ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

DOUGLAS DERRY

A Helly-type Theorem for Polygons

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **41** (1966), n.5, p. 290–296. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_41_5_290_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Geometria.** — A Helly-type Theorem for Polygons. Nota di Douglas Derry, presentata ^(*) dal Socio B. Segre.

RIASSUNTO. — Dopo di avere richiamato la definizione ed alcune proprietà inerenti all'ordine di un poligono chiuso di uno spazio proiettivo reale L_n , si dimostra che, se A_1, A_2, \dots, A_m sono m punti di L_n in posizione generica, con $m \ge n + 4$, tali che n + 4qualsivogliano (purché distinti) di essi siano vertici di un poligono d'ordine n di L_n , allora anche gli m punti A_1, A_2, \dots, A_m risultano vertici di un poligono d'ordine n.

I. INTRODUCTION.

A unique norm curve [1] exists which contains n + 3 points in general position in real projective *n*-space L_n . If these n + 3 points are the vertices of a polygon inscribed in the norm curve then this polygon has order *n*. Consequently any n + 3 points in general position in L_n are the vertices of a polygon of order *n* in L_n . This result forms the background for the following theorem which answers a query posed by Prof. B. Grünbaum. If $A_1, A_2, \dots, A_m, m \ge n + 4$, are points of L_n in general position with the property that any n + 4 of these points are the vertices of a polygon of order *n* in L_n , then there is a polygon of order *n* in L_n with the vertices A_1, A_2, \dots, A_m . This result, analogous to Helly's theorem for convex bodies, is the subject of the present note. This is a best possible result for, if n+4 were replaced by n + 3, the condition would place no restriction on the points as was seen above. However the result would not necessarily be true as there are sets of n + 4 points in L_n which are not the vertices of any polygon of order *n* in L_n [3].

Section 2 contains definitions and easily established results used in the proof. In the following section it is shown that if a polygon of order n exists in L_n with the vertices $A_1, A_2, \dots, A_m, m \ge n+3$, in general position in L_n , then this polygon is unique. This fact can be established by induction from the case m = n + 3 previously considered by the author [3]. However, partly to make the present note self-contained, a complete and essentially different proof of this polygon property is given. In the final section the previous material is assembled to establish the theorem.

2. PRELIMINARIES.

2.1. The symbol $[Q_1, Q_2, \cdots]$, where Q_1, Q_2, \cdots are either points or sets of points in L_n , denotes the linear subspace of L_n spanned by Q_1, Q_2, \cdots .

2.2. The symbol $\pi: A_1 A_2 \cdots A_m$ denotes a *closed* polygon in L_n with the vertices A_1, A_2, \cdots, A_m in general position. The subscripts are computed modulo m, e.g. A_1 and A_{1+m} represent the same vertex.

(*) Nella seduta del 12 novembre 1966.

2.3. If, for a polygon $\pi: A_1 A_2 \cdots A_m$ in L_n, L_{n-1} is a hyperplane in L_n such that $A_i \notin L_{n-1}$, $1 \leq i \leq m$, then the maximum number of points of $L_{n-1} \cap \pi$ for all such L_{n-1} is defined to be the *order* of π .

The number of points of $L_{n-1} \cap \pi$ is either even for all L_{n-1} or odd for all L_{n-1} . Thus π is defined to be *even* or *odd* according as a hyperplane L_{n-1} , $A_i \notin L_{n-1}$, $I \leq i \leq m$, exists for which $L_{n-1} \cap \pi$ is even or odd.

2.4. If $A_{i-1} A_i A_{i+1}$ is an arc of a polygon $\pi : A_1 A_2 \cdots A_m$ in L_n , n > 1, m > 3, let $A_{i+1} A_{i-1}$ be the line segment which closes $A_{i-1} A_i A_{i+1}$ so that it becomes an even triangle. The *contraction* of π with respect to the vertex A_i is defined to be the arc $A_{i+1} A_{i+2} \cdots A_{i-1+m}$ of π closed by the segment $A_{i+1} A_{i-1}$. A contraction is even or odd according as π itself is even or odd. The order of a contraction of π is at most that of π .

