a 
suddenly accelerated flow with a value of t*  given by U/x.  In  conclusion, 
the D eborah num ber is:

In  the region x  < U 0, solidlike behavior is expected, in view of conclusion C). 
Thus, stresses would be governed by the total deform ation of a m aterial ele­
m ent, w ith the configuration at x  <  O as the ground state. This would lead 
to abnorm ally high stresses, so th a t again E quation 6 is seen to be unrealistic 
in the region x  <  U 0S

T he flow in the leading edge region should be analyzed in term s of a real­
istic velocity distribution, such as discussed in the next section, which does 
not assume the valid ity  of equation 6.

Assum e th a t the boundary  layer extends in the upstream  region for a 
distance of the order of UO, so th a t the velocity d istributions u (y)  are of 
the form sketched in fig. 1. By a reasoning analogous to the one leading to 
equations (7)—(11), one obtains, for the region downstream  of the leading edge:

0 4 ) N De = U 0/ r - N 2 .

L ea din g  edge k in em a tic s .

x  >  o.

so th a t the values of Ni and N2 are:

(16)
U0
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Let us now tu rn  our attention to the region upstream  of the leading edge. 
If  the velocity d istribution defect develops linearly, the components of the 
velocity gradient tensor are:

Thus, the groups N2 and Nr>e are easily calculated:

I N 2 =  i

( l8 ) 1 N Pe =  — =  I
U0. U0 x  

U0

and are seen: again to coincide.
E quation  (18) shows th a t the assum ed velocity profile is indeed realistic, 

because it implies th a t the boundary  layer develops upstream  of the leading 
edge, bu t as close to the latter as the elastic character of the liquid allows.

25 . -  RENDICONTI 1966, Voi. XLI, fase. 5 .
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I t  rem ains to be discussed w hether the leading edge region where anom a­
lous behavior is being observed is less or m ore im portan t than  in the case of 
N ew tonian liquids. In  fact, even for the latter the boundary  layer analysis is 
not valid at the leading edge; but the region concerned is so small th a t this 
early  criticism of classical hydrodynam icists to the boundary  layer theory  
has been dismissed as largely im m aterial.

In  the case of N ew tonian liquids, the boundary  layer approxim ation 
breaks down in the region where the Reynolds num ber based on x  is not large: 
say, in first approxim ation, is lower than  unity. Thus, if v is the kinem atic 
viscosity, the critical distance xcn is:

(19) *eN =  O (v/U).

On the basis of equations (13) and (14), the critical distance in the case of 
viscoelastic liquids, ^ ve , is:

(2 0 ) *<VE =  O (U0).

Thus, the considerations developed in this note m ay have relevance 
provided that:

(2 1 ) U0 > v/U

or, equivalently,

(2 2 ) 0 §> v/U2.

Even if v is taken  as 1 0 -1 cm2/sec, i.e., if a ra ther viscous liquid is consid­
ered, condition 22 is fulfilled, a t a free stream  velocity of 100 cm/sec, when 
the natu ra l tim e exceeds 10-5 sec. Considering th a t 0 values of io “ 3-f- io ~ 2 
sec. are not unfrequent in viscoelastic liquids, the conclusion is draw n th a t 
the leading edge region is m uch larger in viscoelastic liquids th an  in New­
tonian liquids, so th a t the developm ent in this paper is of interest even if the 
boundary  layer approxim ations would be satisfactory for N ew tonian liquids. 
T his point can also be considered directly from equations (19) and (20), 
which show that, if 0 =  io “ 2 sec , v =  io -1 cm2/sec, and U  =  100 cm/sec, 
the value of is only io~3 cm, while the value of xcv K is of the order of 1 cm.

D o w n str ea m  r e g io n .

E quations (16) degenerate, at x  >  U 0, into equations (12) and (13). 
This shows th a t an analysis based on equation (6) is asym ptotically  valid 
when x  >  U 0. Therefore, traditional approaches to boundary  layer ana­
lyses of viscoelastic liquids are not w ithout m erit, because they  portray  
the behavior of such liquids in the far downstream  region. Considering that, 
at x  >  U 0, the boundary  layer thickness § is presum ably m uch sm aller 
th an  the distance from  the leading edge x, one has from equation (12):

(23) ■ x  >  u e  , Ni s* u 0/ s .
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E quation 23 shows th a t a region exists where the leading edge effects 
have been dam ped out, yet the value of Ni is still large, so th a t a viscoelastic 
analysis of the trad itional type is both justified and useful.

Yet, when dealing with fluids characterized by natu ra l times exceeding 
io -3 sec, the m ost conspicuous effects of elasticity are to be expected in the 
leading edge region. A n analysis of such effects is beyond the scope of the 
present note* it is hoped th a t the qualitative indications given here, concerning 
the kinem atics of m otion in the leading edge region, m ay constitute the fram e­
work on which such analyses m ay be based.

A ckno w led gem en ts . -  Discussions with A.B. M etzner of the U n i­
versity of Delaware, and a rem ark  of Dr. J. L. W hite in his review of a paper 
by one of the A uthors, have been of help.
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