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Analisi matematica. —• On the existence, uniqueness, stability and 
approximation of solutions of PrandiV s system for the nonstationary 
boundary layer. Nota di O l g a  O l e i n i k , presentata (*} dal Corrisp. 
G. F i c h e r a .

RIASSUNTO. — Vengono provate Resistenza, l’unicità e la stabilità delle soluzioni del 
sistema di P randtl per lo strato limite non stazionario bidimensionale sotto certe condizioni 
per i dati. Si dànno due schemi, alle differenze finite, convergenti per l ’approssimazione di que­
ste soluzioni.

A system  of equations for the boundary  layer was suggested by P rand tl 
in 1904. This boundary  layer system  is very im portant for m any  problem s 
of m echanics concerning the flow of a viscous fluid (with small viscosity) 
around a body. However there are only a few m athem atical papers about 
P ran d tl’s system, (see, for example, [1], [2], [3]). In  this paper we consider 
the question of existence and uniqueness o f  solutions of the P rand tl system, 
and also the behaviour of these solutions when t  -> 00 , for two dim ensional 
nonstationary  flow of incom pressible fluid. We will also outline a proof of 
the convergence of finite-difference approxim ate solutions to the solution 
of the P rand tl system.

The P rand tl system  of equations for a nonstationary  flow of viscous in ­
compressible fluid has the form

(1 ) U t +  U U X +  VUy  =  —  p x  +  VUyy  , ^  " f  Vy  =  C),

where u  , v are the com ponents of the velocity, p  ( t , x) is the pressure, 
v — const, and where we assume th a t the density p = i .  This system  is consi­
dered in the dom ain ^  {o  <  t <L t$ , o <  x  <  x$ , o -<Z y  <  00  } under the 
conditions:

(2) u \ t==0 = u 0 (x , y )  , u \y=o —o , V \y=0 =  v0 ( t , x) , u\x=0 = ui ( t , y \

(3) lim u ( t , x  , y )  =  U  ( t , a),
y —>- 00

where as usual U  (t , x) is a given com ponent of the exterior flow velocity, 
related by B ernoulli’s law to the pressure p  ( t , x) by — p x =  \J f -\-\J \Jx . 
By physical considerations it is necessary th a t u  >  o for y  >  o and uy >  o 
for y  =  o. W e will also suppose th a t >  o and u\ >  o for y  >  o, and
u 0y >  o , uiy  >  o for y  >  o ; U  ( t , x) >  o.

We rem ark  th a t the P rand tl system of the boundary  layer for axial- 
sym m etric two-dim ensional and three-dim ensional flows can also be sim ilarly

(*) Nella seduta del 22 giugno 1966.
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investigated by the m ethod of this paper. For these cases we assume u  |^==o:= °  
in conditions (2) which is required by  physical reasoning.

We prove under some natu ra l conditions on the smoothness of the func­
tions uo , ui , vo , p  , U  and some natu ra l com patibility conditions for uq , 
u i yVQ th a t there exists a solution of the problem  (1), (2), (3) in the dom ain 3) 
for any  x 0 <  00 when t0 is sufficiently small or for any t0 <  00 when x 0 
is sufficiently small. It is w ell-know n th a t the solution of the problem  (1), 
(2)> (3) sometimes does not exist in 3) for certain (larger) x 0 and t0 because 
then the separation of the boundary layer appears. We show also th a t the 
solution of the problem  (1), (2), (3) depends continuously on the given func­
tions uq , u± , vq , p  , U  and th a t this solution is stable as t  -> 00. If  the 
functions u\ , , p  , U  have limits when t —> 00, then the flow becomes
steady there; i.e., the velocity com ponent u ( t , x  , y )  tends to a limit which is 
the velocity com ponent u ( t , x) of the corresponding stationary  flow.

In order to study  the problem  (1), (2), (3) we introduce the new indepen­
dent variables

t — t f x  =  £, , r\ =  u ( t , x  , y )

and a new unknow n function

w  =  uy .

T hen for w  we have the equation

(4) L (w) == v w 1 ■— w x —  r\w% +  p x w n =  o.

T he dom ain 3) m aps into the dom ain 0 { o < t < ^ 0 , o < 5 < ^ o  o <  7) <
< U ( t , 5)}.

T he conditions (2), (3) on the boundary of 3) correspond to the following 
conditions on the boundary  of Q:

( s )  w  |t=0 =  UOy  =  W q ( £ ,7 ] )  , W  |^=o =  U l y  —  W \  ( t  , 7)) , W  =  O,

(6) /  (w) == v w w n —  v q  w  —  p x —  o for 7) =  o.

