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Matematica. — On the contraetability criterion of Castelnuovo- 
Enriques. Nota di A lex a n d ru  Lascu, presentata”  dal Socio B. Segre.

RIASSUNTO. — Il classico criterio di cui al titolo, caratterizzante le curve irriducibili 
eccezionali di i a specie, viene qui esteso in geometria algebrica astratta e rispetto ad arbitrari 
morfismi birazionali.

i . The aim of this note is to extend to Abstract Algebraic Geometry the 
well known criterion of Castelnuovo-Enriques [1] which characterizes the 
exceptional irreducible curves of the first kind on an algebraic surface. Thus 
our criterion of [5] is extended to arbitrary birational morphisms and proofs 
are given here in full.

The problem has recently been considered by Momiie30H [6] for com­
plex analytic varieties. Although the treatment here is quite independent of [6] 
and concerns abstract algebraic varieties, our result is similar to those of [6].

We shall consider abstract algebraic varieties over a universal domain Q, 
of arbitrary characteristic, in the sense of Weil [8].

D efinition—Let Y , X ' be algebraic varieties and Y' a sub-variety 
of X '. We shall say that Y' is regularly contractable to Y within  X ' if there 
exists a proper birational morphism X ' — X which satisfies the following 
conditions:

i° Y' is the closed subset of X ' formed by the points where /  is not 
biregular;

20 f  ( Y f  is a subvariety of X isomorphic with Y;
30 each point of / ( Y') is simple on X.

We shall then say that /  : X'->- X is a regular contraction of Y r to Y.
Note .— Identifying / ( Y') with Y we shall write YC X. Condition 30 

implies that dim Y' >  dim Y, by Z.M.T. (Zariski’s Main Theorem), since, 
in view of i 0, /  is not biregular at Y.

T h e o r e m .— Let Y, Y', X ' be nonsingular algebraic varieties such that Y r 
is a subvariety of Y.

Y r is regularly contractable to Y  within X r if, and only if, the following  
conditions are satisfied:

i ° there exists an algebraic vector bundle E of base Y  of rank r >  1 and an 
isomorphism Y ' — -> P (K), where P (E) is the projective bundle associated to E; 

2° codim i Y f =  1;
30 i f  I is the canonical line bundle of P(E), then h~l(l) is equivalent 

with the normal bundle of Y ' in  XL
Under these conditions, let f  \ X ,;-> X be a regular contraction of Y r to Y . 

The couple (Y , X) is then uniquely determined by (Y' , X'), up to an isomor- (*)

(*) Nella seduta del 22 giugno 1966.
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phism\ f  1 is a blowing up of X, of center Y; hence f  is uniquely determined 
up to an isomorphism over X; E is isomorphic with the normal bundle of
Y in X .

Note —  Condition i° characterizes Y', while conditions 2° and 30 char­
acterize the embedding of Y' in X '. Condition 30 is an alternative form of 
Segre’s intersection formula for dilatations [7].

The last part of the theorem concerns the uniqueness of contractions.
The proof of the theorem is an easy consequence of the sequence of lem­

mas below.
We shall use throughout the following notations: X , Y are non-sin­

gular algebraic varieties and Y is a subvariety of codimension greater than 
1 of X, q : X X is such that q— 1 is the blowing up of X of center Y, defined 
by the Ideal # of Y in Ox , where Ox is the sheaf of local rings of X. It follows 
that Y = q~x ( Y ) = F  (E), where E is the normal bundle of Y in X and q / Y = p  
is the canonical projection of the projective bundle P (E) on Y. Note that 
q is characterized by the following universal property (similar to those con­
sidered in [3]): for every birational morphism h : Z X such that h~x (Y) 
is a hypersurface T of Z, Z is normal and h[Z \ T  biregular, there exists 
a canonical birational morphism ^ : Z  -> X  such that h =  qk.

