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NOTE PRESENTATE DA SOCI

Matematica. — Stucture Theory in s—d—Rings. Nota I di Esavas
GeorGe KUNDERT, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Operazioni di semi-derivazione e di semi-integrazione vennero recen-
temente introdotte ed investigate in [1] entro certo anelli. In questa Nota I si prosegue lo
studio delle relative strutture, in vista anche di ulteriori approfondimenti ed applicazioni
cui sard dedicata una successiva Nota II.

I. d-RINGS (RINGS WITH SEMI-DERIVATION).—Definition: A com-
mutative ring A with 1 shall be called a d-ring, if there exists a mai)ping
d: A — A such that:

d is onto,

d (a + b) = da + db,

d(ab) = a-db 4+ b-da —da-db,
d(1)=o,

5. d" a = o0 for some m<<oo,a €l

B O I S

The mapping 4 we shall call semi-derivation. (See[1]). If d”Da==o0
but @™ g =othenm —1 is called the “ degree ofa”. Let R ={x|x€,
dx=0}. R is a subring of %. To indicate that an element of A belongs to R,
we denote it by a Greek letter and callita “constant”.

We frequently consider 2 as an R-Algebra (in the natural way). Terms
like submodule, subalgebra are always meant with respect to this particular
Algebra.

By homomorphism we always mean ring-homomorphism, by R-homo-
morphism we always mean module-homomorphism. (¢ is clearly a R-homo-
morphism.)

2. $~d-RINGS (4-RINGS WITH A DEFINITE INTEGRATION)—Let 9 be
ad-ring. Definition: We shall call % a s—d-ring, if there exists a ring-
homomorphism ¢ : % .—~ R with the property o («) = a for all x€R. In
every s—d-ring we can define the following mapping s: % — 9, with s(a) =
=a'—o (a’) and &' an element of ¥ such that 4o’ = a. This mapping
is well defined, because from do' =do'' = d(a' —a'") =0 = a2 —a'" €R=>
=26(@d—a)=0c(@)—oc(@)=a —a' " =a —oc(a)=a"—oc(a). This
mapping s we call a ““definite integration in %”’. It has the following properties:

a. ds(a) = o,

b. sd(a) = a—oc (a),

c. os(a)=o,

d. s is @ R-homomorphism,

e. Formula (F): s (ab) = a s (6) — s [da-s (6)] + s [da-b].

(*) Nella seduta del 12 novembre 1966.
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The proofs are straightforward. (For formula (F) use the product-formula

1.3 replacing & by s (4), then apply s on both sides and use a. through d.
above). '
We define now:

xOZIyxi:5<xi—1>; 2.2152‘73""
We have

dx; =2, for i >1 and deg (x;) =17 for Z>o.
PROPOSITION: {xg, %y, +,%;, -} forms a free module basis for .

Proof: a€,deg (@) =m. Leta, =d™aeR:
d™ (@ — o, %,) = o, — &, =0=d" D (a—a,x,) = o, €R,
d™=D (@ — o, X, — Oy Xm—y1) = O - -+ etc.,

A(@— 0y X,y — -+ — U X)) =0 = G— 0, X, —  — oy ¥ = & € R,

m
or a=ogxgt oyt +a,x,. So{x}isa basis. If ¥ ux,=o0 apply
=0
m—1
4% on both sides = a,, = 0= E a; x; = 0. -Repeating the above procedure,
=0
we geta;=o0 for z=0,1,2,--- which proves that our basis is free.
We shall call «; the ‘“ 7~th component of @ .
COROLLARY: 6 (x;) = o0 for Z > 1 and ¢ (a) = &,.
m

Proof: o (x;) =065 (x;-1) =0 and o (@) =02, % x; = E o; 6 (x,) = ag
=0 =0

by the properties 2 c. and 2d.

Using formula (F) we can recursively calculate the representations for
the products x;-x;. For example: Taking: @ = x;,6 = x5 = 1 we have by
F):s@r-1) =21 s(1)—s(dx;-s(1)) + s (dxy- 1) or 23 =x1-21—x2 + 1=
=x1-x1=2x3—x1. Taking: a=ux1,6=1x1 we find: x1-x2 = 3 23— 22, etc.