2.5. If $A_{i-1}A_iA_{i+1}$ is an arc of a polygon $\pi : A_1A_2 \cdots A_m$ in L_n , n > 1, $m \ge 3$, let $\overline{A_{i+1}A_{i-1}}$ be the line segment which closes $A_{i-1}A_iA_{i+1}$ so that it becomes an even triangle. A line L_1 for which $A_i \in L_1 \subseteq [A_{i-1}, A_i, A_{i+1}]$, $L_1 \cap \overline{A_{i+1}A_{i-1}} = \Phi$, is defined to be tangent of π with the point of contact A_i . It is convenient to represent such a tangent by the symbol $L(A_i)$.

2.6. If A_i is any vertex of a polygon $\pi : A_1 A_2 \cdots A_m$ in L_n , n > I, the projection from A_i of the arc $A_{i+1} A_{i+2} \cdots A_{i-1+m}$ of π closed by that of the set of all the tangents $L(A_i)$ defines a polygon in the projected space L_{n-1} which we shall call the projection of π from A_i .

2.7. Two polygons which have the same set of vertices A_1, A_2, \dots, A_m in general position in L_n , n > 1, coincide if they both have an arc $A_u A_1 A_v$ in common and their projections from A_1 coincide.

2.8. A polygon $\pi: A_1 A_2 \cdots A_m$ in L_n for which m > n has at least order n. Such a polygon with the minimum order n will be denoted by the symbol π_n .

2.9. If m > n + 1 it follows with the use of 2.4 that the contraction of a polygon $\pi_n : A_1 A_2 \cdots A_m$ with respect to any one of its vertices is also a polygon of order n in L_n .

2.10. If, for a polygon $\pi_n : A_1 A_2 \cdots A_m$ in L_n , n > I, $A'_i A'_{i+1}$ denotes the projection of the side $A_i A_{i+1}$ of π_n , $i \neq j$, $i + I \neq j$, from the vertex A_j and $A'_{j-1} A'_{j+1}$ that of the tangent set $L(A_j)$ together with the projections of the points A_{j-1}, A_{j+1} then the projection of π_n can be written as $A'_1 A'_2 A'_3 \cdots A'_{j-1} A'_{j+1} \cdots A'_m$ in accordance with 2.6. This projection has order n - I in the projected space and so can be written as $\pi_{n-1} [2]$.

2.11. If S is set of n distinct vertices $A_{p_1}, A_{p_2}, \dots, A_{p_n}$ of a polygon $\pi_n : A_1 A_2 \dots A_m$ in L_n , n > I, then sequences X_1, X_2, \dots, X_n of points of π_n exist for which X_i is a point of the side $A_{p_i} A_{p_i+1}$ and $X_i \to A_{p_i}$, $I \leq i \leq n$, with the property that $A_j \notin [X_1, X_2, \dots, X_n]$, $I \leq j \leq m$, provided only that X_i be sufficiently close to A_{p_i} , $I \leq i \leq n$.

Proof. The subscripts can be adjusted so that $1 \leq p_1 < p_2 < \cdots < p_n < m$. Let X_i be an interior point of the side $A_{p_i}A_{p_i+1}$ of π_n which approaches A_{p_i} , $1 \leq i \leq n$. As the vertices of π_n are in general position $A_{p_1}, A_{p_2}, \cdots, A_{p_n}$ span a hyperplane which contains these vertices but no other vertex of π_n . As $X_i \rightarrow A_{p_i}$, $1 \leq i \leq n$, it follows that $[X_1, X_2, \cdots, X_n]$ is a hyperplane L_{n-1} which also contains no vertex of π_n which is not within S provided only that X_i is sufficiently close to $A_{p_i}, 1 \leq i \leq n$. Suppose at least one vertex of S is within L_{n-1} . In this case let A_{p_j} be the vertex of S with the maximum subscript in L_{n-1} . As $X_j \in L_{n-1}, [A_{p_j}, A_{p_i+1}] =$ $= [A_{p_j}, X_j] \subseteq L_{n-1}$. Hence $A_{p_j+1} \in L_{n-1}$. Because of the adjustment of the subscripts $p_j < p_j + 1 \leq m$. As A_{p_j} was the point of S with the maximum subscript in L_{n-1} As A_{p_j} and the maximum subscript in L_{n-1} and $A_{p_j+1} \notin S$. This contradicts the fact that L_{n-1} contains no vertex of S is false. Therefore $A_j \notin L_{n-1}, 1 \leq j \leq m$, provided only X_i is sufficiently close to $A_{p_i}, 1 \leq i \leq n$. The proof is now complete.

