ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

LUCA FANFANI, PIER FRANCESCO ZANAZZI

La struttura cristallina della metastrengite

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **40** (1966), n.5, p. 880–889. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_5_880_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Mineralogia.** — La struttura cristallina della metastrengite. Nota di Luca Fanfani e Pier Francesco Zanazzi ^(*), presentata ^(**) dal Socio G. Carobbi.

SUMMARY. — Metastrengite mineral occurs as monoclinic modification of hydrated ferric orthophosphate FePO₄ · 2 H₂O. The orthorombic modification is known as strengite. The space group of metastrengite is P 2 I/n and lattice parameters are:

 $a_0 = 5.330 \pm 0.003 \text{ Å}$; $b_0 = 9.809 \pm 0.004 \text{ Å}$; $c_0 = 8.714 \pm 0.005 \text{ Å}$; $\beta = 90^0 36' \pm 8'$

according a new determination.

The structure was determined from a three-dimensional Patterson function. The three-dimensional network is formed by isolated octahedra $FeO_4(H_2O)_2$ and PO_4 tetrahedra. The Fe—O and P—O average bond lengths are 2.00 Å and 1.53 Å respectively.

Some relationships between metastrengite and strengite structures are given.

The final discrepancy index R is 0.08, for 575 observed structure factors.

Il fosfato ferrico idrato $FePO_4 \cdot 2 H_2O$ cristallizza in natura in due modificazioni: una rombica, conosciuta come strengite, l'altra monoclina nota come metastrengite o anche come clinostrengite o fosfosiderite. Il presente lavoro riguarda la determinazione della struttura cristallina di quest'ultimo minerale.

La metastrengite fu descritta per la prima volta nel 1890 da Bruhns e Busz [1], ma solo nel 1926 fu classificata come monoclina da De Angelis [2]. Nel 1939 Mc Connell [3] determinò con i raggi X le costanti della cella elementare e propose come gruppo spaziale più probabile il C_{2k}^2 . Strunz e Sztrokay nel 1940 [4], dopo aver messo in evidenza la stretta relazione che intercorre tra la cella rombica della strengite e quella monoclina della metastrengite, proposero per questo minerale il gruppo spaziale non centrosimmetrico C_2^2 , in quanto sottrogruppo del D_{2k}^{15} cui appartiene la strengite. Successivamente McConnell [5], riesaminando la metastrengite, propose il gruppo spaziale C_{2k}^5 in base alle ulteriori estinzioni sistematiche osservate ai raggi X.

PARTE SPERIMENTALE.

Da un campione proveniente da Pleystein (Baviera) è stato scelto un cristallo di metastrengite che è stato ridotto a forma sferica con raggio di 0,115 mm per poter apportare alle intensità degli effetti di diffrazione una più comoda ed esatta correzione di assorbimento.

(**) Nella seduta del 16 aprile 1966.

^(*) Istituto di Mineralogia dell'Università di Perugia. Sezione di Firenze – Perugia del Centro Nazionale di Cristallografia del C.N.R.

Prima di iniziare lo studio strutturale sono state rideterminate accuratamente le costanti della cella. I parametri reticolari ricavati da fotogrammi di Weissenberg, tarati con un debye ottenuto con polvere di Ag secondo il metodo di Christ [6], e da fotogrammi di precessione, sono:

$$a_0 = 5,330 \pm 0,003$$
 Å $\beta = 90^0 \ 36' \pm 8'$ $b_0 = 9,809 \pm 0,004$ Å $V = 455,6$ Å³ $c_0 = 8,714 \pm 0,005$ Å

La densità roentgenografica calcolata per quattro unità $FePO_4 \cdot 2 H_2O$ nella cella elementare è 2,725 g cm⁻³; l'unica determinazione diretta della densità del minerale dà un valore di 2,76 g cm⁻³ [1].

Dall'esame delle estinzioni sistematiche risulta che il minerale appartiene al gruppo spaziale P 2 1/n.

Per lo studio strutturale sono stati ripresi gli effetti di diffrazione dei livelli o kl, 1 kl, 2 kl e 3 kl mediante fotogrammi di Weissenberg ottenuti con la tecnica dell'equinclinazione. È stata impiegata la radiazione CuK_{α} filtrata con Ni. Sono stati raccolti 698 riflessi indipendenti, dei quali 123 con intensità troppo bassa per essere registrata.

Le intensità integrate, lette con un microdensitometro, sono state corrette per l'assorbimento assumendo per la sostanza un coefficiente lineare $\mu = 304,45 \text{ cm}^{-1}$ per la CuK_a e quindi per il cristallo un $\mu R = 3,50$. È stata apportata anche una correzione empirica per lo sdoppiamento $\alpha_1 - \alpha_2$; i dati sono stati infine corretti per il fattore di Lorentz e polarizzazione.

