ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Antonio Guarnieri, Anna Maria Mirri

Effetto Stark e momento di dipolo elettrico del fluoruro di cloro-carbonile

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **40** (1966), n.5, p. 837–842.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_5_837_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1966.

Spettroscopia molecolare. — Effetto Stark e momento di dipolo elettrico del fluoruro di cloro-carbonile^(*). Nota di Antonio Guarnieri e Anna Maria Mirri, presentata^(**) dal Socio G. Semerano.

SUMMARY. — The Stark spectrum of the rotational transitions $o_0 \rightarrow I_0$, $o \rightarrow I_{-1}$ and $I_{-1} \rightarrow I_1$ of chloro-carbonylfluoride has been studied. This spectrum is complicated by the hyperfine quadrupole structure due to the chlorine atom. The value obtained for the electric dipole moment is $\mu = \pm I_{,238} \pm o_{,01}$ D.

In due precedenti ricerche è stata studiata la struttura del fluoruro di clorocarbonile COCIF [1, 2] senza però fare alcuna misura del momento di dipolo elettrico molecolare. L'effetto Stark è infatti complicato dall'interazione di quadrupolo dell'atomo di cloro ed è possibile analizzare abbastanza facilmente la struttura dello spettro solo studiando transizioni a basso numero quantico J poiché in tal caso i calcoli relativi risultano semplificati. Le misure delle righe Stark sono state fatte a campi elevati e quindi sono stati effettuati i calcoli per risolvere la struttura dello spettro fino a campo d'intensità zero.

Il fluoruro di cloro-carbonile è stato ottenuto nel modo descritto nel nostro precedente lavoro [1]. Lo spettro è stato osservato con uno spettrografo a microonde a modulazione Stark impiegante una modulazione ad onda quadra di 6 KHz e campo variabile da o a 2700 Volt/cm. Le sorgenti usate sono i klystron X-12 e X-13 della Varian che coprono senza discontinuità l'intervallo 8-18 KMHz, la cella Stark è una guida d'onda della banda X lunga quattro metri. Le misure sono state effettuate tutte alla temperatura del ghiaccio secco e la cella è stata tarata con la transizione $J = o \rightarrow J' = I$ del solfuro di carbonile usando il valore $\mu = 0,7124 \pm 0,0002$ D [3] per il momento dipolare.

L'accuratezza limite del voltmetro usato per la misura del campo Stark è dell'1%. Le frequenze sono state misurate con un errore massimo di \pm 0,04 MHz mediante uno standard di frequenza secondario continuamente controllato su un contatore digitale Hewlett-Packard 524 C. I calcoli sono stati effettuati sul calcolatore elettronico Elea Olivetti 6002 del Centro di Calcolo dell'Università di Padova.

La teoria dell'effetto Stark di un t atore asimmetrico con struttura iperfine di quadrupolo è stata sviluppata d M. Mizushima [4] principalmente nei casi di campo debole e forte: cioè quando la perturbazione causata dal campo elettrico esterno è più piccola o più grande della distanza di separazione tra le righe dovute alla struttura iperfine. In questa ricerca, tuttavia,

(**) Nella seduta del 16 aprile 1966.

58. - RENDICONTI 1966, Vol. XL, fasc. 5.

^(*) Lavoro eseguito presso il Laboratorio di Spettroscopia a Radiofrequenza del C.N.R. nell'Istituto Chimico «G. Giamician» dell'Università di Bologna.

esaminando stati rotazionali a basso numero quantico J come: J = 0 e I, l'energia di quadrupolo è zero nel primo caso e piuttosto piccola nel secondo in modo tale che i casi di campo debole, intermedio e forte vengono successivamente raggiunti con l'aumentare dell'intensità del campo elettrico Stark. L'effetto combinato Stark-quadrupolo può essere ben descritto nelle rappresentazioni $| J \tau IFM_F \rangle$ e $| J \tau IM_I M_J \rangle$ dove J è il momento angolare rotazionale, I lo spin nucleare, F = J + I il momento angolare totale, τ un numero intero tra i valori - J e + J indicante semplicemente l'ordine dei livelli energetici di un dato J, MJ, MI e MF sono proiezioni sull'asse del campo. La prima rappresentazione è più conveniente nel caso di debole intensità del campo, la seconda è invece necessaria nel caso di forte intensità del campo e raccomandabile nel caso di campo a intensità intermedia per le semplificazioni di calcolo connesse. L'Hamiltoniana dell'effetto Stark H, ha elementi di matrice diagonali in M_J ed M_I nella rappresentazione | $J\tau IM_J M_I$) e, poiché non vi sono degenerazioni fra gli stati rotazionali connessi dagli elementi di matrice di H,, la teoria delle perturbazioni del secondo ordine è sufficiente per calcolare l'effetto Stark con la formula data da Golden e Wilson [5] e semplificata nella forma $W_{J,\tau,M_I} = (\alpha + \beta M_J^2) \cdot E^2$ dove E è l'intensità del campo, $\alpha \in \beta$ sono costanti dipendenti dalle componenti del momento dipolare, dai numeri quantici rotazionali e dalle costanti rotazionali. L'Hamiltoniana H_a dell'energia di quadrupolo ha elementi di matrice diagonali e fuori diagonale in $M_{I} \in M_{I}$, gli elementi di matrice tra diversi stati rotazionali sono stati trascurati dato che l'energia di correzione del primo ordine è sufficiente per trattare l'effetto di interazione di quadrupolo. Gli elementi di matrice dell'Hamiltoniana di quadrupolo H_q, sulla base degli elementi di matrice dell'operatore $3 (\mathbf{J} \cdot \mathbf{I})^2 +$ $+ 3/2 (\mathbf{J} \cdot \mathbf{I}) - J^2 \mathbf{I}^2$ nella rappresentazione $| \mathbf{M}_{\mathbf{J}} \mathbf{M}_{\mathbf{I}} \rangle$ [6], sono [7]: $\langle J\tau IM_J M_I | H_{\alpha} | J\tau IM_J M_I \rangle = P [3 M_I^2 - I (I + I)] [3 M_I^2 - J (J + I)]$