2. L em m a i.—Let Yf be a normal algebraic variety, U a hyper surf ace 
of V and f:  V-> X a birational morphism such that f  maps biregularly V \ U  
onto X \Y  and, additionally, f  (U) =  Y. There exists then a canonical birational 
morphism g  :V  ->X such that f ~ q g . I f f  is complete over an open nonempty 
set of Y, then g  (U) contains an open set of Y . I f  moreover f  is proper, then 

g  (U) =  Y,
Proof.— In view of the universal property of q there exists a birational 

morphism g  : V -> X such that f  =  qg. It follows g  (U) C Y. If /  is complete 
over an open nonempty set G of Y, then g  in complete over q~ l (G) and so 
q~l (G)C g  (V). A s/  maps biregularly V \  U onto X \ Y , g  maps biregularly 
V \ U  Onto X \  Y; hence q~x (G )C g  (U). I f / i s  proper, then we have G = Y , 
i.e,, q - '  (G) =  Y.

L em m a 2.— Let U be a simple subvariety of Y  and  /  : V -> X a bira­
tional morphism which maps biregularly V \ U  onto X \ Y  and is such that 
f  (U) =  Y. I f  dim  U >  dim  Y, then codimi U = 1 .

Proof.—rSuppose r  =. codimy U >  1. As U is simple on V, there exists 
an open set G of V such that U n G 4= 0 and U n G  =  Hi - -Hr , where 
H ? are hypersurfaces of G (i<Cz’<  r). Owing to the local character of the 
problem we can replace V by G ,U  by U fi G and, consequently, X b y /(G )  and
Y by /  (U n  G). We can therefore suppose U =  Hi - •' Hr ; /  (H,-) =  K,. is 
a simple hypersurface of X, in view of the biregularity of /  in V \ U .  It 
follows: Y = f  (U) C K iD  • : • f ) K r . Hence there exists an irreducible compo­
nent Z of K in  • • • n  Kr such that Y C Z .  But dim Z >  dim X — r  =  dimV — 
— r  — dim U  and dim U >  dim Y, This shows that Y =j= Z, which contradicts 
the hypothesis U —Hi ••• H r , since /  maps biregularly V \ U  onto X \  Y.
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COROLLARY.— Under the hypotheses of Lemma 2, i f  f  is proper and V 
normal there exists a canonical birational proper morphism g :  V X , s u c h  
that f  =  qg and g  (U) =  Y, which m a p s Y  \ U  onto X \  Y biregularly.

Lemma 3 .— Let f  : X7--> X be a regular contraction of Y ' to Y  and X ' non­
singular. There exists then a canonical isomorphism g  : X '->  X such th a tf  — qg.

Proof.-—Taking in the corollary above U =  Y', V =  X', it remains only 
to show tha tg  is an isomorphism. By Z.M.  T., it is sufficient to prove that 
g ì Y' is injective.

Let us suppose y  E Y , p  (y) =  y  and r  — codimx Y. There exists then r 
hyper-surfaces Hi , • • •, Ur_x of X such that:

(a) Y is a simple subvariety of H z ( r < I  i < r —  1);
(b) if H; is the hypersurface of X corresponding by q to and