Con i valori di F² così ottenuti, messi approssimativamente in scala relativa tenendo conto dei tempi di esposizione per i diversi strati, è stata calcolata la funzione di Patterson tridimensionale $^{(1)}$.

DETERMINAZIONE DELLA STRUTTURA.

I massimi più forti della funzione di Patterson sono stati attribuiti a distanze Fe—Fe e Fe—P; sono state quindi determinate le coordinate del Fe e del P dell'unità asimmetrica. Con la fase data da questi atomi ai fattori di struttura è stata calcolata una sintesi tridimensionale di Fourier che, anche in base a considerazioni sulla stereochimica degli ioni ferrico e fosforico, ha permesso di localizzare i sei ossigeni non equivalenti. Le posizioni atomiche sono state più correttamente definite con successive sintesi delle differenze, ottenendo un indice di discrepanza R = 0,15.

Il raffinamento della struttura è stato eseguito con il metodo dei minimi quadrati. I riflessi sono stati pesati con lo schema riportato da Cruickshank

881

⁽¹⁾ I calcoli cristallografici sono stati effettuati con l'elaboratore 1620 IBM utilizzando i programmi di V. Albano, P. L. Bellon, F. Pompa e V. Scatturin dell'Istituto di Chimica Generale dell'Università di Milano.

et al. [7]. Dopo due cicli di raffinamento è stata apportata ai fattori di struttura osservati la correzione per l'estinzione secondaria mediante la formula $F_{o_{corr}}^2 = F_o^2 e^{\epsilon I_c}$, dove $F_{o_{corr}}$ è il fattore di struttura osservato corretto per l'estinzione, F_o il fattore di struttura osservato, I_c è l'intensità calcolata ed ϵ è il fattore di correzione. Questo fattore è stato valutato per mezzo di un calcolo di minimi quadrati con i riflessi più intensi affetti da estinzione, ed è risultato $\epsilon = 0.84904 \cdot 10^{-5}$.

Due ulteriori cicli di raffinamento hanno portato il valore dell'indice di discrepanza, introducendo nel calcolo tutti i fattori di struttura realmente osservati, a 0,08.

TABELLA I.

Атомо	$x a_0$	$10^4 \sigma(x)$	y/b ₀	10 ⁴ σ (<i>y</i>)	z/c_0	10 ⁴ σ (z)	В
• • • • • • • • • • • • • • • • • • •	·				· · · ·		,
Fe	0,4083	4	0,3262	I	0,3081	I	0,87
Р	0,9123	6	0,1494	2	0,1838	2	0,63
O ₁	0,9064	18	0,2186	7	0, 0269	8	1,10
O ₂	0,1649	18	0,1785	7	0,2649	8	1,25
O ₃	0,6166	17	0,4933	7	0,3305	8	1,10
O4	0,7025	18	0,2070	7	0,2830	8	1,03
(H ₂ O) ₁	0,1050	21	0,4516	9	0,3197	10	2,25
(H ₂ O) ₂	0,4135	21	0,3660	8	0,0730	9	1,71

Coordinate atomiche e deviazioni standard in frazioni dei lati della cella; fattori termici isotropi in A².

Per il calcolo dei fattori di struttura si sono usati i fattori di diffusione atomici riportati nelle International Tables (1962) per Fe⁺³, P e O⁻¹. Le coordinate degli atomi non equivalenti, le loro deviazioni standard ed i fattori termici sono riportati in Tabella I. I fattori di struttura osservati e calcolati sono elencati in Tabella II.

DISCUSSIONE DELLA STRUTTURA.

La disposizione atomica nella cella elementare della metastrengite è mostrata in proiezione lungo l'asse a nella fig. 1. In Tabella III sono riportate le distanze di legame con le loro deviazioni standard, valutate con la formula di Cruickshank [8], ed in Tabella IV gli angoli di legame con le deviazioni standard calcolate secondo Darlow [9]. TABELLA II.