3. A UNIQUENESS PROPERTY FOR POLYGONS π_n .

3.1. If A_i , A_j are distinct vertices of a polygon $\pi_n : A_1 A_2 \cdots A_m$ in L_n , n > I, $m \ge n+3$, then, for a line segment $\overline{A_i A_j}$ which is not a side of π_n , vertices $A_{p_1}, A_{p_2}, \cdots, A_{p_n}$ exist which span a hyperplane L_{n-1} for which $L_{n-1} \cap \overline{A_i A_j} \neq \Phi$, $A_i \notin L_{n-1}$, $A_j \notin L_{n-1}$.

Proof. π_n is the union of the two of its arcs with the endpoints A_i , A_j . Let α be one of these arcs which contains at least three vertices. The subscripts can be adjusted so that A_i , A_j become A_1 , A_k , respectively, and α has the form $A_1 A_2 \cdots A_k$ in which case $\overline{A_i A_i}$ becomes $\overline{A_1 A_k}$ and $k \ge 3$. Let β be the arc $A_k A_{k+1} \cdots A_{1+m}$ complementary to α . As $m \ge n+3$ there are at least n + 1 vertices of π_n different from A_1 , A_k . Let Q be a set of n distinct vertices of π_n for which $A_1 \notin Q$, $A_k \notin Q$ and for which $Q \cap \alpha$ contains an even or odd number of vertices according as the polygon obtained by closing α with the segment $A_1 A_k$ is odd or even. Suppose first that β is a single side of π_n . Hence it consists of $A_1 A_k = A_1 A_m$. In this case as a $A_1 A_k$ is, by the hypothesis, not a side of π_n it must be the complement of the interior of $A_1 A_k$ in the projective line $[A_1, A_k]$. The order of π_n is even or odd according as n is even or odd. That of the polygon obtained by closing α with the segment $A_1 A_k$ is therefore odd or even according as n is even or odd. Hence, if Q is any set of n distinct vertices of π_n different from A₁, A_k, Q satisfies the above conditions. If β contains at least one vertex different from A_1 , A_k then *n* vertices can be chosen so that $Q \cap \alpha$ is even or odd. Hence Q can be chosen to satisfy the above conditions in both cases.

Let $A_{p_1}, A_{p_2}, \dots, A_{p_n}$ be the vertices of the set Q and L_{n-1} the hyperplane spanned by them. By 2.11 sequences of points X_i of π_n exist for which $X_i \in A_{p_i} A_{p_i+1}, X_i \to A_{p_i}, 1 \leq i \leq n$, and $A_j \notin [X_1, X_2, \dots, X_n], 1 \leq j \leq m$, provided only that X_i is sufficiently close to $A_{p_i}, 1 \leq i \leq n$. Now, as $A_{p_i} \neq A_1, A_{p_i} \neq A_k$ the interior of $A_{p_i}A_{p_i+1}$ is in α or β according as A_{p_i} itself is in α or β . Consequently, as $X_i \in A_{p_i}A_{p+1}, X_i$ is in α or β according as A_{p_i} is in α or β . As π_n has order n it follows that $[X_1, X_2, \dots, X_n] \cap \pi_n$ is the set X_1, X_2, \dots, X_n . Moreover $[X_1, X_2, \dots, X_n] \cap \alpha$ and $Q \cap \alpha$ contain the same number of points. But this number is odd or even according as the polygon obtained by closing α with $\overline{A_1 A_k}$ is even or odd. Therefore the hyperplane $[X_1, X_2, \dots, X_n]$ must intersect this polygon in a point not on α i.e. in a point of $\overline{A_1 A_k}$. Now if P be the intersection $L_{n-1} \cap [A_1, A_k]$, P is a single point as $A_1 \notin L_{n-1}, A_k \notin L_{n-1}$. As $[X_1, X_2, \dots, X_n] \to L_{n-1}$ it follows then that $P \in \overline{A_1 A_k}$ and the result is established.

