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N O T E  DI  S O C I
(Ogni Nota porta a pie’ di pagina la data di arrivo o di presentazione).

Analisi matematica. — On the compactness o f the base operator 
in the theory o f intermediate problems. N otan del Corrisp. G a e t a n o  
F i c h e r a ,

R iassunto. -  Si prova un teorema relativo a particolari operatori di base non compatti.

L et T  be a positive (1) com pact (linear) operator (PCO) in the complex 
H ilbert space S. S is supposed to be separable and infinite dimensional. 
L et {\Lk} be the sequence of the eigenvalues of T. We suppose th a t this se­
quence is ordered in the usual m anner, i.e.,

Pa >  [i-2 >  * • * >  Pa >  • • •

each eigenvalue of T  appearing in the sequence as m any times as its m ultiplic­
ity. From  now on, when we consider the sequence of the eigenvalues of a 
PCO, we suppose th a t it is ordered according to the above criterion.

In [4 ]> [S]> [6] it is defined as “ base operator ” for the operator T  (see 
[i] , [7]) any  positive compact linear operator T 0 such that, if we denote by 
{ d f } the sequence of its eigenvalues, we have

(0 °i0)> ^ .  ( k = i  , 2 ,■■■■).

(*) Pervenuta all’Accademia il 29 agosto 1966.
(1) For simplicity we assume the term positive as strictly positive, i.e., (Tu , u) >  o for 

any u - |=o. We recall that any (linear) positive operator is hermitian, i.e., (Tu , v) — (u , Tv) 
for any pair of vectors of S.
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Conditions (1) are satisfied if

(2) T 0 >  T .

Let us assume that (2) holds. Then it has been shown (see [ i] , [3], [6], [7]) 
th a t it is possible to construct a sequence { T n} of PCO ’s {intermediate opera­
tors') satisfying the following conditions:

i) L et { } (k =  1 , 2 , • • • ) be the sequence of the eigenvalues of
T w> then

4 0) >  d K) >  4 B+1) >  {I*;

ii) To —  T n is degenerate, i.e., its range is finite dimensional;
iii) lim ffiB) =  \xt (k =  1 , 2 , • • •);

n —>00

iv) I t is possible to compute the vf* ’s in term s of the eigenvalues 
c40) and the eigenvectors of To.

It follows that, in order to apply the method of intermediate problems for 
the upper approxim ations of the p,/s, the base operator T 0 m ust be known, 
tn the sense that all its eigenvalues and eigenvectors must be considered as data 
of the problem.

No doubt this is a serious lim itation in the applicability of the method 
of interm ediate problems.

L et T  be an integral operator in the H ilbert space £2 (o , 1)

1
T u — j k (x , y) u (y) dy ;

0

k (x , y)  is a kernel which belongs to £2 [(o , 1) X (o , 1)], which is herm itian 
(i.e., k (x , y)  — k (y  , x)) and of “ positive type

In  [4] (p. 39), [5] (p. 332) and [6] (pp. 139-140) I m ade the following 
rem ark: in general, there is no known base operator, To, which can be used 
in applying the m ethod of interm ediate problems for the upper approxim ation 
of the eigenvalues of T.

W einstein, in his paper [10] (p. 191), writes: Fichera states, see [42] (2), 
that there is in general no known base problem fo r  a compact positive integral 
operator. This statement is incorrect, as w ill be shown in a forthcoming paper 
by Weinstein.

M ore recently, in the volume of the A bstracts of the B rief Scientific Com­
m unications to the Moscow International Congress of M athem aticians (August 
16-26, 1966; see fase. 5'—Functional Analysis, section 5—pp. 30—31) the 
following A bstract is included.

(2) In the References List of Weinstein’s paper [10], paper [42] corresponds to pa­
per [4] of the References List of the present note.
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W e in s t e in  A l e x a n d e r — O n  t h e  e x is t e n c e  of a  b a s e  pro blem  fo r

EIGENVALUES.

Let K be a symmetric compact positive operator in a Hilbert space, 
o <  (Ku , u) <  c (u , u). Let G be a compact symmetric operator with known 
or prescribed positive eigenvalues and eigenvectors. Let I be the identity. 
Then K  =  G +  cl +  (K ■— cl —  G). A s  K —  cl — G is negative, G +  cl is 
a base operator and the method of intermediate problems applies (see fo r  in ­
stance S. H . Gould, Variational Methods, A n  Introduction to Weinstein’s 
Theory of Intermediate Problems, second edition, ig66). Fichera s statement 
(Linear E lliptic Differential Systems and Eigenvalue Problems, Springer 
1965, p. 139) that fo r  a given K there is in general no known base problem is 
incorrect and is due to the limitation to compact base operators.