h	k	l	Fo	Fc	h	k	ł	Fo	Fc	h	k	l	Fo	Fc
<i>h</i> 0	<i>k</i> 2 4 6 8 10 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12	<pre></pre>	F_{0} $76,3$ $28,7$ $100,7$ $34,11$ $19,5$ $24,0$ $34,4$ $14,99$ $11,7$ $23,5$ $41,11$ $22,2$ $17,7$ $14,6$ $25,6$ $26,7$ $143,7$ $17,9$ $24,11$ $14,1$ $20,2$ $18,5$ $70,4$ $42,7$ $37,3$ $28,5$ $70,4$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>р</u> о о	<i>k</i> 10 11 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 2 3 12 12 12 12 12 12 12 12 12 12	2 4 5 5 5 5 5 5 5 5 5 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6	Fo 9,2 62,6 9,7 60,1 19,0 27,5 37,1 35,0 10,9 33,1 7,2 9,2 55,6 28,0 11,6 11,4 34,1 34,7 26,5 13,8 14,1 14,3	$\begin{array}{c c} F_{c} \\ \hline & 7,4 \\ -& 7,0 \\ \hline & 67,2 \\ -& 10,6 \\ -& 66,2 \\ 17,8 \\ 29,2 \\ -& 37,6 \\ 36,8 \\ 8,2 \\ -& 36,6 \\ 8,2 \\ -& 30,4 \\ -& 1,8 \\ -& 10,4 \\ -& 1,8 \\ -& 10,4 \\ -& 1,8 \\ -& 10,4 \\ -& 1,8 \\ -& 10,4 \\ -& 10,0 \\ 35,6 \\ 36,2 \\ -& 5,0 \\ -& 25,2 \\ -& 13,4 \\ -& 0,8 \\ 14,2 \\ 13,2 \\ 8 \\ -& 13,2 \\ -& 0,8 \\ 14,2 \\ 14,2 \\ 14,$	h o I	& 2 3 4 5 1 2 3 4 5 1 1 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5	/ IO IO IO IO IO IO IO IO IO IO	F_{o} 20, 1 11, 1 17, 1 18, 7 104, 5 87, 2 136, 8 50, 4 54, 6 14, 7 48, 6 16, 5 27, 7 14, 9 11, 8 23, 0 64, 5 51, 7 24, 5 46, 6 35, 0 15, 9 37, 5 10, 4 23, 3 16, 0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0	10 11 12 12 34 56 78 90 11 12 34 56 78 9 10 11 23 45 56 78 9 10 11 23 45 56 78 9 10 11 23 45 56 78 9 10 11 23 10 10 10 10 10 10 10 10 10 10	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12,7 25,0 84,1 27,2 43,1 12,9 27,3 17,1 53,8 46,8 13,2 14,4 7,2 37,8 77,0 45,9 16,5 45,2 18,8 29,2	$ \begin{array}{c} 10,4\\2,8\\-24,0\\-93,6\\23,2\\47,6\\-7,2\\-28,0\\-16,1\\-55,6\\-1,2\\48,4\\-14,4\\-8,0\\-34,2\\-83,4\\-46,6\\15,6\\6,2\\3,2\\-46,4\\-17,6\\29,0\end{array} $	0	456789 012345678 1234567 01	7777788888888889999999999990010	10,1 23,9 9,4 10,8 23,5 71,9 30,2 20,4 17,4 31,4 8,0 47,9 11,3 9,4 19,8 21,1 14,4 25,0 18,3 20,9 9,2 35,5 7,4	$\begin{array}{c} -12,8\\ -1,4\\ 25,6\\ -9,6\\ 8,2\\ 22,8\\ -75,2\\ -28,4\\ 16,6\\ 16,2\\ 29,8\\ 7,8\\ -47,4\\ -10,2\\ 7,8\\ -21,4\\ -21,6\\ 14,4\\ 24,0\\ -17,6\\ -20,8\\ -7,6\\ 34,6\\ 6,0\\ \end{array}$	I	6 6 7 7 8 8 9 9 9 0 10 11 11 12 2 2 3 3 4 4 5 5 6 6	$ \begin{array}{c} I \\ -I \\ I \\ -I \\ I \\ -I \\ I \\ -I \\ I \\ $	38,9 35,5 10,8 23,1 37,9 26,9 24,0 13,9 22,3 20,5 31,4 40,3 14,2 59,5 38,9 40,9 36,8 14,7 13,4 24,3	$\begin{array}{c} 4,6\\ 41,8\\ 37,8\\ 37,8\\ 22,6\\ -39,0\\ -26,6\\ 22,2\\ 2,2\\ -2,2\\ -3,2\\ -11,4\\ -2,2\\ 22,2\\ -3,2\\ -11,4\\ -2,2\\ 22,2\\ -35,6\\ -42,8\\ -13,6\\ 66,6\\ -42,8\\ -39,6\\ -42,8\\ -15,2\\ 12,4\\ -25,4\end{array}$

Segue: TABELLA II.