Fy —p~~x (y), then Hi • • • Hr-~i • =  {y  }. Replacing XT>y a suitable neighbor­
hood ofy,  we can find 91 , • ••, 9r_i E Q (X) such that (9-) =  H,- (1 <  i < r — 1). 
Then, if 9• =  9,- o q , t y =  9,- 0/, we have (9•) == H- +  Y [4] and so (9-) =  H - +  Y', 
since the hypersurfaces of X ', X correspond by ^  biregularly. Consider 
now r  =  Hi • • • H;_i , F; =  f ~ l (y) X  =--g  (T'). As g  (Hj) =  H,-, we have 
r  — g  ( r ') .  Since F'y =  g ~ x (F ,̂), we can apply the projection formula and 
get g  (T'- Fj,) =  T- Fj,, i.e., y r '- F j , )  =  {y}.  There exists therefore a unique 
point y r E Y' such that T' • Fj, —’{y'  }• We can now prove tha t g - 1 ( j7) =  { y r}. 
Indeed, suppose contrariwise that there exists an y "  y f such that 
g ( y n) — y  and so, evidently, y ” E F f  Hence y ” <tV, because r ' * F J , = y .  
Therefore y "  E H ', with a suitable i (1 < / <  r — 1). As (9') == H' -f Y', we 
see that 9-€ O ( / ' ,  X '). Let ordy, (<J/) be the order of X') [4]
at y ”i i.e., the least integer a for which ^ G m a, where m  — m ( y " ,  X')  is 
the maximal ideal of O ( y " , X '). By the divisor’s formula (Theorem 3, [4]) 
we have ordy<< (9*•) — m (y",  H() m ( y n, Y ;), where m ( y n, H) , m ( y " , Y) 
are the multiplicities of y "  on H ', YC respectively. Hence ordy/ (9'-) =  1, 
since y n is simple on Y' and y "  E H -. Similarly ord^ (9,) =  m  ( j7 , Y) +  
~b m (y  , R f  =  2, i.e., 9̂  E n2 where n =  m  (y  , X). But, since g  (y")  =  y, 
Ó > X') dominates O (y  , X) by the canonical morphism g* : Q (X )—Y-£X(X'). 
This proves that^*(w ) C m  and so g* (n2) C m 2. Thus we get 9*-€ m 2, which 
contradicts the hypothesis ordy/ (9') =  1.

3. Lemma 3 proves the ” only i f ” part of the theorem. It proves also 
the uniqueness part of the theorem but for the fact that (Y, X) is u n i q u e l y  
determined by ( Y f, X '). We shall now prove this remaining assertion.

Lemma 4. — Let f : X ’- >X  , / i  : X'-> Xi be two regular contractions of 
Y ’ within X ’. The birational correspondence t : X -^  Xi defined by f  and f \
is then an isomorphism.

Proof, (by induction on dim  X ' . =  n).— For n — 1 lemma 4 is trivial. 
Let n j> 1 , / (Y') = Y ,  f i  ( Y f  == Yi and suppose that the lemma is true for 
the dimension n — 1.

If dim Yi =  o, then by Z.M.T. / is regular. In this case, if dim Y >  o, 
then (by Lemma 2) codimx Y ==■ 1 which contradicts the hypothesis that
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is a contraction. Hence dim Y =  o and so t~~x is biregular, again by Z.M.T. 
Thus we can suppose dim Y and dim Y i>  i. By Lemma 3 /  and /1 are 
monoidal transformations of centers Y , Yi respectively. Let y  E Y and H 
be a hypersurface of X transversal to Y at y  on X. Then, in view of the local 
character of the problem, we can suppose H • Y =  Z where Z is a subvariety 
of Y. S i n c e / i s  a monoidal transformation of X centered in Y , / -1 (H) =  H ' 
and / /H ' is a monoidal transformation of H, of center Z. It follows 
Z' = / ~ 1 ( Z ) C H / and H' - Y '  =  Z \  Since f \  is a monoidal transformation, 
this shows that f i[H '  is a monoidal transformation of /  (H ') =  Hi ; hence 
we have either Y3.CH1 and f \  (Zr) =  Yi or Yi cl: Hi and Yi-Hi  =  f± (Z'). 
By the hypothesis of induction t \H — tu induces an isomorphism H H i , 
hence tu (Z) — f i  (Z'). It follows that dim Y >  dim Yi and, by symmetry, 
dim Yi >  dim Y; hence dim Y =  dim Y, which shows that f \  (Z') =|= Yi i.e. 
Yi cl: H i . Thus we see that f ~ l (y) =  / f 1 (yi), where y\  =  tu (y '). Therefore 
the fibres of / /y ' and those of f i f y r coincide. This shows that t is bijective 
on Y and so, by Z.M .T., t is regular.

