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Analisi matematica. — On the existence, uniqueness, stability and
ap proximation of solutions of Prandil’s system jfor the nonstationary
boundary layer. Nota di Orca OLEINIK, presentata ® dal Corrisp.
G. FicHERA.

RIASSUNTO. — Vengono provate lesistenza, 'unicith e la stabilitd delle soluzioni del
sistema di Prandtl per lo strato limite non stazionario bidimensionale sotto certe condizioni
per i dati. Si danno due schemi, alle differenze finite, convergenti per ’approssimazione di que-
ste soluzioni.

A system of equations for the boundary layer was suggested by Prandtl
in 1904. This boundary layer system is very important for many problems
of mechanics concerning the flow of a viscous fluid (with small viscosity)
around a body. However there are only a few mathematical papers about
Prandtl’s system, (see, for example, [1], [2], [3]). In this paper we consider
the question of existence and uniqueness of solutions of the Prandtl system,
and also.the behaviour of these solutions when # — co, for two dimensional
nonstationary flow of incompressible fluid. We will also outline a proof of
the convergence of finite-difference approximate solutions to the solution
of the Prandtl system.

The Prandtl system of equations for a nonstationary flow of viscous in-
compressible fluid has the form

(1) u, + uu, + v, = — p, + vu,, , u, + v, = 0,

where % ,v are the components of the velocity, p (#,x) is the pressure,
v = const, and where we assume that the density p=1. This system is consi-
dered in the domain D{o<<#<#,0<<x <<x, 0y <oo} under the
conditions:

(2) #lmo=uo(x,y) , #|y=0=0 , v|,mo=2v0(t,%) , spog=wm(,),
(3) lim z(@,x,y)=U (¢, ),
y—>00

where as usual U (z, x) is a given component of the exterior flow velocity,
related by Bernoulli’s law to the pressure p (¢,x) by —p, =U,4+UU,.
By physical considerations it is necessary that 2 > o for y >0 and #, > o0
for y = 0. We will also suppose that #y> o0 and # >o for y > o, and
%0, > 0,21, >0 for y>o0; U (z,x)> 0.

We remark that the Prandtl system of the boundary layer for axial-
symtﬁetric two-dimensional and three-dimensional flows can also be similarly

(*) Nella seduta del 22 giugno 1966.
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investigated by the method of this paper. For these cases we assume % ls—0=0
in conditions (2) which is required by physical reasoning.

We prove under some natural conditions on the smoothness of the func-
tions 29,21 ,20, p,U . and some natural compatibility conditions for g,
u1, v that there exists a solution of the problem (1), (2), (3) in the domain 9
for any xy << co when ¢ is sufficiently small or for any ?#p << co when x
is sufficiently small. It is well-known that the solution of the problem (1),
(2), (3) sometimes does not exist in D for certain (larger) xy and #, because
then the separation of the boundary layer appears. We show also that the
solution of the problem (1), (2), (3) depends continuously on the given func-
tions #y,#1,v9, p,U and that this solution is stable as # — co. If the
functions 21,79, ,U have limits when #->oco, then the flow becomes
steady there; i.e., the velocity component # (¢, x , ) tends to a limit which is
the velocity component # (¢, x) of the corresponding stationary flow.

In order to study the problem (1), (2), (3) we introduce the new indepen-
dent variables

T=1 , x=E , 7]:%<t’x’y>

Then for w we have the equation
4) L (w) = va?w,, —w. ~—nw + p,w, = o.

The domain ® maps into the domain Q{o <7 <<#),0<§ <2y, 0< n<
<U (=, 5}

The conditions (2), (3) on the boundary of ® correspond to the following
conditions on the boundary of Q:

(5) w xr=0 =1Uyy =Wy (E ) V}) y W E:O = Uy =Wl <T ) 71) » W !’r]=U(TyE) =0,

6) /(w) = vww, —vyw —p, =0 for 1 =o.