3.2. If, for $m \ge n + 3$, π_n is a polygon with the vertices A_1 , A_2 ,..., A_m in L_n , then π_n is the only polygon of order n with these vertices.

Proof. The points A_1, A_2, \dots, A_m are in general position as they are the vertices of a polygon π_n . If n = 1 π_1 is the projective line and so is unique. If, for n > 1, π'_n , $\pi'_n \neq \pi_n$, is a polygon of order n with the vertices A_1, A_2, \dots, A_m then a side $\overline{A_h, A_k}$ of π'_n exists which is not a side of π_n . By 3.1, applied to π_n , a hyperplane $L_{n-1} = [A_{p_1}, A_{p_2}, \cdots, A_{p_n}]$ exists which intersects $\overline{A_k A_k}$ and for which $A_k \notin L_{n-1}$, $A_k \notin L_{n-1}$. By 2.11, applied to π'_n , sequences of points X_i of π'_n exist for which $X_i \to A_{p_i}$, $i \leq i \leq n$, and for which $A_j \notin [X_1, X_2, \dots, X_n]$, $I \leq j \leq m$, provided only that X_i is sufficiently close to A_{p_i} , $I \leq i \leq n$. Consequently, as $[X_1, X_2, \dots, X_n] \rightarrow$ $\rightarrow [A_{p_1}, A_{p_2}, \cdots, A_{p_n}], [X_1, X_2, \cdots, X_n]$ is a hyperplane which intersects $\overline{A_k A_k}$ while A_k , $A_k \notin [X_1, X_2, \dots, X_n]$ provided only that X_i is sufficiently close to A_{p_i} , $I \leq i \leq n$. $X_i \notin [A_k, A_k]$, $I \leq i \leq n$, provided only that X_i is sufficiently close to A_{p_i} for otherwise, as $X_i \to A_{p_i}$, this would imply that $A_{p_i} \in [A_h, A_k] \cdot A_{p_i}, A_h, A_k$ are distinct as $A_{p_i} \in L_{n-1}$ but $A_h, A_k \notin L_{n-1}$. Hence A_1, A_2, \dots, A_m would not be in general position contrary to the hypothesis. Therefore $[X_1, X_2, \dots, X_n]$ intersects π'_n in n + I distinct points, namely X_1, X_2, \dots, X_n and an interior point of $\overline{A_k A_k}$ in contradiction to the order of π'_n . Hence no such polygon π'_n exists and the result is established.

4. THE THEOREM.

If every n + 4 points of a set of points A_1, A_2, \dots, A_m in general position in $L_n, m \ge n + 4$, are the vertices of a polygon of order n in L_n , then the points A_1, A_2, \dots, A_m themselves are the vertices of a polygon of order n in L_n .

Proof. We assume the result to be false and obtain a contradiction. It is true in L_1 as, in this case, the projective line is the required polygon. Consequently if n is defined to be the least number for which the theorem is false in L_n , then n > 1. For m = n + 4 the result is included in the hypothesis. If m is defined to be the least number for which a set of points A_1, A_2, \dots, A_m exists in L_n for which the theorem is false then m > n + 4.

For *m* so defined let A_1, A_2, \dots, A_m be a set of points in L_n which satisfies the hypothesis but for which no polygon of order *n* exists with these points