Let us rem ark  th a t the quasilinear equation (4) is of elliptic-parabolic 
type. L inear elliptic-parabolic equations were considered in G. F ichera’s 
papers [4], [5], (see also [6]).

The solution of the non linear problem  (4), (5), (6) is obtained as a limit 
of functions w ",.(n  =  1 , 2,- • •) which are defined in Q as the solutions of 
the equations

(7) L n (w n) == v ( zju1̂  — w nx — 7\w\ +  p x =  o

with the boundary conditions

( 8) W n |t=o =  ^ 0  , W n 1^=0 =  m  , k=u(T,^) =  o ,

(9) ln (wH) “   Vq W™—1 —  p x =  o for 7] =  o.

3. -  RENDICONTI 1966, Voi. XLI, fase. 1- 2.
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W e let w° be a sm ooth extension of the function w* which we will define later, 
w° — o for 7) =  U  ( t  , £), w° >  o for vj =  o. L et us suppose th a t the func­
tion w n~ x w ith bounded fourth  derivatives in fì is defined such th a t w n~x >  o 
for 7] =  o. W e now construct w n as follows. W e define a boundary  value 
problem  of N eum ann type for second order elliptic equations w ith a small 
param eter e in a special dom ain; the solutions w s>n of these problem s tend, 
when s —> o, to the solution w n of the problem  (7), (8), (9).

Let us suppose th a t x 0 and /„ are finite. Let G be an infinitely differenti­
able bounded dom ain in the plane \  , 7], let the cylinder [o , / 0] x G  contain 
£i, and let the boundary  a of the dom ain G contain the segm ent [—  2 8 , 
*0 +  2 8 ] of the axis £, where S >  o is a small num ber. L et us suppose tha t 
in some neighborhood of the point, which is the intersection of a w ith £ =  o, 
the boundary  c  is situated on the straight line 71=7]! =  const. L et us con­
sider the sim ply connected infinitely differentiable dom ain Q, w ith boundary  
S, which coincides w ith the cylinder [—  1 , A) +  1] X G when —  1 <  t  <  
<  +  I and which is contained in the cylinder [— 2 , /0 +  2 ]x G . We
denote by Qi the points of Q for which x o and o or for w hich t7> t§. 
Let us extend in a sm ooth w ay the coefficient P* in (7) and the functions 
Vo and p x in (9) for all values of £ and t .  W e introduce the notation: 
^ 1=={T =  0 > °  ^  ? £= x 0 > O <  7] <  U  (O , Q } , S2 =  (o <  T <  7?0 , i; =  O , 
o <  7) <  U  ( t  , o)} and S0 =  {o <  r  <  t0 , o <  £ <  x 0 , tj =  o}.

L et us suppose th a t there exits a sm ooth function w*, defined in the 
closure of Q —  Q, which satisfies the following conditions:

w* =  wo on Si , w* =  w x on S2 ,

(10) L  (a/*) =  O (^4)

for 1; <  o and t  > 0  in a neighborhood of S2 (three dimensional);

(11) L  (w*) =  O ( t 4)

fòr I  >  o , t  <  o in a neighborhood of Si;

(12) /(«/*) =  0 (^4 )

on S in a neighborhood of the segm ent [o , to\ of r-ax is , and 

(4 3 ) I  (w*) =  O ( t 4)

on S in a neighborhood of the segm ent [o , Xq] of £-axis. W e can suppose 
th a t w* has continuous derivatives of sixth order in the closure of Q —  Lb 
and w* is an infinitely differentiable function outside of some neighborhood 
of Si and S2. Such a function w* can be constructed, if w 0 , w i , v 0 ypx 
are sufficiently smooth and, in addition, iiw o  , w \ , Vo satisfy some com patibility 
conditions on the axis of t  , ^ , tj and on 7) =  U  (o , !•) in accordance with 
the equation (4) and the boundary  conditions (5), (6). The function w* can 
be represented by a trunca ted  Tayloffs series (with respect to t  in a neigh-
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borhood of Si, w ith respect to % in a neighborhood of S2), using for the defini­
tion of the coefficients the procedure which is usually  used in the C auchy- 
K ovalevsky Theorem . These coefficients can be expressed in term s of wq , w± 
and their derivatives. In  this w ay the condition (10) and (11) will be satis­
fied, and the condition (12) and (13) can be satisfied due to the com patibility 
conditions.