h	k l	Fo	Fc	h	k l	Fo	Fc	h	k	l	F.	Fc
I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,2 55,8 16,3 15,5 45,9 19,6 11,7 32,9 32,5 12,7 25,7 20,7	-14,4-55,0-14,0-15,649,0-12,235,2-32,2-10,425,4-22,0	Ι	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11,1 8,4 76,0 94,4 37,8 46,5 50,8 32,3 28,3 11,7 17,1 128,0	$ \begin{array}{r} 10,2 \\ - 6,8 \\ 82,0 \\ 95,4 \\ 39,4 \\ 49,8 \\ -54,2 \\ -34,2 \\ 28,2 \\ -10,8 \\ -18,8 \\ -18,8 \\ -10,2 \\ \end{array} $	I	6 6 7 7 8 8 9 9 1 1 2	$ \begin{array}{c} 7 \\ -7 \\ 7 \\ -7 \\ 7 \\ -7 \\ -7 \\ -7 \\ 8 \\ 8 \\ \end{array} $	15,0 16,0 7,3 31,5 30,3 20,7 21,7 25,2 38,1 43,9 27,6	$ \begin{vmatrix} -14,4 \\ -16,0 \\ 5,6 \\ -32,4 \\ 29,8 \\ -2,6 \\ -19,4 \\ 21,0 \\ -21,8 \\ -34,8 \\ -47,4 \\ -47,4 \\ \end{vmatrix} $
I	$\begin{array}{c} 0 & -3 \\ 1 & -3 \\ 2 & -3 \\ 3 & -3 \\ 4 & -3 \\ 5 & -3 \end{array}$	64,7 95,2 38,4 29,2 18,7 32,1 46,6 40,0 37,4 30,4 46,5	$\begin{array}{c} -69,2 \\ -90,0 \\ -42,4 \\ -29,4 \\ 18,4 \\ 33,6 \\ 3,0 \\ -47,2 \\ 40,8 \\ 38,8 \\ 32,8 \\ 46,6 \\ \end{array}$		$\begin{array}{c} -5 \\ -5 \\ 5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\$	38,9 39,6 25,0 38,3 61,3 16,4 31,5 18,1 19,0 9,0 13,7	$\begin{array}{c} -40.3 \\ -40.2 \\ -26.4 \\ 40.4 \\ 66.4 \\ 17.2 \\ 33.8 \\ -18.4 \\ 1.6 \\ 19.2 \\ -9.2 \\ -6.8 \\ -15.2 \end{array}$		2 3 3 4 4 5 5 6 6 7 7 8 8	-8 -8 -8 -8 -8 -8 -8 -8	27,6 41,2 52,7 37,4 15,9 28,3 9,0 32,1 26,4 22,7 18,7	$\begin{array}{c} -26,6 \\ 43,0 \\ 54,4 \\ 38,6 \\ 15,8 \\ -3,4 \\ -29,2 \\ -4,6 \\ 6,2 \\ 31,4 \\ 25,4 \\ -23,2 \\ -17,8 \end{array}$
	6 3 6 -3 7 3 8 3 8 -3 9 3 9 -3 10 3 10 -3 11 3 11 -3	53,3 75,7 39,9 19,0 11,3 22,8 14,8 21,9 11,1 11,7 21,4 24,7	$\begin{array}{c} -56,6\\ -83,2\\ -42,2\\ -16,8\\ -10,0\\ 22,6\\ 10,2\\ -21,2\\ 13,4\\ 12,0\\ 20,4\\ 22,4\\ \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,1 26,7 31,6 24,4 20,6 41,2 39,9 9,0 38,7 12,7 25,6	$ \begin{array}{c} 13,8\\25,2\\35,2\\21,0\\-22,0\\-42,0\\-3,0\\9,6\\39,0\\12,6\\-4,2\\26,4\end{array} $	I	0 0 1 2 2 3 3 4 4 5 5 6	9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	25,9 32,2 15,6 9,0 15,9 10,6 10,4 12,8	$ \begin{vmatrix} -3,4 \\ -25,8 \\ -31,6 \\ 13,6 \\ -4,0 \\ 8,8 \\ 14,2 \\ -12,0 \\ 6,8 \\ 3,6 \\ 9,6 \\ -5,0 \\ -11,4 \end{vmatrix} $
I	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12,1 13,8 29,8 25,9 46,2 19,1 38,0 47,2 27,3 11,1 27,6 30,9 13,9	$12,8 \\ -12,8 \\ -31,2 \\ 25,0 \\ 47,8 \\ 18,8 \\ 41,0 \\ -49,2 \\ 28,8 \\ -10,4 \\ -6,4 \\ 26,8 \\ -30,6 \\ 10,8 \\ 0$	Ι	7 - 6 8 - 6 9 - 6 9 - 6 10 - 6 0 - 7 1 - 7 1 - 7 2 - 7	25,8 25,8 20,2 37,1 11,8 20,0 11,8 17,5 10,2	- 4,0 - 19,0 - 38,0 - 17,6 - 17,6 - 10,6 - 10,6 - 10,6 - 10,6 - 10,6 - 10,6 - 10,6 - 10,0 - 10,0	Ι	677 1122334455	$ \begin{array}{c} 9 \\ -9 \\ $	12,5 19,7 17,5 13,6 18,6 26,2 13,7 29,3 27,7 13,8 25,1 13,9	$ \begin{array}{c} 11,4\\ -19,8\\ 19,0\\ 13,6\\ 8,0\\ 15,2\\ 27,6\\ 12,0\\ -29,2\\ -26,4\\ -12,2\\ -24,2\\ 13,2\\ 6,4\\ \end{array} $
	$ \begin{bmatrix} 8 & -4 \\ 9 & 4 \\ 9 & -4 \\ 10 & 4 \\ 10 & -4 \end{bmatrix} $	11,0 13,2 15,2 27,2 15,3	$ \begin{array}{r} -10,4 \\ -9,0 \\ -13,6 \\ 5,6 \\ 27,2 \\ -14,4 \\ \end{array} $		$\begin{array}{r} 3 & -7 \\ 3 & -7 \\ 4 & 7 \\ 4 & -7 \\ 5 & 7 \\ 5 & -7 \end{array}$	13,8 20,1	$ \begin{array}{c} -13,2 \\ 6,0 \\ 7,6 \\ 6,6 \\ 4,4 \\ 21,0 \end{array} $	2	1 2 3 4 5	0 0 0 0	116,6 8,5 26,8 74,7	90,8 -4,0 -8,2 -25,8 -80,6