Let us remark that the quasilinear equation (4) is of elliptic-parabolic
type. Linear elliptic-parabolic equations were considered in G. Fichera’s

papers [4], [5], (see also [6]).
The solution of the non linear problem (4), (5), (6) is obtained as a limit

of functions w”, (# =1, 2,---) which are defined in Q as the solutions of
the equations

@ L, (w") = v (@) why —w; — i+ powl = o
with the boundary condiﬁons

) W |img =wo , Wm0 =w1 , W |y_y(y = O,
(9) 2, (w*) = vw”‘l‘w:]‘ — w1 —p, =0 for n=o.

3. — RENDICONTI 1966, Vol. XLI, fasc. 1-=.
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We let 20 be a smooth extension of the function z* which we will define later,
w®=o0 for 1 =U (7,£), w®>o0 for  =o0. Let us suppose that the func-
tion 2”1 with bounded fourth derivatives in Q is defined such that w*—! > o
for n = 0. We now construct w” as follows. We define a boundary value
problem of Neumann type for second order elliptic equations with a small
parameter ¢ in a special domain; the solutions w®” of these problems tend,
when ¢ — o0, to the solution " of the problem ), (8), (9).

Let us suppose that x and #; are finite. Let G be an infinitely differenti-
able bounded domain in the plane &, 7, let the cylinder [0, %] XG contain
Q, and let the boundary ¢ of the domain G contain the segment [— 28,
%9+2 8] of the axis &, where 8> 0 is a small number. Let us suppose that
in some neighborhood of the point, which is the intersection of ¢ with £ — 0,
the boundary o is situated on the straight line % = n; = const. Let us con-
sider the simply connected infinitely differentiable domain Q, with boundary
S, which coincides with the cylinder [— 1,7y + 1] X G when — 1 < 7 <
=17 + 1 and which is contained in the cylinder [—2,% + 2]xG. We
denote by € the points of Q for which * >0 and £> 0 or for which > .
Let us extend in a smooth way the coefficient P, in (7) and the functions
v and p, in (9) for all values of £ and . We introduce the notation:
S;i={r=o0,0<f=wm ,0<n<U(©,§)} , Ss={o<t=#,E=o0,
0=n=U(7,0)} and Sg ={fo<1<4,0<E<x,n=o.

Let us suppose that there exits a smooth function w*, defined in the
closure of Q — Q, which satisfies the following conditions:

* *

w* = wy on S; , w* = w; on Sy,

(10) L (") = O &Y

for £ <o and © >0 in a neighborhood of S, (three dimensional);

(1) L (*) = O (%)

for £ >0, t<<oin a neighborhood of Sy;

(12) [(@") =0 @Y

on S in a neighborhood of the segment [0, #,] of t—axis, and
(13) [ (@*) = O (%)

on S in a neighborhood of the segment [0, %] of {-axis. We can suppose
that «* has continuous derivatives of sixth order in the closure of Q—Q
and w* is an infinitely differentiable function outside of some neighborhood
of S1 and Se. Such a function w* can be constructed, if wy, w1, vy, p,
are sufficiently smooth and, in addition, if wy , w1 , 7o satisfy some compatibility
conditions on the axis of 7,&,% and on n=TU (0, %) in accordance with
the equation (4) and the boundary conditions (3), (6). The function w* can
be represented by a truncated Taylor’s series (with respect to T in a neigh-
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borhood of S;, with respect to § in a neighborhood of S;), using for the defini-
tion of the coefficients the procedure which is usually used in the Cauchy-
Kovalevsky Theorem. These coefficients can be expressed in terms of wy , 21
and their derivatives. In this way the condition (10) and (11) will be satis-
fied, and the condition (12) and (13) can be satisfied due to the compatibility
conditions.