as vertices. Any subset $A_1, A_2, \dots, A_{i-1}, A_{i+1}, \dots, A_m$ of this set satisfies the hypothesis as $m - 1 \ge n + 4$. Hence, by the definition of m, a polygon $\pi_n(i)$ exists of order *n* in L_n with the vertices $A_1, A_2, \cdots, A_{i-1}, A_{i+1}, \cdots, A_m$, $I \leq i \leq m$. If A'_2, A'_3, \dots, A'_m be the projections of A_2, A_3, \dots, A_m , respectively, from A_1 in the projected space L_{n-1} , then these points also satisfy the hypothesis of the theorem in L_{n-1} . The m-1 projected points are in general position in L_{n-1} otherwise the original points would not be in general position in $L_n \cdot m - I \ge (n - I) + 4$ follows from the assumption that m > n + 4. Finally we check that any set Q of (n-1) + 4 = n + 3 points of A'_2, A'_3, \dots, A'_m are the vertices of a polygon of order n-1 in L_{n-1} . There is, by the hypothesis, a polygon of order *n* the vertices of which are the n + 3points of A_1, A_2, \dots, A_m which are projected into Q and the point A_1 . The projection of such a polygon from its vertex A1 is, by 2.10, a polygon of order n - 1 with the set of vertices Q. As the theorem is valid in L_{n-1} because of the definition of n we may now apply it to the set A'_2 , A'_3 , \cdots , A'_m and so obtain the result that a polygon π_{n-1} of order n-1 exists with the vertices A'_2 , A'_3 , \cdots , A'_m . From now onward we assume that the subscripts have been adjusted so that π_{n-1} can be written as $A'_2 A'_3 \cdots A'_m$.

Let $\pi_n(i,j)$ be the contraction of $\pi_n(i)$ with respect to the vertex $A_j, A_i \neq A_i \cdot \pi_n(i,j)$ has order n by 2.9 as $\pi_n(i)$ has m - 1 vertices and m - 1 > n + 1 follows from the assumption that m > n + 4. Let $\pi_{n-1}(i)$ be the contraction of π_{n-1} with respect to $A'_i, i \neq 1$, and $\pi_{n-1}(i,j)$ that of $\pi_{n-1}(i)$ with respect to $A'_j, j \neq 1$, $A'_i \neq A'_j$. Again by 2.9 these contractions have order n - 1 as, in the first case, m - 1 > (n - 1) + 1 while in the second m - 2 > (n - 1) + 1 because m > n + 4. By 3.2 the polygons $\pi_n(i), \pi_n(i,j)$ are the only polygons of order n with their respective vertices as they both have at least m - 2 vertices and $m - 2 \ge n + 3$. The same is true for the polygons $\pi_{n-1}(i), \pi_{n-1}(i,j)$ of order n - 1 as both have at least $m - 3 \ge (n - 1) + 3$. The projection of $\pi_n(i)$, that of $\pi_n(i,j)$ is a polygon of order n - 1 with the same vertices as $\pi_{n-1}(i,j)$. Hence the projections of $\pi_n(i), \pi_n(i,j)$ from A_1 are $\pi_{n-1}(i), \pi_{n-1}(i,j)$ from A_1 are $\pi_{n-1}(i), \pi_{n-1}(i,j)$, respectively.

With the use of these results we show that a polygon $\pi_n(p)$ exists for which $2 and of which a segment <math>A_{p-1}A_{p+1}$ is a side. It is sufficient to construct such a polygon for which 2 because, from the assumptions <math>n > 1, m > n + 4, it follows that m > 6. By the previous paragraph the projection of $\pi_n(3,6)$ from A_1 is the contraction $\pi_{n-1}(3.6)$: $A'_2A'_4A'_5A'_7\cdots A'_m$ of π_{n-1} . If the projection of the tangents L (A₁) of $\pi_n(3.6)$ is not the interior of $A'_5A'_7$ let p = 6 otherwise let p = 3. Clearly these values of p satisfy the inequalities 2 . Again by the previous paragraph the projection of $<math>\pi_n(6)$ from A_1 is the contraction $\pi_{n-1}(6)$: $A'_2A'_3A'_4A'_5A'_7\cdots A'_m$ of π_{n-1} . It follows from 2.10 that if A_5A_7 is not a side of $\pi_n(6)$ that $A_5A_1A_7 \cdots A_m$. Consequently $\pi_n(6,3)$ becomes $A_2A_4A_5A_1A_7\cdots A_m$. But $\pi_n(6.3)$ and $\pi_n(3.6)$ coincide by 3.2 as the both have order n and the same m - 2 vertices because $m - 2 \ge n + 3$. By 2.10 the projection of the tangents L (A₁) of π (3.6) is the side A'_5 A'_7 of π_{n-1} (3.6) contrary to the choice of p. Hence A₅ A₇ is a side of π_n (6). In the second case a similar argument shows that A₂ A₄ is a side of π_n (3). Thus the required polygon $\pi_n(p)$ has been constructed.