Segue: TABELLA II.

h	, ,		i	1			1 1	1		1	
	R l	F _o	Fc	h	k l	Fo	Fc	h	k l	Fo	Fc
2	$\begin{array}{c} & & & \\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	k 2 2	$\begin{array}{c} k \\ 7 \\ 3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ -3 \\ 3 \\ 4 \\ 5 \\ -3 \\ 3 \\ 3 \\ 4 \\ 5 \\ -3 \\ 3 \\ 3 \\ 4 \\ 5 \\ -3 \\ 3 \\ 3 \\ 4 \\ 5 \\ -3 \\ 3 \\ 3 \\ -3 \\ 3 \\ 3 \\ -3 \\ 3 \\ 3 $	F_0 65,981,348,019,350,338,527,732,039,79,126,138,624,114,821,923,214,839,148,912,914,812,910,616,512,58,723,228,110,610,713,950,273,158,837,941,269,559,918,921,19,113,3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h 2 2 2	$ \begin{array}{c} \& & 1 \\ 9 \\ 9 \\ 10 \\ -5 \\ 5 \\ 10 \\ -5 \\ 5 \\ 0 \\ -6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ $	$ \begin{array}{c} F_{0} \\ \hline \\ I4,4 \\ I9,9 \\ 22,4 \\ 35,2 \\ 24,5 \\ 35,0 \\ 49,5 \\ 10,7 \\ 18,5 \\ 9,0 \\ 16,7 \\ 10,4 \\ 35,3 \\ 32,3 \\ 29,9 \\ 28,2 \\ 15,2 \\ 10,3 \\ 25,6 \\ 10,6 \\ \hline \\ 10,7 \\ 22,2 \\ 21,5 \\ 18,1 \\ 23,6 \\ 23,5 \\ 24,0 \\ 15,5 \\ 9,7 \\ 14,7 \\ 13,9 \\ 7,6 \\ 13,3 \\ 20,8 \\ 7,1 \\ \hline \\ 17,2 \\ 41,1 \\ 47,5 \\ 48,0 \\ 12,9 \\ 10,2 \\ \hline \\ 22,9 \\ 9,2 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23,2 23,5 29,7 32,1 73,7 53,1	$\begin{array}{r} 23,3\\23,2\\26,0\\-26,6\\-32,0\\-76,6\\-54,4\end{array}$		$ \begin{array}{r} 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ 5 \\ 7 \\ 5 \\ 8 \\ -5 \\ 9 \\ 5 \end{array} $	21,1 9,1 13,3 26,7 30,4 21,9 13,5	$ \begin{array}{c} -7,0\\ 3,2\\ -12,0\\ 25,2\\ 30,6\\ 24,0\\ -10,8 \end{array} $		$ \begin{array}{r} 5 & -8 \\ 4 & -8 \\ 4 & -8 \\ 5 & -8 \\ 6 & -8 \\ 6 & -8 \\ \end{array} $	22,9 9,2 48,9 42,6 15,9 24,4	$ \begin{array}{c} 2,2\\ 0,2\\ 20,4\\ 9,2\\ 51,4\\ 47,8\\ -14,2\\ -27,6\end{array} $

886

Segue: TABELLA II.