$$\langle J\tau IM_J M_I | H_g | J\tau IM_J \pm I M_I \mp I \rangle = P [3/2 + 3 M_I M_J + 3 (M_I \mp I) (M_J \pm I)] \cdot \\ \cdot \{ [I (I + I) - M_I (M_I \mp I)] \times [J (J + I) - M_J (M_J \pm I)] \}^{1/2}$$

$$\langle J\tau IM_J M_I | H_q | J\tau IM_J \pm 2 M_I \mp 2 \rangle = P \{ [J (J + I) - M_J (M_J \pm I)] \cdot \\ \cdot [J (J + I) - (M_J \pm I) \times (M_J \pm 2)] [I (I + I) - M_I (M_I \mp I)] \cdot \\ \cdot [I (I + I) - (M_I \mp I) (M_I \mp 2)] \}^{1/2}.$$

La quantità P ha il seguente valore:

$$P = \{\chi_{aa} [J (J + I) + E (k) - (k + I) (\partial E (k) / \partial k)] + 2 \chi_{bb} (\partial E (k) / \partial k) + \chi_{cc} [J (J + I) - E (k) + (k - I) (\partial E (k) / \partial k)] \} / [4 J (J + I) (2 J - I) (2 J + 3) I (2 I - I)]$$

dove E (k) è il parametro dell'energia per un rotatore asimmetrico di asimmetria k, χ_{aa} , χ_{bb} e χ_{cc} sono costanti di interazione di quadrupolo, J e I hanno lo stesso significato visto prima. Usando queste formule, la matrice dell'energia dello stato rotazionale J=I assume la forma generale data in Tabella I dove

$Matrice \ dell'energia \ Stark-quadrupolo \ per \ lo \ stato \ J = 1.$ $M_F = 5/2 \qquad M_F = 3/2 \qquad M_F = 3/2$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$= 5/2 \pm 1, \pm 3/2 3 P + (\alpha + \beta) E^2$	$= 3/2 \begin{bmatrix} 0, \pm 3/2 \\ \pm 1, \pm 1/2 \end{bmatrix} - 6 P + \alpha E^2 = 3\sqrt{6} P$ $= 3\sqrt{6} P - 3 P + (\alpha + \beta) E^2$	$ \begin{array}{c cccc} \pm 1 & \mp 1/2 \\ \hline & -3 & P + (z + \beta) & E^2 & 0 & 6\sqrt{3} & P \\ \hline & -3 & -3 & P + (z + \beta) & E^2 & 0 & 6\sqrt{3} & P \\ \hline & -3 & -3 & \sqrt{6} & P + \sqrt{7} & 2 & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & P & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} & P \\ \hline & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & \sqrt{6} & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & \sqrt{6} & -3 & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & -3 & \sqrt{6} \\ \hline & -3 & -3 & -3 & -3 & -3 & -3 & -3 & $	$= \frac{1}{2} - \frac{3}{2} + $
		$M_{\rm F} = 5/2$	$M_F = 3/2$	() 	$M_F = 1/2$

TABELLA I.

gli elementi diagonali provengono da H_e e H_g mentre quelli fuori diagonale solo da H_g. Come si può facilmente vedere, la matrice si fattorizza in tre sottomatrici corrispondenti ai valori di M_F = M_J + M_I = 5/2, 3/2, 1/2 tutti doppiamente degeneri. Lo stato rotazionale J = o ha energia di quadrupolo zero e due sottolivelli degeneri provenienti da H_e con energia W_{0,0,0} = αE^2 . Le tre transizioni del COFCl $o_0 \rightarrow I_0 \ o_0 \rightarrow I_{-1}$ e $I_1 \rightarrow I_{-1}$ sono state osservate tutte