Lemma 5.— Let Y, Y', X ' be nonsingular algebraic varieties and suppose 
that Y 1 is a subvariety of X '. I f  the conditions ;i°—30 of the Theorem are satis­
fied, then there exists a regular contraction f  : X ' -> X of Y f to Y.

Proof .—We shall construct X and f  piece-wise. Indeed, owing to Lem­
ma 4, these “ pieces ” can be canonically pieced together to get the variety X. 
By definition we take X ' \  Y ' as an open set of X apd / /X ' \  Y ' =  1. Let 
y ' E  Y r. According to condition i° we can identify Y ' with P (E). L e t / :  Y '-^  Y 
be the canonical projection and y  =  p  (y Then p ~ 1 (y) — P (E /,  where 
is the fiber of E in y. Let r  be the rank of E and Pi , • • •, Pr C P ( E /  the 
hyperplanes corresponding to a system of coordinates in E ^. Taking a local 
system of coordinates of E in an open neighborhood U of y  6 Y in Y, we get 
such a system Pi (u) , • • - , Pr (u) in every point u E U. By 20 and 30 there 
exists ^ e O  ( y ,  X ') such that (<]/) =  Y' +  H'- in an open neighborhood 
U ' of y ' in and, additionally, for every w ' e U ' n Y ' , / 1 /  / / C U '  
and H / 1/ - 1 ( /  (u'J) =  Pz- (p (u’f). It follows that, in U ', we have H ln  • • ’
• • • O H '  fj Y [  =  0  because, for every u' E \ J '  and u —  p  (u'), we have
r ■’
n  P,- (u) =  0 . We can therefore reduce U ' to an open neighborhood of 
1

U 'n  Yv in X ' such that Hi n  • • • f lH'  =  0 in U' .  We can now evidently 
suppose /  (U 'fì Y') —U, and so restrict our construction to Uh Replacing 
X ' by  U ; , Y ’ b y ' Y ' n U '  and Y by U we get the following conditions:

(a) Ofó =  Y ’ Hi (i <  . <  r) ;
(b) H '• Y '  =  P (E /, where E , - ( i <  i < r )  are subbundles of E corre­

sponding to a system of coordinates of E;

(6) n  h ; =  0 .
1

Similarly, by restriction to suitable chosen open sets, we can suppose, 
that there exists coi , • • •, oìs E tì (X') and ax , • • •, 6 l ì  (Y) such that
Q (coi ,'•••, co/ — O ( X /  are everywhere defined on X ' and null on Y', and
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that Q (ai , • • •, a,)- — Q (Y) and a i , • • •, a* are everywhere defined on Y. 
We m ay moreover suppose that there exists P i , • ••, ^  e O (X ') which are 
regular at every point of X ' and such that p,./Y' =  a,. (1 <  i  <  s)t where 
Q (Y) is identified with a subfield of £ì (Y') by the canonical injection 
p * : D (Y)-> O (Y') associated to p .

Consider now the locus X'- of (p , co , ^ , 9(‘)) in the affine space 
SN(N == t +  s +  2 r), where { 9(0 } =  {9(0 9(0} with 9<*’> =  (1 <  2 <  r).
X/ i s  isomorphic with the open set X ' \  H'- of X '. We shall identify X'- 
with this set. Let X be the locus of (P , co , <];) in SM (M =■ t +  +  r) and
f i  : X ;->  X the birational mapping defined by /,*.((p , co , ^ ,9^))) =  (P , co , ip). 
It is easily seen that (1 < i  <Lr) is everywhere regular on X/ and biregular

r  r
in X ' \  Y'-, where Y'- =  X Jn Y '. But X' = u X - ,  since n H i  — 0. Hence

1 I

f i  (1 <  i <L r) defines a birational morphism / : X ' - > X .  It is obvious that 
/ ( Y') =  Y, where Y  is identified with the locus of (a , o , o) in SM. Since /,- 
is biregular in X ' \  Y'-, /  is biregular in X ' \  Y'.