h	k	I	Fo	Fc	h	k l	Fo	Fc	h	k l	Fo	Fc
<i>h</i> 2 2 3	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	-10	$\begin{array}{c} F_{0} \\ 25,8 \\ 26,9 \\ 7,6 \\ 9,6 \\ 19,9 \\ 13,7 \\ 20,4 \\ 15,4 \\ 16,6 \\ 9,8 \\ 13,7 \\ 20,1 \\ 30,6 \\ 24,8 \\ 11,9 \\ 6,9 \\ 7,7 \\ 16,6 \\ 19,5 \\ 118,2 \\ 17,7 \\ 63,2 \\ 13,8 \\ 14,1 \\ 41,9 \\ 23,0 \\ 11,1 \\ 65,1 \\ 43,3 \\ 46,6 \\ 55,0 \\ 40,5 \\ 31,6 \\ 24,0 \\ \end{array}$	$\begin{array}{c} F_{c} \\ \hline \\ -26,8 \\ -27,6 \\ 0,6 \\ -5,2 \\ -10,0 \\ 1,2 \\ -20,0 \\ 18,8 \\ 13,8 \\ -1,0 \\ -14,4 \\ 2,0 \\ 18,2 \\ 10,6 \\ 15,8 \\ 21,2 \\ 32,0 \\ -23,8 \\ 12,2 \\ 32,0 \\ -23,8 \\ 12,2 \\ 32,0 \\ -23,8 \\ 12,2 \\ 32,0 \\ -16,2 \\ -14,4 \\ -52,4 \\ 46,2 \\ 7,4 \\ -12,8 \\ -16,2 \\ -16$	<i>h</i> 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{o} 12,0 6,6 13,2 18,1 45,9 47,4 18,5 32,5 23,6 8,6 19,8 9,6 31,3 8,8 39,0 33,0 12,3 28,5 31,1 22,7 8,6 24,6 34,2 65,0 65,9 21,2 21,0 10,9 17,7 13,5 53,5 45,7 17,2 40,6 37,9 18,0 18,0 19,1 10,0 10	$\begin{array}{c} F_{c} \\ \hline \\ -13,2 \\ 8,4 \\ -13,8 \\ -4,0 \\ 13,8 \\ -4,0 \\ 13,8 \\ -42,2 \\ -26,6 \\ 32,0 \\ 23,8 \\ -42,2 \\ -26,6 \\ 32,0 \\ 23,8 \\ -42,2 \\ -36,6 \\ 8,2 \\ 23,8 \\ -42,2 \\ -36,6 \\ 8,2 \\ -33,8 \\ -44,2 \\ -36,6 \\ 11,8 \\ -31,6 \\ 33,4 \\ 25,0 \\ -12,4 \\ 31,6 \\ 33,8 \\ -65,6 \\ -66,6 \\ -22,2 \\ 18,00 \\ -12,4 \\ 31,6 \\ 33,8 \\ -65,6 \\ -66,6 \\ -22,2 \\ 18,00 \\ -9,4 \\ 17,2 \\ -12,8 \\ 59,8 \\ 0 \\ 3,4 \\ -40,6 \\ -20,4 \\ -20,4 \\ -40,6 \\ -20,4 \\ -40,6 \\ -20,4 \\ -2$	<u>k</u> 3 3	k 1 5 -4 4 -4 5 -4 4 -4 4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 <t< td=""><td>$\begin{array}{c} F_{0} \\ \hline \\ 18,0 \\ 20,9 \\ 8,4 \\ 18,1 \\ 18,0 \\ 7,2 \\ 13,9 \\ 27,2 \\ 6,2 \\ 4,5 \\ 21,7 \\ 8,0 \\ 71,9 \\ 67,1 \\ 17,4 \\ 8,3 \\ 14,2 \\ 44,3 \\ 36,9 \\ 14,1 \\ 38,1 \\ 30,5 \\ 15,3 \\ 15,3 \\ 15,3 \\ 15,8 \\ 6,3 \\ 29,5 \\ 36,0 \\ 10,9 \\ 26,0 \\ 31,2 \\ 15,3 \\ 7,9 \\ 7,7 \\ 6,3 \\ 11,5 \\ \end{array}$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{c} F_{0} \\ \hline \\ 18,0 \\ 20,9 \\ 8,4 \\ 18,1 \\ 18,0 \\ 7,2 \\ 13,9 \\ 27,2 \\ 6,2 \\ 4,5 \\ 21,7 \\ 8,0 \\ 71,9 \\ 67,1 \\ 17,4 \\ 8,3 \\ 14,2 \\ 44,3 \\ 36,9 \\ 14,1 \\ 38,1 \\ 30,5 \\ 15,3 \\ 15,3 \\ 15,3 \\ 15,8 \\ 6,3 \\ 29,5 \\ 36,0 \\ 10,9 \\ 26,0 \\ 31,2 \\ 15,3 \\ 7,9 \\ 7,7 \\ 6,3 \\ 11,5 \\ \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	455667788999	-1 -1	11,8 19,8 11,6 20,6 17,6 38,2 39,9	$ \begin{array}{c} -7,2\\ -10,8\\ -6,0\\ -20,6\\ 11,4\\ 20,7\\ 18,6\\ 40,6\\ -42,6\\ -1,2\\ -6,6\\ \end{array} $	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13,5 10,9 13,0 6,8 21,0 38,1 9,8	$ \begin{array}{c} 13,0 \\ -5,8 \\ 12,2 \\ -14,8 \\ 2,8 \\ -4,4 \\ -22,4 \\ 40,6 \\ -11,8 \\ 2,0 \\ \end{array} $	3	$\begin{array}{c} 8 & -6 \\ 9 & 6 \\ 9 & -6 \\ 0 & -7 \\ 1 & -7 \\ 2 & 7 \\ 2 & -7 \end{array}$	11,5 24,5 14,0 21,8 22,7 13,8 12,9	$ \begin{array}{c} 13,0\\ 26,0\\ 15,6\\ -25,8\\ 2,2\\ 2,8\\ -25,2\\ -14,8\\ 0,2\\ -11,0\\ \end{array} $