EXAMPLES of s—d-rings:

a. Let A be any commutative ring with 1. There always exists a
s—d-ring for which A plays the réle of the ring of constants, namely
A (A) = 610 (A) as defined in ([1]). We shall call this ring ‘ the s—d-ring
absolutely associated with A .

b. Let A be as above and m an ideal in A subject to the conditions
stated in ([1]). There always exists a s—d~ring A, (A) cannonicaly associated
with the pair (A, m), namely 2, (A) = €11 (A, m) as defined in ([1]). In this
case the réle of the ring of constants is played by the m—completion of A. We
shall call the rings Ay, (A) ““ the s—d-rings relatively associated with A . Our
main interest is actually in these rings and their applications, but in this paper
we shall not directly deal with them. I mention only the following facts:
Even for the ring of integers the associated s—d-rings are not unique factori-
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zation domains, nor are they noetherian with respect to module- and ideal-
structure. '

We now introduce 6bjects which are more intimately related to the
s—d-structure and allow a nontrivial, but relatively simple structure theory.

3. INTULES AND INTEALS.—Let ¥ always be a s-d-ring.

Definition 1: A subset B is called an intule, if it is:
I. a submodule of ¥,
2. beEB=s(b)eB.

Definition 2: An intule is called an inteal if it is also an
ideal in the ring .

ProposITION 1: Let A, B,C be intules (inteals) then
a. ANB,A 4 B are also intules (inteals),
b. ADB=ANnB+C)=B+ ANCQOC).

a. is obvious and b. is already true for submodules (ideals).

Definition 3: Let E be a subset of 9.
o YiER‘
(E) = § Z Y. 5" () -

finite e;€ E)
by E”,
(E) = ““ideal generated by E 7,
[E] = “module generated by E ”.

ProPOSITION  2: a. (E) = [(E)] = ([E]),
b. ((E)) = (E),

c. (E) 4s the smallest intule containing E.

‘““ intule generated

The proofs are straightforward and are omitted.

PROPOSITION  3: a. B éntule = (B) is inteal,
b. B ideal = (B) is inteal.

Proof: (a) We only have to show that s(ab) € (B) if a €% and &€ B.
By formula (F): s(ab) = a-s(8)—s[da (s(6)—20)], but s(6)€B =a-s(b)€(B).
Using now induction on the degree of &, it follows from: deg (4a) < deg (@)
and s(6) — 6 € B and s(0) = o that s(ab) € (B).

(b) It is clearly sufficient to prove that a-s® (4) € (B) for all a€ %
b€EB;in=o0,1,2, --.

For » = o this is true since B is an ideal. Assume true for » — 1.

By formula (F) substituting s¢—1 (4) instead of 4 we have: a-s ™ (§) =
= s[a-s""D(8)] + s[da- (s (5)—s*=1(4)] but by hypothesis a-s@#~ (5) € (B) =
= s [a s~ (5)] € (B). Using now induction on the degree of a, it follows
as under a. that @-s™ (4) € (B).

COROLLARY 1: Let E be a subset of U; then:
‘ a. (KE)) = (E)),
b (((E))) = ((E)).
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COROLLARY 2: Let E be a subset of W. Then there exists a smallest inteal
E* containing E, namely E* = ((E)) = ((E)).

Proof: E C(B)= (E) C((E))= (E)) C(B))) = (E)) and E C(E) =
= (E) C (B)) = (B)) C ((EY) = (B)) > (E)) = ((E)). Since every inteal

containing E contains E* and E* is an inteal = E* is the smallest inteal
containing E.

Definition 4: E¥* is called ¢ the inteal generated by E ”.
We have of course

PROPOSITION 4: a. E** = E¥ .

b. E* = (E)* = (E)*,

c. A =A*df and only if A is an inteal.
ProrosITION 5: E CR= (E) = (E) = E¥,

Proof: aE(E):mz—Eae,,aE%I e;€E. Leta—EaU %, ;€ R=

Sa= Y o,xe;— ¥ s s(mf) (¢)),6,;€R. =a€(E) and vice versa.
i %7

Furthermore: E* = ((E)) = ((E)) = (E).
PROPOSITION 6: a. A intule = s (A) is also intule,
b. A dnteal = s (A) is also inteal.

Proof: a. follows immediately and to prove b. one has to show that
c-s(a)€s(A) for ce€, a€A, this is done with help of formula (F).

If A is a submodule then JA is also a submodule, but if A is an intule
the ZA is in general not an intule.

Definition s5: A is called a differentiable intule (inteal) if 4oz
A and dA are intules (resp. A is inteal and JA is intule).

