ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SHREERAM SHANKAR ABHYANKAR

Divisors on equisingular hypersurfaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 41 (1966), n.1-2, p. 49–50. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_41_1-2_49_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Divisors on equisingular hypersurfaces (*). Nota (**) di Shreeram Shankar Abhyankar, presentata dal Socio straniero O. Zariski.

SUNTO. — Si stabilisce un caso particolare di un teorema (da dimostrarsi altrove) che caratterizza localmente il luogo singolare — supposto (n-1)—dimensionale — di un'ipersuperficie algebroide di dimensione n, nell'ipotesi che questa risulti equisingolare lungo quello nel senso di Zariski.

Let R be an n-dimensional (n > 1) algebroid hypersurface having a singular point at its origin M, over an algebraically closed ground field k. Assume that the singular locus H of R is (n-1)-dimensional and has a simple point at M. Also assume that R is equisingular along H at M in the sense of Zariski (1). Recently we came across a rather interesting property embodied in the following theorem.

THEOREM. H is the only (n-1)-dimensional subvariety H' of R which has a simple point at M and is set-theoretically complete intersection of R (with another hypersurface R').

The assertion being obvious when R is (analytically) reducible, we suppose that R is irreducible. The theorem will be proved in all generality elsewhere. Here we only prove it in the special case in which H' is assumed to be set-theoretically complete intersection of R with a hypersurface R' having a simple point at M.

Let e be the multiplicity of R at M. We can choose local coordinates (Z, X_1, \dots, X_n) so that R' is given by Z=0, and R is given by f(Z)=0 where f(Z) is a monic polynomial of degree e in Z with coefficients in the power series ring S=k [[X_1, \dots, X_n]]. Let N be the maximal ideal in S. Since H' is contained in R' and H' has a simple point at M, we can find $x' \in \mathbb{N}$ with $x' \in \mathbb{N}^2$ such that H' is given by Z=0=x'. Since H' is the complete set-theoretic intersection of R with R', we must have f(0)=d'x' where d' is a unit in S and e is a positive integer.

Since R is equisingular along H at M, we can choose (1) a basis (x, x_2, \dots, x_n) of N such that H is given by f(Z) = 0 = x, and the Z-discriminant of f(Z) equals dx^b where d is a unit in S and b is a positive integer.

^(*) This work was supported by the National Science Foundation under NSF-GP-4249 at Purdue University.

^(**) Pervenuta all'Accademia il 19 luglio 1966.

⁽¹⁾ The concept of equisingularity has been introduced and studied by ZARISKI in the paper: Studies in equisingularity. II, «American Journal of Mathematics», vol. 87 (1965), pp. 972–1006. We shall freely use the results, especially the discriminant criterion, given in this paper.

^{4. -} RENDICONTI 1966, Vol. XLI, fasc. 1-2.

Let z_1, \dots, z_e be the roots of f(z). Then (1)

$$z_1 = r + \sum_{i=m}^{\infty} r_i \, x^{i/\epsilon}$$

where $r \in \mathbb{N}$, m is a positive integer with m > e and $m \not\equiv 0 \mod e$, and r_m , r_{m+1}, r_{m+2}, \cdots are elements in S with $r_m \notin \mathbb{N}$. Let $S^* = S[x^{1/e}]$ and $P = x^{1/e} S^*$. Then S^* is an n-dimensional regular local ring, $(x^{1/e}, x_2, \cdots, x_n)$ is a basis of the maximal ideal in S^* , P is a nonzero principal prime ideal in S^* , and

where b_i is a positive integer.

Suppose, if possible, that $H' \neq H$. Then $x'S \neq xS$ and hence $x'S = P_1 \cdots P_u$ where P_1, \cdots, P_u ($1 \leq u \leq e$) are distinct nonzero principal prime ideals in S^* with $P_j \neq P$ for $1 \leq j \leq u$. Now $(-1)^e z_1 \cdots z_e = f(0) = d' x'^e$, and hence, upon relabelling P_1, \cdots, P_u suitably, we have

$$z_1 S^* = P_1^{a_1} \cdots P_n^{a_n}$$

where v, a_1, \dots, a_v are positive integers with $v \le u$. There exists an S-automorphism g of S^* such that $g(P_v) = P_1$. Now $g(z_1) = z_w$ for some w with $1 \le w \le e$, and $z_1 - z_w \in P_1$; consequently by (2) we must have w = 1; therefore g must be the identity automorphism and hence v = 1. If u < e then there would exist a nonidentical S-automorphism h of S^* such that $h(P_1) = P_1$; now $h(z_1) = z_i$ for some i with $1 < i \le e$, and $z_1 - z_i \in P_1$ which would contradict (2). Therefore u = e.

If $x' S + N^2 \neq xS + N^2$ then we can find elements y_3, \dots, y_n in S such that (x, x', y_3, \dots, y_n) is a basis of N; now $(x^{1/e}, x', y_3, \dots, y_n)$ is a basis of the maximal ideal in S* and hence in particular $x' S^*$ is a prime ideal in S*; this is a contradiction because u = e > 1. Therefore $x' S + N^2 = xS + N^2$.

Let $S' = k[[x_2, \dots, x_n]]$ and let N' be the maximal ideal in S'. Since $x' S + N^2 = x S + N^2$ and $x' S \neq x S$, by the Weierstrass preparation theorem, we have $x' S = (x+t^*) S$ with $o \neq t^* \in N'$. Since $x' S^* = P_1 \cdots P_n$ with u = e, we must have $t^* = t'^e$ with $o \neq t' \in N'$. It follows that $P_1 = (x^{1/e} + t) S^*$ with $o \neq t \in N'$; (namely, $t = t_1 t'$ where t_1 is an e^{th} root of 1).

Now

(3)
$$z_1 = s (x^{1/e} + t)^{a_1}$$

where s is a unit in S^* . We have

$$(4) s = s_0 + s_1 x^{1/e} + s_2 x^{2/e} + \cdots$$

where s_0 is a unit in S', and s_1 , s_2 , \cdots are elements in S'. By (3) and (4) we get

(5)
$$z_1 = q_0 + q_1 x^{1/e} + q_2 x^{1/e} + \cdots$$

where q_0 , q_1 , q_2 , \cdots are elements in S' with $q_1 \neq 0$. (I) and (5) lead to a contradiction. Therefore H' = H.