Segue: TABELLA II.

h	k l	Fo	Fc	h	k l	Fo	Fc	h	k I	Fo	Fc
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,8 7,8 7,1 22,8 11,7 20,4 25,9 9,3	$\begin{array}{r} 6,4\\2,8\\-0,2\\0,8\\19,0\\6,8\\-6,4\\4,6\\-26,4\\-13,2\\25,0\\-29,8\\8,6\\-4,4\end{array}$	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49,9 45,6 7,5 32,0 36,3 10,8 7,3 10,2 25,6 21,0 15,0	$ \begin{array}{r} -48,4 \\ -53,4 \\ -7,0 \\ 4,6 \\ 34,2 \\ 37,3 \\ 10,6 \\ -8,0 \\ 4,6 \\ 8,0 \\ 27,0 \\ -21,4 \\ 0,4 \\ -16,0 \end{array} $	3	2 9 2 -9 3 9 3 -9 4 9 4 -9 5 9 5 -9 I 10 I - 10	14,1 19,5 8,2 6,4 7,1 12,0 6,5	$ \begin{array}{c} -13,2\\18,8\\-9,0\\-1,7\\3,2\\-5,0\\6,6\\13,8\\-3,8\\5,8\end{array} $

Fig. 1.

Gli ioni ferrici legano ai vertici di un ottaedro quasi regolare quattro ossigeni di quattro gruppi PO₄ e due molecole di acqua secondo la configurazione *cis*. Le distanze Fe—O vanno da un minimo di 1,96 Å ad un massimo di 2,09 Å.

Gli ossigeni del gruppo PO_4 sono disposti ai vertici di un tetraedro abbastanza regolare con distanza media P—O di 1,53 Å.

887

TABELLA III.

Distanze di legame e loro deviazioni standard.

(I: <i>x</i>	, <i>y</i> , <i>z</i> ; II: \bar{x} , \bar{y}	, \overline{z} ; III: $\frac{1}{2} + x$, $\frac{1}{2} - $ L'apice indica atom	$-y$, $\frac{1}{2} + z$; IV: $\frac{1}{2} - x$ i di celle adiacenti).	$, \frac{1}{2} + y, \frac{1}{2} - z.$
Fe (I)	– O ₁ (III)	1,956 ± 0,006 Å	P (I) – O ₁ (I)	1,526 ± 0,007 Å
	$- O_2(I)$	1,978 0,008	$- O_2 (I)'$	1,540 0,009
	– O ₃ (I)	1,988 0,007	– O ₃ (IV)'	1,543 0,007
	– O4 (I)	1,970 0,008	- O ₄ (I)	1,528 0,008
	– (H ₂ O) ₁ (I)	2,034 0,010	$(H_2O)_1(I) - O_3(I)'$	2,637 0,014
	$- (H_2O)_2 (I)$	2,085 0,007	– O ₂ (IV)	2,649 0,01 2

TABELLA IV.

Fe (I) _			Fe (()		
O_1 (III)	$O_2(I)$	90,6º ±	<u>-</u> 0,3º	O4 (I)	(H ₂ O) ₁ (I)	176,4 ° =	⊦ 0,3°
	O3 (I)	95,60	0,30		$({\rm H_2O})_2({\rm I})$	89,00	0,3 ⁰
	O4 (I)	89,3°	0,30			0	
	$({ m H_{2}O})_{1}({ m I})$	94,3°	0,4 ⁰	$(H_2O)_1(1)$	$(H_2O)_2(1)$	87,40	0,40
	$({\rm H_{2}O})_{2}({\rm I})$	177,80	0,30				
O ₂ (I)	O ₃ (I)	170,70	0,30	P ₁ (I)	^{I)} \ O ₂ (I)'	109,8° <u>-</u>	± 0,5°
	$O_4(I)$	93°,7	0,30		O_3 (IV)	111,60	0,4º
	$({\rm H_{2}O})_{1}({\rm I})$	86,10	0,40		O4 (I)	109,50	0,4 ⁰
	$({\rm H_{2}O})_{2}({\rm I})$	88,00	0,3º				
0 (1)		00.00	0.00	O ₂ (I)'	O ₃ (IV)	107,9 ⁰	0,4°
$O_{3}(1)$	$O_4(1)$	93,20	0,30		O4 (I)	108,20	0,4 ⁰
	$({\rm H}_{2}{\rm O})_{1}({\rm I})$	86,6º	0,4 ⁰				
	$({\rm H_{2}O})_{2}({\rm I})$	85,9 °	0,30	O ₃ (IV)	O4 (I)	109,80	0,4 0

Angoli di legame e loro deviazioni standard.