Definition 6: A is called an analytic intule (inteal) if 4™ A is
an 1ntule for all =o0,1,2,--- (resp. A inteal and 4" A intule for > 1).

Before stating some properties of differentiable intules, we introduce
certain ideals in the ring of constants, which are associated with each sub-
module of A. Let A be a submodule of 9.

Definition 7:
A; (A)—{oc | where o is the 7 — ¢4 component of some element 2 € A }.

For the purpose of reference, we collect some trivial properties into the

following
PROPOSITION 7: a. A, (A) 4s an ideal in R,

b. Ao (A) = o (A),

c. ACB=A,CB,,

d Ay (dA) = Ay (A),

e. A4 Ag=sdA @ Ay,

f. If Ads an intule = A, CA;ypq.
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PROPOSITION 8: a. A intule = s (A) differentiable intule,

b. A intule = A CdJA,

c. A differentiable intule = Ay C dA,

d. A differentiable inteal =dA inteal.

e. A analytic inteal = dA analytic inteal,

f. A differentiable intule == A 4+ Ay = A + Aoy

= A + Ay s intule.
Proof:

a. and b. are obvious.

c. w€Ag=>Ja= Eoc 2, €ACAIA = sda— Eoc x; €dA = oy €JA.

d. We have to shovv that ¢-a €dA for c €U,a€dA. Using the
product-formula we have: d(c-s (@)= c-a+dc-s (a) — dc-a. Now a€dA =
=3b€A)a=db=b—0c(b)=s(a). Therefore:c.a=d(c- b)+ de-(a—s(a)—
— 06 (8), but c-6 €A =d(c-b) €dA and a — 5 (@) — o () € JA since s (@) €edA
(intule) and o (6) = Bo € ZA by c.) above. Using now induction on the degree
of c=>c-a€edA.

e. follows at once from d.

f.  We prove: A diff. intule :A +Ao=A + (Ap) =:>A + Ay intule = A
diff. intule ©

(1) It is sufficient to prove: c€(Ag)=c€A 4+ Ag. Since ¢ = st COF

Y: € AgC R, it will be enough to show: y € Ag= s (y) € A + Ay because by
repetmon it follows then s@ (y) €A 4 Ag. Now y €A¢gCdA by c.) above
since A is differentiable =y =db ,6€ A, but s(y) = sdb =56 — ¢ (6); 6(6)eAg=
=s5(y) €A 4 Ag;

(2) is trivial;

(3) a€dA=a=4db,b€A. Therefore s(@=6b—0c()=s(a)€
€A + Ag = 5@ (2) €A + Ag (intule!l) = s@ (@) =c+ vo ; c €A, yo €A,.
Applying 4 on both sides = 5 (a) = dc € JA = A is diff.

Definition 8 Letd be a set of inteals in %. An inteal M is called
maximal in & if and only if from BOM = B¢ &, where B is an inteal in A.

Let § denote the set of all inteals in ¥ excluding ¥ itself. An inteal
which is maximal in & is shortly called a maximal inteal in 9.

PROPOSITION 9: Let A be a fixed inteal in §. Define:
CA)={C|CDA;CeF}
= 3 maximal inteals in § (A).

Proof: € (A) is partially ordered with respect toinclusion. ¢ (A) is also
inductive, because if CiCCeC--- is a well ordered subset of © (A), then
C =uC, is an upper bound in ¢ (A) for this subset, because clearly C;CC
and ACC, but since C is an ideal and 1¢C=C ==%. Furthermore C is an
intule, since from ¢ € C = ¢ € C; for some 7= s (¢) € C;C C, therefore C € 6 (A).
Now use Zorn’s lemma, etc.

COROLLARY:  There exist maximal inteals in 9.

Proof. Take for A = o*.
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Definition 9: An intule (respectively inteal) A is called finitely
generated if there exists a finite set E such that A = (E) (resp. A = E*).

A s-d-ring U is called intule~ (resp. inteal-) noetherian if every intule
(resp. inteal) is finitely generated.

ProrosiTION O:

A intule— (resp. inteal=) noetherian == ascending chain condition holds
Sor intules (resp. inteals) == maximum condition holds for intules (resp. inteals).

Proof: The proof of this proposition is completely analogous to the proof
of the same proposition for submodules and is therefore omitted. (See for
example ([2]).

THEOREM [.—If R is ring-noetherian =N is intule-noetherian = A is -
inteal-noetherian.