We may now construct a polygon π with vertices A₁, A₂, ..., A_m which will subsequently be shown to have order *n*. As 2 , A₁ is differentfrom each of the points A_{p-1} , A_p , A_{p+1} . As A_1 , A_2 , \cdots , A_m are in general position $A_1 \notin [A_{p-1}, A_p]$, $A_1 \notin [A_p, A_{p+1}]$. Hence we may define $A_{p-1}A_p$, $A_p A_{p+1}$ as the line segments the projections of which from A₁ are sides $A'_{p-1}A'_p$, $A'_pA'_{p+1}$ of π_{n-1} . If $A_{p+1} \cdots A_1 \cdots A_{p-1}$ is the arc of $\pi_n(p)$ complementary to its side $A_{p-1}A_{p+1}$ let π be the polygon obtained by closing this arc by the segments $A_{p-1}A_{p}$, $A_{p}A_{p+1}$. The projection of π from A_{1} is the arc $A'_{p+1}\cdots A'_{m}A'_{2}\cdots A'_{p-1}$ of $\pi_{n-1}(p)$ closed by the segments $A'_{p-1}A'_p$, $A'_pA'_{p+1}$, i.e. π_{n-1} itself. $\pi_{n-1}(p)$ is, by its definition, the contraction of π_{n-1} with respect to the vertex A_{p} . Therefore the side $A'_{p-1}A'_{p+1}$ of $\pi_{n-1}(p)$ and $A'_{p-1}A'_p$, $A'_pA'_{p+1}$ form an even triangle. But this triangle is the projection of the side $A_{p-1}A_{p+1}$ of $\pi_n(p)$ together with those of the sides $A_{p-1}A_p$, A_pA_{p+1} of π . As the projection of an odd triangle is an odd triangle it follows that the three segments $A_{p-1}A_{p+1}$, $A_{p-1}A_p$, A_pA_{p+1} form an even triangle. In other words the contraction of π with respect to its vertex A_{p} is $\pi_{n}(p)$.

Let $\pi(k)$ denote the contraction of π with respect to the vertex A_k . If $A_{\mu}A_{1}A_{\nu}$ be the arc of π which contains A_{1} and its neighboring vertices we show that if A_k is different from each A_p , A_u , A_1 , A_v that $\pi(k) = \pi_n(k)$. To prove this it is sufficient, by 2.7, to show that the projections of $\pi(k)$ and $\pi_n(k)$ from A₁ coincide and that A_u A₁ A_v is an arc of both $\pi(k)$ and $\pi_n(k)$. To show that the projections from A₁ of $\pi(k)$ and $\pi_n(k)$ coincide we consider the arc $A_r A_k A_s$ of π which contains A_k and its neighboring vertices. $A_r \neq A_1$, $A_s \neq A_1$ for otherwise A_k would be one of A_u or A_v . Therefore the projection of $A_r A_k A_s$ from A_1 is the arc $A'_r A'_k A'_s$ of the projection π_{n-1} of π . Moreover if $A_r A_s$ is the segment which closes $A_r A_k A_s$ so that it becomes an even triangle the projection $A'_r A'_s$ of this segment will close $A'_r A'_s A'_s$ so that it also becomes an even triangle. Hence the projection of the contraction $\pi(k)$ is the contraction $\pi_{n-1}(k)$ which was proved above to be the projection of $\pi_{\mathbf{n}}(k)$ from A₁. It remains now to check that A_u A₁ A_v is an arc of $\pi(k)$ and of $\pi_n(k)$. $A_u A_1 A_v$ is an arc of $\pi(k)$ because of the definition of a contraction and because A_k is different from each of A_u , A_1 , A_v . Because $2 and <math>A_{p-1}A_pA_{p+1}$ is an arc of π , it follows that $A_u \neq A_p$, $A_v \neq A_p$. Hence $A_{\mu}A_{1}A_{\nu}$ is an arc of $\pi(p)$. We proved in the previous paragraph that $\pi(p) = \pi_n(p)$. Hence $A_u A_1 A_v$ is an arc of $\pi_n(p)$ and also of $\pi_n(p, k)$ as A_k is different from each of A_u , A_1 , A_v . But $\pi_n(p, k) = \pi_n(k, p)$ as both polygons have order n and the same m - 2 vertices. This means that $A_u A_1 A_v$ is an arc of the contraction $\pi_n(k, p)$ of $\pi_n(k)$. It follows, then, from the definition of a contraction that either $A_{\mu}A_{1}A_{\nu}$ is an arc of $\pi_{n}(k)$ or that $\pi_{n}(k)$ contains an arc of the type $A_{\mu}A_{\rho}A_{1}A_{\nu}$ or $A_{\mu}A_{1}A_{\rho}A_{\nu}$. In the latter two