Sia le distanze Fe—O, sia quelle P—O sono in buon accordo con i più recenti valori in letteratura.

Da considerazioni sulla posizione delle molecole di acqua legate al ferro e degli ossigeni legati al fosforo, sono stati localizzati nell'unità asimmetrica due legami a idrogeno, con distanze riportate in Tabella III. La struttura della metastrengite può essere descritta come un edificio tridimensionale di ottaedri isolati $FeO_4(H_2O)_2$ legati fra loro da tetraedri PO₄. Questa disposizione ad « isole » di ottaedri è del resto prevedibile in base al rapporto Fe/P e al numero di molecole di acqua di coordinazione, come prospettato da Moore [10] in una sua classificazione dei fosfati idrati di Fe e Mn.

La struttura cristallina della metastrengite è in stretta relazione con quella della strengite che rappresenta la modificazione rombica; la struttura di quest'ultimo minerale è nota solo con approssimazione, essendo stata determinata quella della scorodite, FeAsO₄ · 2 H₂O [11], con la quale è isostrutturale [12]. La strengite cristallizza nel gruppo spaziale D_{24}^{15} ed ha come costanti reticolari [12]:

$$a_0 = 10,08 \text{ Å}$$
 $b_0 = 9,87 \text{ Å}$ $c_0 = 8,67 \text{ Å}$.

Si può facilmente notare che le costanti b_0 , c_0 , $e \beta$ (l'angolo β della metastrengite è prossimo ai 90°) sono molto simili nei due minerali, mentre la costante a_0 della strengite risulta circa doppia di quella della metastrengite.

Gli ottaedri di coordinazione del ferro che nella strengite sono sfalsati rispetto ad un piano parallelo a (010), nella metastrengite invece, considerando due celle contigue, si trovano nello stesso piano e risultano sovrapposti lungo l'asse *a*. Questo fatto e la nuova disposizione dei tetraedri PO₄ fanno sì che il valore di a_0 della metastrengite sia circa la metà di quello della strengite. Per ragioni di ingombro il valore di a_0 della metastrengite (5,33 Å) è lievemente maggiore della metà di quello della strengite (5,04 Å).

Nel complesso la struttura della modificazione monoclina risulta meno compatta rispetto a quella della modificazione rombica e la densità, che per la strengite è di $2,90 \text{ g} \cdot \text{cm}^{-3}$, risulta per la metastrengite $2,76 \text{ g} \cdot \text{cm}^{-3}$.

BIBLIOGRAFIA.

- [1] W. BRUHNS e K. BUSZ, «Zeitschrift für Kristallographie», 17, 555 (1890).
- [2] M. DE ANGELIS, «Annali St. Nat. Genova», 52, 138 (1926).
- [3] D. MCCONNELL, «Am. Mineralogist», 24, 636 (1939).
- [4] H. STRUNZ e K. VON SZTROKAY, «Zentralblatt für Min. Geol. und Paläont. », 272 (1939).
- [5] D. MCCONNELL, «Am. Mineralogist», 25, 719 (1940).
- [6] C. L. CHRIST, «Am. Mineralogist», 41, 569 (1956).
- [7] D. E. PILLING, D. W. J. CRUICKSHANK, A. BUJOSA, F. M. LOVELL e R. M. TRUTER, Computing methods and the phase problem in X-ray crystal analysis, Pergamon Press, London (1961), pp. 32-78.
- [8] D. W. J. CRUICKSHANK e A. P. ROBERTSON, «Acta Crystallographica», 6, 698 (1953).
- [9] S. F. DARLOW, «Acta Crystallographica», 14, 160 (1961).
- [10] P. B. MOORE, «Am. Mineralogist», 50, 2052 (1965).
- [11] R. HIRIYANA e H. SAKURAI, «X-rays», 5, 85 (1949).
- [12] P. KOKKOROS, « Prakt. Acad. Athènes », 13, 337 (1938).

Mentre il presente lavoro era in stampa, in data 26 aprile 1966 è pervenuto il fascicolo 1-2 del volume 51 dell'«American Mineralogist»; a p. 168 è riportata una determinazione indipendente della struttura della metastrengite di cui è autore P. B. MOORE.

L'interpretazione della struttura è sostanzialmente la stessa. Nella nostra determinazione la maggior accuratezza dei dati conduce a distanze ed angoli di legame più attendibili; l'indice di discrepanza è notevolmente inferiore.