Proof: The second part of the theorem is immediate: Let A be an inteal
= A = ((A)), but (A) = (E), where E is a finite set = A = ((E)) = E*,

To prove the first part of the theorem, we show that the ascending chain
condition holds in %. This can be achieved parallel to the proof of the ascen-
ding chain condition in Polynomialrings over noetherian rings. We bring the
proof to the point where complete analogy is restored. (For comparison see
for example [3]).

Let A be an intule. Define:
a, = {a, |2, €R, a, = n—2t: component of some a €A and deg (2) < » }.

LeMMA 1: 4, Zs an ideal in R.

Proof: «,,B,€8,=>3a= Yo, €A, b= B,x;€Aa—beA has
=0 =0

o, — B, asn-—=¢h component and deg (¢ —b) < n=> o, — B, €d,. Similarly
Y-, is the 7z —¢4 component of y-a,y €R, a as above and deg (v-a) =
=deg (@) <n=vy.a,€q,.

LemMMa 2: a,C4,.,.

” 7
Proof: ,€d, ,Ja= Y 0,x;€A. Takenows (@) = X o, ;1 €A (since
=0 =0

A is an intule!), deg (s (¢)) <# + 1 and «, is the # 4 1 component of s (a).
LEMMA 3: Let ACB; A, B intules in U= 9,C B, for all n.
Proof: Trivial
LEMMA 4: Let ACB; A, B intules in . Suppose &,=9D, for all n=A=B.
Proof: Letb€B and deg (6) =0=b=Po€Bo= o but dg = {ag | o=
= o-t4 component of some a €A, deg (@) =0}=0=a€A= 9yC A=
=0 €A.

Assume now that if c€ B and deg (¢) =7 —1=c€A. Let 6€B and

deg )) =n=56= Y, B;x;. We know then that the 7 —# component
=0
of 4 namely B,€98,=9,=>3a€A)a= Eocixi with o, =B,=2a—b6 =
=0

n—1
=¥ (0, —PB)x;€B (since ACB) and deg (6 — &)< n—1=>a—b€A by
=0
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hypothesis =6 €A. Now the proof continues analogous to the proof mentioned
above.

PROPOSITION 10:  If A is an analytic intule in a intule-noctherian ring .
=23n)dOA =dM A for all i>n.
Proof: By proposition 84. we can construct the chain of intules:
CdACTd® AC.--; using then proposition 9 we get the desired result.
Definition 10:
x €R

o -9 € A for some 7

7 (A) = radical of the intule A =

the radical of the submodule A.
Definition 11: An intule Aiscalled primary ifand only if for
a€W,BeER;a€A,a-BeEA=P€r(A)ie. ifA is primary as a submodule.
Definition 12: Anintuleis called irreducible if and only
if from A =BNC;B,C intules =B = A or C = A.

ie. 7 (A)is

o
\

PROPOSITION 11: Let N be intule-noetherian.

A drreducible intule = A primary intule.

Proof: Suppose A not primary =3a€ and BER)a-PeA,aeA
and B"-Ae¢A forallz=1,2,---

Let A:p"={c|c-pr€A} this is clearly a submodule and since
s()p"=s(c-P) €A, it is also an intule. Since we assume the ascending
chain condition in A=>3Jm JA:p” =A: P+ for all i =1,2, ..

Assertion: A = (A,ayn{A,B”). This is obviously a contradiction
with the irreducibility of A. To prove the assertion, we observe that if

c€ A, )NA B sc=a + X os® (@) = a'" + 6-B” where a',a"" €A,
=0

u; € R, 6 €. Multiplying both sides by B:c:B =a'-B + 3 oys® (B-a)—
i=1

=a'l B+ &-B7*1. SinceB-a,a’-B,a”-p€Aand A is an intule = 6. p#+le A=
=SbeA Tl =A:"=0b-fmeA=ceA.

PROPOSITION 12: A intule-noetherian.
A dntule = A = N Q; where Q, is irreducible intule.

JSinite .
The proof goes completely analogous to the proof of the analogous proposition
for submodules.

”
Definition 13: A representation of anintule A =NQ;, into primary
i=1

intules is called irredundant if

(1) QlQi ¢ Q; and  (2) » Q) ==7(Qy) if ¢ ==/.
i+ .
These » (Q;) are called the associated prime ideals of A.
THEOREM II.—Let A be intule-noctherian. Then every intule can be
represented irvedundantly as an intersection of primary intules and the associated
prime ideals are umiquely determined.
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Proof:  The first part of the theorem is proved with help of propositions 11
and 12 it follows the same pattern as the existence proof for irredundant decom-
positions for submodules in noetherian modules. The proof of the second state-
ment is entirely independent of the fact that we are dealing with intules and is
therefore the same as for submodules. (See [2] pp. 252).