Let us denote by o5 the points of 6 which do not belong to the segment
[—208,20 4 29] of & —axis, and let S¥=[—1,% 4+ 1]X 65. In Q we
consider the elliptic operator

L* (w) = & (wer + wg + Wan) + a1 e + G2 Wy + aswyy + v (wn—lﬁ W —
— Wy —NWg + (Pu)ewn—2 (@1 + ) w,

where e€>> 0. The nonnegative infinitely differentiable functions a1, a2, a3
are positive for © <-—1/2 and for © > 7y 4 §; as is positive in the 8-nei-
‘ghborhood of S?; as is positive at all points of this neighborhood of S?, which
do not belong to the plane § = o; and at the rest of the points of Q the func-
tions a1, a2, a3 are equal to zero. (The number § is taken so small that a1,
a2, az are equal to zero in Q). The function "1 = w* in Q — Q; and is
a smooth extension of this function in Q1 — Q. We denote by (f), the aver-
age (e.g., see [7]) function for /f with radius ¢ and a nonnegative infinitely
differentiable kernel. Let us consider in the domain Q the boundary value
problem for the elliptic equation

(14) L* (@) = (%)

with boundary condition on S
i o
(15) % = (D).,

where 7 is the internal normal direction on S. The function § in (14) is defined
in Q in the following way: § = L (w*) + a1 w¥ + 2 wg + aswy — 2 a3 w¥
inQ—QO; F=o0in Q; and in Q1 — Q the function § is any sufficien-
tly smooth extension of this function, (with bounded derivatives up to and
including order 4).

The function @ in (15) is equal to %(7}0 + Z:x_ ) on So; O — az;*
w c

1 on

the intersection S with the boundary of Q — Q1 ; on the rest of S the function
® is any sufficiently smooth extension of this function. It is easy to see that §
has bounded fourth derivatives in Q and is an infinitely differentiable function
outside of some neighborhood of Q. The function ® has bounded fourth
derivatives on S and is an infinitely differentiable function outside some neigh-
borhood of Sp due to the properties of the function w*. The boundary value
problem (14), (15) has a unique infinitely dlfferentlable solution w®” in Q,
since the coefficients in (14), the functions (§), and (@), and the boundary
S of Q are infinitely differentiable (see, for example, [8], [9]).
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One can prove that all derivatives of w®” up to the order 4 are uni-
formly bounded with respect to e. Therefore there exists a convergent sub-
sequence w®” | where ¢, — 0, and the limit function w” satisfies the equa-
tion (7) and the boundary condition (9). Using the maximum principle, one
can prove that #” =* in Q—Q if w" ! =w* in Q — Q;. Therefore
w” satisfies the boundary conditions (8) for £ = o0 and for t = 0. On the
surface 4 =TU (7, &) w” + nwy — P, w) = O;;n = 0, where the vector [ is
tangent to the surface n=U (r,£), and w” = o0 on this surface when
t=o0 or when £ =o0. Thus w"=o0 for n=U (7 , &).

Remark.—Taking into account the existence of the smooth solution
w” of the problem (7), (8), (9), one can give simpler (than the construction of
w*”) methods for the construction of approximations to w”. In particular,
the finite-difference method can be used.

In order to prove the existence of a solution of the problem (4), (5), (6)
it is sufficient to prove that the function w” and their derivatives up to the
order 2 are uniformly bounded with respect to 7.

LEMMA 1. — There exists a constant T9 > O such that for all
n,n=1,2, ), the inequality
(16) Hi(z,8,m) =w" >/ (r,5,7)

holds in that part of Q for which v < o, where Hy is a bounded function in Q
and the continuous function I is positive for n<U (v,&), v < 7y. There
exists a constant &y > 0 such that, for all n, the inequality

<I7) H2<TJEJ:7)>2wn2hZ<T:E.>)Y)>

holds in that part of Q for which £<<Ey, where Hs is bounded in Q and the
continuous function hy is positive for 4 <U (7,E) and £ <¥,.