Let us denote by cr§ the points of a which do not belong to the segment 
[—  2 8 ,  xo +  2 S] of E, -axis, and let S8 =  [— 1 , t0 +  1] X cr5 . In Q we 
consider the elliptic operator

L e (w) — s (w xx +  ze/|| +  +  ai w xx +  a\2 +  a%wm  +  v (W*_1)e ■—

—  w x ~ r i w i +  (px% w n —  2 (ai +  e) w  ,

where £ >  o. T he nonnegative infinitely differentiable functions a\ , az , a% 
are positive for t  <  — 1/2 and for t  >  t 0 +  8 ; az is positive in the 8-nei­
ghborhood of S8 ; az is positive at all points of this neighborhood of S8, which 
do not belong to the plane £ =  o; and at the rest of the points of Q the func­
tions a\ , az , az are equal to zero. (The num ber 8 is taken  so small th a t a i, 
az , az are equal to zero in Q). T he function w n~ 1 =  w* in Q —  Qi and is 
a smooth extension of this function in f i x—  Q. W e denote by ( / ) e the aver­
age (e.g., see [7]) function for /  w ith radius £ and a nonnegative infinitely 
differentiable kernel. Let us consider in the dom ain Q the boundary  value 
problem  for the elliptic equation

(14) L B(«0"=(S%

with boundary  condition on S

| r  =  (* ) •■

where « is the internal normal direction on S. The function W in (14) is defined 
in Q ih the following way: W =  L (w*) +  a\ w*x +  a<i w§, +  az w*^ —  2 a\ w* 
in Q —  £2i ; W =  o in O ; and in £2i —  £2 the function Ó? is any sufficien­
tly smooth extension of this function, (with bounded derivatives up to and 
including order 4).

The function <J> in (15) is equal to -)-----on S0 ; on
v \ wn~ x ) cn

the intersection S with the boundary o f Q —  Qi ; on the rest of S the function 
® is any sufficiently smooth extension of this function. It is easy to see that & 
has bounded fourth derivatives in Q and is an infinitely differentiable function 
outside of some neighborhood of Q. The function <E> has bounded fourth 
derivatives on S and is an infinitely differentiable function outside some neigh­
borhood of Sp due to the properties of the function w*. The boundary value 
problem (14), (15) has a unique infinitely differentiable solution w e’n in Q, 
since the coefficients in (14), the functions (§% and (®)e, and the boundary 
S of Q are infinitely differentiable (see, for example, [8], [9]).
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One can prove th a t all derivatives of w*'n up to the order 4 are un i­
form ly bounded w ith respect to s. Therefore there exists a convergent sub­
sequence w H'n , where zk -> o, and the limit function w n satisfies the equa­
tion (7) and the boundary  condition (9). U sing the m axim um  principle, one 
can prove th a t w n =  w* in Q —  Qi if w n~l = w *  in Q —  £V. Therefore 
w ” satisfies the boundary  conditions (8) for 1; =  o and for t  =  o. On the

surface ■/) =  U  ( t  , £) w ” +  4 w ” — p x w ” =  =  o, where the vector Ì is
5 1 dl

tangent to the surface yj =  U ( t  , £), and w n =  o on this surface when 
t  =  o or when E, =  o. T hus w n =  o for •/] =  U  ( t  , £).

R em ark.—T aking into account the existence of the smooth solution 
w n of the problem  (7), (8), (9), one can give sim pler (than the construction of 
w E>n) m ethods for the construction of approxim ations to w n. In  particular, 
the finite-difference m ethod can be used.

In  order to prove the existence of a solution of the problem  (4), (5) (6) 
it is sufficient to prove th a t the function w n and their derivatives up to the 
order 2 are uniform ly bounded with respect to n.

L e m m a  i .  —  There exists a constant to  >  o  such that fo r  all 
n  , (n =  1 , 2 , • • • ), the inequality

0 6 ) H i ( t  , E, , y]) >  w n >  hi ( t  , \  , 7])

holds in that p a r t o f Q  fo r  which t  <  t0 , where H i is a bounded fu n ctio n  in  Q  
and the continuous fu n c tio n  h\ is positive fo r  y) <  U ( t  , £), t  <7 t 0 . There 
exists a constant £0 >  0 such that, fo r  a ll n, the inequality

0  7) H a ( t  , 5 , Yj) >  w n >  hz ( t  , \  , Y])

holds in  that p a r t o f O fo r  which \  , where H2 is bounded in  Q and the
continuous fu nc tion  hz is positive fo r  y] <  U. ( t  , £) and % <7 .