Remark: Theorem II. holds also for inteals, if one replaces in the defi-
nitions and proofs the word intule by inteal and appropriately ( ) by *

4. DETULES AND DETEALS.—There exists a co-theory to the theory of
intules and inteals in a given s-d-ring.

Replacing the mapping s by the mapping & in definition 1. we obtain a
new object, which we call “detule”. A detule which is also an ideal, we
call““deteal”. The “detule generated by the set E  is obtained by repla-
cing in definition 3. s by &, we denote it by the symbol YE(. The duals of
proposition 1. and 2. (i.e. replacing intule (resp. inteal) by detule (resp. deteal)
and () by ) ( hold true. The duals of proposition 3 and its corollaries hold
also. This is seen by dualizing the proofs given in this text and using the pro-
ductformula 1.3 instead of formula (F). The * deteal generated by the set E”
is therefore also defined. We denote it by E, . The dual of proposition 4 holds,
but instead of the dual of proposition 5 we have

ProrosiTIiON 5,: E CR= a. Y)E{(= [E],
b. E, = (E) = E*.
Proof:
(a) a€)E(=a=3v,d" (¢)=2y,¢;€[E] ,v,€R, ¢,€ E=)E(C[E],
but always [E] C)E(.
(b) aeBE)=>a=2a;¢;,; a,€U , ;€ E=da=Xda,e;e(E)> E, =
= YE)( = (E), and proposition 3 tells us that (E) = E*.
PROPOSITION 6, :
(@) A is detule = dA is detule.
(b) Let A be subset of N then.:
A ds deteal <= A is intule and detule == A is intule-and A = dA <=
= A=Al A=ANR*e=A=ANR) <= A=ANR),.
Proof: :

(a) is obvious. .
(b) We give a cyclic proof. (1) Let A be be a deteal. o= Eoc’.x,:
=1

n—1

=u,=d" (a)eA=oa, x,€EA= Eoc»x-eA. Repeat!=a€A fori=1,2, .-, n=

= s(a) = E ®; %41 € A=A is intule and A is detule by definition. (2) From

A detule :>dA CA and from A intule A C A by proposmon 8b. = A = dA.
(3) If Aisintule and A =dA = A; (A) = A; (dA) = Ai;1 (A) by proposition 7d.,
therefore A; = A, and AyCA by proposition 8c. = Aa“ = <Ao> CA. Now if



278 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLI - novembre 1966

2€A and a—Eoc = €A, =A)=>ACAYS A=A, (4) If A=Af=

=A¢0 CANR and if ceANDR=a=0€Aj=2A;=ANR=A=(ANR)*
(5) and (6) follow from proposition 5, by taking for E = ANR. (7) The
cycle closes with the trivial statement that from A =(ANR), follows A is
deteal.

COROLLARY 1: There is a 1—1 correspondence between the deteals in
and the ideals in R established by:

A (deteal in N) -~ A = ANR (ideal in R),
A (ideal in R) — A, (deteal in ).
Proof: To show that this is a 1—1 correspondence we must show:

(1) A deteal = (A NR), = A which is true by proposition 6,b.

(2) From A ideal in R should follow: A=A, NR. Now A, = (A)
by proposition 5., so for a€A, = a=Sag;e;, ¢ € A Let a; = Zoc,cxk=>
s>a=2X0yue;%,, but € R=a =3 a,¢;=a€A (ideal N=ADA,NR and
naturally A CA,NR.

COROLLARY 2: FEack ideal of R is the contraction of its ideal-extension
to the over-ring .

Proof: 'This was just proved at the end of the proof to corollary 1.

COROLLARY 3: A a subset of W is equal to the ideal-extension of its contrac-
tion if and only tf A is a deteal.

Proof: A deteal = (AN R)=A by proposition 6,. If A= (ANR)
then A is deteal by the same proposition.

The detule-structure is in general non-noetherian, however, if the minimal
condition holds in R, then it holds also for detules.

In a further “Nota II” we shall study ~homomorphism, s—homomor-
phism, s—d~homomorphism and s-rings. We shall introduce a product in the
detule-intule structure. Quotients will also be defined and further structure
theorems can then be proved. Furthermore we propose to exhibit some
examples.
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