In order to estimate the derivatives of w” of the first and second order,
‘we consider the function W”= 2" ¢*" where o> 0 is a constant to be chosen
later. We introduce the function

D, = (Wo)2 + (Wg)? + Wy (Wi— 2 4") + Ko + Kiq,

where
V= [Sw b bt W 1),

X (n) is a smooth function, y () = 1 for 7 g—ii and y () = o for 0> §;,

3o = %min U (7,8&), and Ky and Kj are some positive constants. We also

introduce the- function
Fo= (Wi + (W)™ (Wi’ WL, (We, — 2 40) +

+Wo (Wi — 245 + g () (Wi + No+ N1y,
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where No, N1 are some positive constants and g (v) is a smooth function
which satisfies g (0) =0, g.(0) = 0,g >0 for 1 > o.

One can prove that constants «, Ko, Ki,Ng, Ny in @, and §, can be chosen
independently of # in such a way that ®, and &, are uniformly bounded with
respect to # in Q when v << 71 or § < £;, where 71 and £; are some positive
constants which do not depend on 7. Using the equation which w” — z»~1
satisfies, one can show the uniform convergence of w” in Q when = < 71 or
£ <&i. Therefore we have the following result.

THEOREM 1.—T7e solutions w* of the problem (7), (8), (0) comverge in
the domain Q when ~ < 1 or & < ¥y to the function w, which is a solution
of the problem (4), (5), (6) and w > o for n < U (1, &).

The uniqueness of the solution of the problem (4), (), (6), follows from
the maximum principle. '

Going back to independent variables 7, x,y and functions % and o,
existence and uniqueness for the problem (1), (2), (3) follow easily. We recall
that we assumed the smoothness of the functions 2, #1 , 20, ?,U, and also
the compatibility conditions which we gave in terms of the existence of a
function w*, defined above.

THEOREM 2.—TVere exists a unique solution u ,v of the problem (1), (2),
(3) in any domain D such that ty < ~1 or xo < E1; v1 and &1 are positive cons-
tants which can be defined by means of the data of the problem (1), (2), (3). The
solution of the problem (1), (2), (3) has the following properties: u > o fory > o;

‘i, >0 for y > 0; the derivatives u, , u, ,u,, o, are continuous and bounded

. Ly gl u P .
in D. [n addition, % and “wy Y%y are bounded in 9.
Y

U
The function « (¢, %, y) is giveil by means of the integral

u(t,x,9)

(18) = wi

0
where w is the solution of the problem (4), (5), (6); the function » can be
found from the equation #, +v, =0, using the condition v|,_g=vy. Proofs
of Theorems 1 and 2 are given in [10] and the uniqueness of the solution of
the problem (1), (2), (3) has been proved by another method in [11].

For the approximate solution of the problem (4), (5), (6), and therefore
for the problem (1), (2), (3), we can suggest two finite-difference schemes.
The first is implicit, the second is explicit.

For the first scheme, let Z be the mesh width of the lattice and let
(v, &, n)=(0mh, lk, k%) be an arbitrary lattice point;m , [/, k=0,1,2,--- Let
us denote w (mh ,lh, k%) by w,, ;. Instead of (4) we consider-the finite-
difference equation at every interior lattice point of Q

y/x

N RGNy W1, W, 1,k Yotk P11
)TN 7% + P 7 =0,

(19) O Wp1,1,5 + M) <wm’[’k+1 2Ptk i tias ) —
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where the constant M > max | p, |. Instead of (5), the boundary conditions
for w,,,;, are

(20) Wy p=wo for m=0 , W,;;=w1 for /=0, and W, 1,5 =0

at the lattice points of Q for which the distance to the boundary y=U (1, £)
is less than or equal to 4. Instead of (6), on the boundary # = o we have the
condition

(21) Vwm_l’[’o(zi’ﬁ-l—’lll—wm’l’—o—) — w,,;__l,z,()-—-ﬁxz O.