In  order to estim ate the derivatives of w n of the first and second order, 
we consider the function VJn=  w n eari where a >  o is a constant to be chosen 
later. W e introduce the function

^  (WO2 +  (W^)2 +  w ;  (W ^ ~ 2 +«) +  Ko +  Ki Y),

where

= — v 0 +  — 1—- p x +  aWK
v vW^ 1

x (vj) is a smooth function, x  (n) =  i for 4 <  —  and /  (4) =  0 for v)> S0,
80 =  ~  min U  ( t  , £), and K0 and Ki are some positive constants. We also 

introduce the' function

S n =  (w :,)2+  ( W ^ ) 2+  (W % f +  ( W |n —  2 <1# +

+ w : ,  (w : , -  2 +  g  ( w ; y  +  n 0 +  n x , ,
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where No , Ni are some positive constants and g  (73) is a sm ooth function
w hich satisfies g  (o) =  o , g f o )  =  o xg  >  o for 7] >  o.

One can prove th a t constants a , K 0 , K i , N 0, Ni in <t>„ and Wn can be chosen 
independently  of n in such a w ay th a t and $ n are uniform ly bounded with 
respect to n  in when t  < [ t i  or £ <C , where t i  and £1 are some positive 
constants which do not depend on n. U sing the equation which w n ■— w n~1 
satisfies, one can show the uniform  convergence of w n in Q when t  <C t i  or 
£ <  £1. Therefore we have the following result.

THEOREM i . — The solutions w n o f the problem  (7), (8 ), (9 ) converge in  
the domain  Q when t  <  t i  or £ <  £1 to the function  w , which is a solution
o f the problem  (4), (5), (6) and w  >  o fo r  y) <  U  ( t  , £).

T he uniqueness of the solution of the problem  (4), (5), (6), follows from 
the m axim um  principle.

Going back to independent variables t , x , y  and functions u  and v, 
existence and uniqueness for the problem  (1), (2), (3) follow easily. W e recall 
th a t we assum ed the smoothness of the functions u0 , u\ , v° , p  , U , and also 
the com patibility conditions which we gave in term s of the existence of a 
function w*, defined above.

THEOREM 2.— There exists a unique solution u , v  of the problem  (1), (2), 
(3) tn  any domain  0  such that to <7 t i  or xq <7 £1 ; t i  and  £1 are positive cons­
tants which can be defined by means o f the data o f the problem  (1), (2), (3). The 
solution o f the problem  (1), (2), (3) has the fo llow ing  properties', u  >  o fo r  y  >  o ; 
uy ^  0 f or y  >  0 ; derivatives u t , ux , uy , uyy are continuous and bounded
in  3). addition , and wv ^  bounded in  S).---------------%

T he function u ( t , x  y y). is given by m eans of the integral

(,8)
0

where p  is the solution of the problem  (4), (5), (6); the function v can be 
found from  the equation ux -\-vy — o, using the condition v \y=o — vQ . Proofs 
of Theorem s 1 and 2 are given in [10] and the uniqueness of the solution of 
the problem  (1), (2), (3) has been proved by another m ethod in [11 ].

For the approxim ate solution of the problem  (4), (5), (6), and therefore 
for the problem  (1), (2), (3), we can suggest two finite-difference schemes. 
The first is implicit, the second is explicit.

For the first scheme, let h be the mesh width of the lattice and let 
( t  , £ , 7}) — (mh, Ih , kh) be an arb itra ry  lattice point; m  , / ,  k = o  , 1 , 2 , • • • Let 
us denote w  (rnh , Ih , kh) by w mj ik . Instead of (4) we consider the finite- 
difference equation at every interior lattice point of Q

(19) (v w L-i.m  +  m i )  2W~ y h \ _

Vm JX
+ Px vm, l ,k ' V m, I , k  — 1 O,
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where the constant M >  m ax \p x \. Instead of (5), the boundary conditions 
for w mj tk are

(20) w mj }k— wo for m  *= o , w myiik =  w i for I == o, and w m)l%k = 0

at the lattice points of Q for which the distance to the boundary  y) = U  ( t  , £) 
is less th an  or equal to h. Instead of (6), on the boundary  k  =  o we have the 
condition

C21; v z e v - ------------------1 ---------- J — V o W m- l tl , Q — p x =  O.