21. – RENDICONTI 1966, Vol. XLI, fasc. 5.

cases the projection $\pi_{n-1}(k)$ of $\pi_n(k)$ would contain an arc $A'_u A'_p A'_v$. This would imply that no segment $A'_u A'_v$ could be a side of $\pi_{n-1}(k)$ as this polygon contains more than three sides for $m-2 \ge n+3 > 3$. This is impossible as $A'_u A'_v$ is a side of $\pi_{n-1}(k)$. To see this we note, by 2.10, it is a side of the projection π_{n-1} of π as the latter contains the arc $A_u A_1 A_v$. Consequently $A'_u A'_v$ is a side of the contraction $\pi_{n-1}(k)$ of π_{n-1} for $A_k \rightleftharpoons A_u$, $A_k \oiint A_v$. Therefore $A_u A_1 A_v$ is an arc of $\pi_n(k)$ and the proof that $\pi(k) = \pi_n(k)$ is now complete.

To show that π has order *n* let M_{n-1} be any hyperplane of L_n for which $A_i \notin M_{n-1}$, $I \leq i \leq m$. If M_{n-1} intersects exactly one of the sides $A_{p-1}A_p$, $A_{\flat}A_{\flat+1}$ of π it will also intersect the segment $A_{\flat-1}A_{\flat+1}$ which closes the arc $A_{p-1}A_pA_{p+1}$ so that it becomes an even triangle. Therefore in the case in which M_{n-1} intersects neither side $A_{p-1}A_p$, A_pA_{p+1} or exactly one of them M_{n-1} intersects π and its contraction $\pi_n(p)$ in exactly the same number of points. As $\pi_n(p)$ has order *n* this means that M_{n-1} intersects π in at most *n* points. If M_{n-1} intersects the arc $A_{p-1}A_p A_{p+1}$ in two points then, as every other point of $M_{n-1} \cap \pi$ is included in $M_{n-1} \cap \pi_n(p)$, M_{n-1} intersects π in at most n+2 points. As π has at least n + 5 sides, there exists, in this case, at least one side of π of which A₁ is not an endpoint and which has no point in common with M_{n-1} . Let A_{k} be an endpoint of such a side which is not a vertex of the arc $A_{u}A_{1}A_{v}$ of π . M_{n-1} intersects π and its contraction $\pi(k)$ in the same number of points. We have proved above that $\pi(k) = \pi_n(k)$ provided that $A_k \neq A_1$, $A_k \neq A_u$, $A_k = A_v$. Consequently M_{n-1} intersects $\pi_n(k)$ and so also π in at most n points. Hence π has order *n*. This contradicts the assumption that A₁, A₂, ..., A_m were not the vertices of any polygon of order n and so completes the proof of the theorem.

References.

- [2] D. DERRY, On polygons in real projective n-space, «Math. Scand.», 6, 50-66 (1958).
- [3] D. DERRY, Iperpiani ad inflessione di poligoni, «Ann. di Mat. pura ed applic. », 71, 267-279 (1966).

^[1] W. BURAU, Mehrdimensionale projektive und höhere Geometrie, (Berlin 1961).