Let us suppose that for © << (m — 1) 2 we have found the solution of the
system of equations (19) with conditions (20), (21). Then we can find a solu-
tion w,, ;,; of equations (19), (20), (21) for © = m/A as a solution of a linear
algebraic system of equations. By the same method which we used to prove
Lemma 1 we can get a priori estimates of the form (16), (17) for solutions of
(19), (20), (21) when mh < g or /A < ¥,. The existence of a solution of the
linear algebraic equations (21), (19), (20) for © = m/k follows from the fact
that the corresponding homogeneous system has only the trivial solution. One
can prove the latter using a maximum principle and the condition M > max | g, |.
For the difference 2,3 = w,,, 1, —w, where w is the solution of the pro-
blem (4), (5), (6), which exists by Theorem 1, we can write equations of
the form (19), (20), (21) with functions occurring on the right-hand-sides
which are O (%). Using the maximum principle, one can prove that 2, ,;— o
when % —o0 and 7 <7 or £ <&. Moreover |w,, ,;—w |= O (%), when
% —o0. An approximate solution # for the problem (1), (2), (3) can be obtain-
ed from the integral (18) with w,,;; instead of w.

In an analogous way we can also prove the convergence of the following
explicit finite-difference scheme. For w,, ;; =w (m#k, Io, k6), 6 >0, h> 0,
we consider in  the finite-difference equations

c? :

Don, 1,6 Wm—1,0, Din—1,0,8 Ym—1,1-1,% Cm—1,0 " Ym—1,0,8—-1\
- 3 7 c +2- c =0

w, —2w +w
2 m—1,0,k+1 m—1,0,k m—1,0,b—1
<Vwm—1,l,k+MG>( )——-

which can be easily solved with respect to w,,;; if we have w,,_;;;. The
boundary conditions are: w,, ;; =wy for m =0, w,;; =w; for /=o0,
Wy,1,; = O at the lattice points of Q for which the distance to the boundary
N =U(7,8) is less than or equal to ¢ and

wm,l,l ——wm,l,o

- )“—ﬁx'—’yo Wy—1,1,0 = O for N = 0.

VWy—1,1,0 (

The solutions w,,,,,; of these equations tend to the solution w of the pro-
blem (4), (5), (6), if T << 79 or £ < &y, and also ({;—‘< M;, where M is defined
by the data of the problem (4), (5), (6). For example, when # < 7o, we may
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take M; = I—_{_zm and when xy <<%y, we may take M; = m .
Moreover |, —w | <Mz (4 + o), where the constant Mz also depends
only on the data of the problem (4), (5), (6).

Finally we consider the behavior of the solutions of the problem (1), (2),
(3) when ¢ oo, ie., stability. We suppose that for # —> co the given func-
t1ons p (@, %), U(t,2), v (¢, ) tend, uniformly with respect to x, to p'(x),
U (%), vy(x), respectively. The function u (¢, ) for #># is not to depend
on ¢ and therefore w1 (¢, y) = 1 (y) for £>#. We suppose also that the
solution #,% of Prandtl’s system for the stationary flow

1

(22) wit, + v, = —p,+vu,, , u,+v,=o0
in the domain 9 {o<x<=x ,0<y <oco} with the conditions

(23) %lv 0=0, 'Ui;v 0= 129 (x) , %]x 0—‘%10’)! lim u(x,y):f)’(x)
>0

exists, and also that this solution has the following properties: #, > o for
¥y =0 ; u and «, have bounded first derivatives with respect to x and yin @
and the derivative #,,, exists in 9. The solution of the problem (22), (23) is
obtained in [3]. We assume in addition that there exists a solution of the
problem (1), (2), (3) with the properties stated in Theorem 2. These assump-
tions are fulfilled if the data of these problems are sufficiently smooth, the com-
patibility conditions are satisfied, and xp > o is sufficiently small. Under

these conditions
lim o (t,z,y) =1u%(x, )
t—>00
for any x,y in D, If p(t,x), U(,x),v(¢,x) do not depend on # for
t >, then
lu(,x,y)—d(x,y)| <Ce v

for y <y1 and o <<x <o, where Y is any positive constant and C depends
on y and y1. The proof of these stability results is given in [12]. The method
is based on the use of the solutions of the problem (4), (3), (6), and’the
corresponding problem for the stationary flow.

The autor wishes to express her appreciation to Dr. K. Gustafson for
his kind help in preparing this manuscript in English.
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