L et us suppose th a t for t  <  (m  —  1) h we have found the solution of the 
system  of equations (19) w ith conditions (20), (21). T hen we can find a solu­
tion w mJ>k of equations (19), (20), (21) for t  =  m h  as a solution of a linear 
algebraic system  of equations. By the same m ethod which we used to prove 
Lem m a 1 we can get a priori estim ates of the form (16), (17) for solutions of 
(19), (20), (21) when m h  <C To or Ih <L\ 0 • The existence of a solution of the 
linear algebraic equations (21), (19), (20) for t  —  mh  follows from  the fact 
th a t the corresponding homogeneous system  has only the triv ial solution. One 
can prove the latter using a m axim um  principle and the condition M >  m ax \p x \. 
For the difference z m,i,k =  w mj }k— w, where w  is the solution of the p ro­
blem (4), (5), (6), which exists by Theorem  1, we can write equations of 
the form (19), (20), (21) w ith functions occurring on the right-hand-sides 
which are O (A). U sing the m axim um  principle, one can prove th a t zmj tk-+ o 
when h -> o and t  <  t 0 or £ <  • M oreover \ w mj )k — w  ] =  O (A), when
h->  o. A n approxim ate solution u  for the problem  (1), (2), (3) can be ob ta in ­
ed from  the integral (18) w ith w mj ik instead of w .

In  an analogous w ay we can also prove the convergence of the following 
explicit finite-difference scheme. For w mj , k =  w  (mh , /a, ka), a >  o, h >  o, 
we consider in  £2 the finite-difference equations

(v w \i_  i 5/}£ - f M c ) Vm - l , l , k + l — 2 Wm - l , l , k  +  Wm - l , l , k - l

)■

_ W m — l , l , k j_ ̂   ̂W m - l , l , k  W m — l , l —l , k j | p  W m - l , l , k —l  ̂

which can be easily solved w ith respect to w mj ik if we have w m_ The
boundary  conditions are: w mj tk =  w 0 for m =  o, w mj ,k =  w± for I =  o , 
Wmtith =  0 at the lattice points of Q for which the distance to the boundary 
Y) =  U  ( t  , £) is less th an  or equal to cr and

VZ£/w_ lj/)0
, 1,1 ' V m , l ,  0 —  Px — v0w m„1}i>0 =  o for y] =  o.

The Solutions w mj ik of these equations tend to the solution w  of the pro­

blem (4), (5), (6), if t  <  T0 or  ̂ <  ?o> and also - < M i ,  where Mi is defined 

by the data of the problem (4), (5), (6). For example, when t q , we may
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take M i =  —-------------— and when x 0 <C , we m ay take M i — --------   •
i + 2 v m a x H 1 i + 2 v m a x H j

M oreover \w mj }k—- w  \ <C M2 (k +  a), where the constant M2 also depends
only on the data  of the problem  (4), (5), (6).

F inally  we consider the behavior of the solutions of the problem  (1), (2),
(3) when t  -> 00, i.e., stability. W e suppose th a t for / - > o o  the given func-
tions p  ( t , x), U  ( t , x), vo ( t , x) tend, uniform ly with respect to a:, to p' 0)>
U (x), v0(x), respectively. T he function u \ ( t  ,y )  for t  >  h  is not to depend
on t  and therefore u \ ( t , y )  =  ui (y)  for We suppose also th a t the
solution u , v  of P ran d tl’s system  for the stationary  flow

(22) uux +  viiy =  — j>x +  v uyy , ux + v y =  o

in the dom ain ® { o < ^ < ^ 0 , o < y  <  oo } w ith the conditions

(2 3) u  |.v=o =  O , V  |y=o =  »o G )  , U  0=0 =  «1 (y)  , l im  u (x , y)  =  Ù  (x)
y~> 00

exists, and also th a t this solution has the following properties: uy >  o for 
y  >  o ; u  and uy have bounded first derivatives with respect to or and y  in 5 ,  
and the derivative uyyy exists in LS). The solution of the problem  (22), (23) is 
obtained in [3]. W e assume in addition th a t there exists a solution of the 
problem  (1), (2), (3) with the properties stated in Theorem  2. These assum p­
tions are fulfilled if the data  of these problem s are sufficiently smooth, the com­
patib ility  conditions are satisfied, and oro >  o is sufficiently small. U nder 
these conditions

lim u ( t , x  , y )  =  u (x  , y )
t —>- 00

for any x  , y  in 3). I f  p  ( t , x) , U  ( t , or), vo ( t , or) do not depend on t  for 
t  >  t i , then

I u ( t , x  , y )  ■— u  (or , y )  | <  C e~^

for y  <Cyi and o-<Ior r<or0 , where y is any positive constant and C depends 
on y and y±. T he proof of these stability  results is given in [12]. T he m ethod 
is based on the use of the solutions of the problem  (4), (5), (6), a n d ‘ the 
corresponding problem  for the stationary  flow.

The au tor wishes to express her appreciation to Dr. K. Gustafson for 
his kind help in preparing this m anuscript in English.
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