The aim  of this note is to show th a t the condition of compactness for 
the base operator cannot be so easily relaxed. Otherwise the m ethod of 
interm ediate problem s could give completely useless results. T h at is exactly 
w hat happens if the base operator G +  cl, proposed by W einstein, is used.

L et us first recall the following lemma.
I .— Let G be a hermitian ^  positive operator of the Hilbert space S. Let 

TP be a degenerate hermitian operator. The m inim al subspace of S containing 
all the eigenvectors of H — G —  D corresponding to negative eigenvalues is 
finite dimensional.

Since H is a herm itian operator, it is well known th a t we can decompose 
the space S as direct sum  of two m utually  orthogonal subspaces S+ and S 
each of them  being an invarian t subspace for H . M oreover the restriction 
H + of H to S+ is a positive operator in S+ and the restriction H ~  of H to S 
is a negative operator in S~~3 (4). In  this context positiveness and negativeness 
m ust not be understood in the strict sense. It follows th a t any eigenvector 
of H corresponding to a negative eigenvalue m ust belong to S~. L et P be 
the orthogonal projector of S onto S _ . W e have P G P — P ~  D P  .
L et R  be the range of P —D P ^  and IT the orthogonal projector of S~~ 
onto S~ © R —. Since we have in S”  : P ~ G P ~ <  P ~ D P ~ , it follows 
o <  IIP  GP II <  H P D P^ II =  o. On the other hand we have P GP ~ =
= np~ gp~ n + (p- — n) p~ gp~ (p~ — n) + (p- — n) p- gp~ n +
+  H P GP (P ■— II). Since P — II projects S— onto the finite dim en­
sional space R —, it follows th a t P—G P— is degenerate, i.e., H — is degenerate. 
From  this the proof follows.

L et now T  be an arb itra ry  PCO and let c be a constant such tha t 
(Tu , u) <  c (u , u) (5). L et To be a not necessarily compact base operator for

(3) The term hermitian is used in this paper instead of the term symmetric, used by Wein­
stein. It is well known that any hermitian operator is bounded.

(4) See [8] p. 180, [9] p. 274.
(5) According to our previous notation we use the letter T instead of K used by 

Weinstein.
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T  of the kind considered by W einstein. Thus we assume T 0 =  G +  <70 I >  T, 
where G is a PCO and cr0 a nonnegative constant. We have compactness for 
T 0 when and only when cr0 =  o. The operator T 0 adm its the following spec­
tra l decomposition

CO

To u =  2  c 0̂) (u > uò  uk

where â 0)- — and >  y2 >  • •• >  yk >  • • • denote the eigenvalues of
G and %  , , • • •, uk , • • • the corresponding eigenvectors.

L et us now consider the sequence of interm ediate operators T n

T 0 >  T n >  T n+1 >  T,

T n =  To — D

D„ being constructed using the A ronszajn device (see [1], [7]) or some alter­
native m ethod (see [6], p. 135). In  what follows the m ethod of construction 
of D„ is irrelevant. W hat m atters is the fact th a t Dn is degenerate. According 
to our previous notations, denotes the greatest eigenvalue of T n and— in 
general— denotes the m axim um  of the quadratic form (T„ u , u) under 
the conditions (u , u) — 1 and (u , =  •••== (u , 1) =  o, where uf*
(s =  1 , 2 , • • • ) is eigenvector of T n corresponding to

From  the above lemma it follows th a t G —- has at m ost a finite num ­
ber of linearly independent eigenvectors corresponding to negative eigenvalues. 
T hen the greatest eigenvalue of G — is nonnegative and, in general, we 
have th a t the m axim um  of ((G ■— D w) u , u)- under the conditions (u , u) =  1, 
(u , =  • • • =  (u , ~  o is nonnegative. It follows tha t

( n )

T hen
I I — / /  T 0 is not compact, i.e., i f  C70 >  o, the upper approximations 

given by the method of intermediate problems are never less than <r0 .
A ssum ing the base operator proposed by W einstein, i.e., Tq — G +  cl,

• (TTi / t * *since C70 =  c >  —— , the best inform ation th a t the m ethod of interm e- 
u  ( u , u )

diate problem s is able to give is th a t \ik <  c.
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