Let y  € Y. We shall show that y  is simple on X. In view of the hypoth-
r— 1 r —1

esis b) above, p ~ (y ) • n  Hj  — { y r } where y '  is a point. Hence I I  H)
j = i  j — i

has a unique irreducible component Z' at y'-a.nd Z' is transversal to Y' at y r 
on X'. Let Y" be the unique irreducible component of Z'. Y '  containing y r 
and H ;- =  / ( H}), (1 <Lj < r ) .  If Z =  / ( Z'), then Z is an irreducible com-

r — 1

ponent of multiplicity one of n Hy on X because f  maps X ' \  Y' onto
y=i ■

X \  Y biregularly. Consider now a generic point of S =  SM, (A , B , C), where 
(A) =  B =  (B;)i and C =  (Q)i<,-<,. Let D/0 = e ,/C , and -SiGS?
be the locus of (A , B , C , D$°). Then (A , B , C , (A , B , C) defines
a birational morphism F2- : S and, piecing together these maps, we get a
monoidal transformation F :  S '-> S  of S having the center T defined by 
Ci =  c r =  o. X ' is a subvariety of S' and F /X '= / .  Put T '= -F - i(T )  
and let 6 Q (S) be the coordinate function of Q (S) for which (^-) is the 
hyperplane L,- defined by Q  =  o (1 corresponds to a hyper-
surface L/ of S' and F~x (L2*) =  L; +  T '. Hence, if £'• = ^ q F g O  (S'), 
then (£*•) =  L) +  T '. induces on X the function Xi — 0 /•  This shows that
(&) =  , because ( ^  o /)= H ,- . It follows that H ,= L r  X, since (& )= (5,-)‘ X
by a well known formula [8]. Similarly F~1 (L?-)- X '=  (F -1 ((£,-)))• X '=(^-)- 
• X ' =  (^-) =  H'- +  Y'. The cycle Z '-(H )+  Y') is defined on X ' and equal 
to Z' • Y', since Hj • • • H )= o . But, as we have just seen, H )-f-Y '=  F _1 (Lr) • X '. 
This proves that Z' • F~1 (Lr) is defined on S' and that (Z' • F~1 (L,.))s' —(Z' • Y ')X' 
by the associativity intersection formula. Note that Y" is the unique 
irreducible component of Z '-F ~ 1 (Lr) which meets f ~ 1 (y)} hence also 
F~1 (jj), since Z 'C  Y' and F~1 (y ) f>Y' = / ~ 1 (y). It is evident that Lrf iZ  =  
-  Hfn Z  =  Y. On the other hand, Z =  F (Z'). This shows that we can 
apply the projection formula with respect to F : S '-*  S to Z'- F-1  (Lr). Thus 
we get i  (Y , L ^nZ  ; S) == 1, since i  (Y", F_1 (Lr) n Z ' ; S') = 1 .  As Z is
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the unique irreducible component of Hi - • Hr_i containing y t we can sup­
pose Z =  (Hi - • -Hr_i)x . This shows that Z =  (Li - • -Lr_i -X)s , because 
H #- =  L - X  (i < i  < r — i). Therefore Lr -Z =  Li - • Lr X. We get thus 
finally i (Y , Li - • -Lr - X ; S) =  I, which proves that y  is simple on X by the 
well known multiplicity one criterion.

N o te —  It is now quite simple to see that E is isomorphic with the normal 
bundle N of Y in X. Indeed, since /  : X '->  X is a regular contraction of Y' 
to Y with X ', it follows that /  is a monoidal transformation of center Y of X. 
Then Y' =  P (N), and so the normal bundle XT of Y '  in X ' contracts regularly 
to N. But, in view of Condition 30, N ' -> /  and I is regularly contractable to 
E. Hence, by Lemma 4, N E.
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