Fig. 1. – Effetto Stark della transizione $o_0 \rightarrow I_0$ del COClF.

a campo forte inizialmente. In questo caso utilizzando la rappresentazione $|J\tau IM_J M_I\rangle$, i due sottolivelli degeneri dello stato J = o vengono indicati con $|M_J M_I\rangle = |o, 3/2| e |o, 1/2\rangle$ e, applicando la regola di selezione $\Delta M_J = o$ e $\Delta M_I = o$, solamente due transizioni sono possibili con i corrispondenti sottolivelli dei livelli con J = I. Le due transizioni $o_0 \rightarrow I_0 e o_0 \rightarrow I_{-1}$ forniscono perciò due righe Stark ciascuna che hanno un comportamento lineare con il quadrato del campo. Nel caso della transizione $I_1 \rightarrow I_{-1}$ è stata osservata solo la riga Stark proveniente dalla transizione fra i due sottolivelli $|M_J, M_I\rangle = |I, 3/2\rangle$ appartenenti rispettivamente ai livelli I_1 ed I_{-1} . L'energia di questa transizione è sempre indipendente dall'interazione Stark-quadrupolo in quanto, come appare in Tabella I, il corrispondente elemento diagonale è del primo ordine e le energie Stark e di quadrupolo si sommano semplicemente.

Ponendo in diagramma, perciò, differenze di frequenza delle componenti Stark rispetto alla riga imperturbata contro il quadrato del campo, si ottengono linee rette e può essere applicato il normale procedimento di calcolo delle componenti del momento dipolare lungo gli assi principali d'inerzia [8].

In Tabella II sono elencate le rispettive pendenze misurate e calcolate con i valori ottenuti delle componenti e del momento dipolare totale. Usando

questi dati è stata poi diagonalizzata la matrice dell'energia di Tabella I per i livelli $J = I_{+1} e I_0$ con campi d'intensità decrescente fino al valore zero. La rappresentazione più conveniente a questo punto è la $|J\tau IFM_F\rangle$ e i due sottolivelli degeneri dello stato J = o vengono indicati da $|F, M_F\rangle = |3/2, 3/2\rangle$ e $\langle 3/2, I/2 \rangle$; applicando, dunque, la regola di selezione $\Delta F = \pm I$, o e $\Delta M_F = o$ si ottengono |tre righe corrispondenti alla energia di interazione quadrupolare, in entrambi i casi delle transizioni $o_0 \rightarrow I_0$ e $o_0 \rightarrow I_{-1}$. Quando il campo Stark aumenta seguono i casi di campo debole ed intermedio e la modificazione dello spettro col campo elettrico è riportata nelle figg. I e 2. Come si può osservare i valori di frequenza misurati per la transizione $o_0 \rightarrow I_0$ nell'intervallo di campo intermedio, sono in buon accordo con quelli calcolati.

TABELLA II.

Pendenze misurate e calcolate in $MHz/(ues/cm)^2$.

Valori ottenuti per i quadrati delle componenti del momento di dipolo. Momento di dipolo totale in Debye.

$J \rightarrow J'$	$\rm M^{}_J$, $\rm M^{}_I \rightarrow \rm M^{\prime}_J$, $\rm M^{\prime}_I$	$\Delta v/E^2$ mis.	$\Delta \nu / E^2$ calc.	
	$0,3/2 \rightarrow 0,3/2$			
$O_0 \rightarrow I_0$	$0,I/2 \rightarrow 0,I/2$	0,92 ± 0,01	0,92	
	$0,3/2 \rightarrow 0,3/2$			
$0_0 \rightarrow 1_{-1}$	$0, I/2 \rightarrow 0, I/2$	$1,61 \pm 0,02$	1,59	
$I_{-1} \rightarrow I_1$	$1,3/2 \rightarrow 1,3/2$	4,40 ± 0,05	4,46	
$\mu_a^2 = 1,07 \pm 0,01$				
$\mu_{b}^{2} = 0.45 \pm 0.02$				
$\mu_{totale}=\pm$ 1 , 233 \pm	0,01 D			

Le componenti Stark che appaiono a bassi valori del campo fino a 2 ues/cm risultano dal calcolo di diagonalizzazione della matrice dell'energia e benché osservate non sono state misurate perché presentano intensità rapidamente decrescenti.

BIBLIOGRAFIA.

- [1] A. GUARNIERI, A. M. MIRRI, P. FAVERO e L. GRIFONE, «Ric. Sci. », 31 (II-A), 358 (1961).
- [2] A. M. MIRRI, A. GUARNIERI, P. FAVERO e G. ZULLIANI, « Nuovo Cim. », 25, 265 (1962).
- [3] S. A. MARSHALL e J. WEBER, « Phys. Rev. », 105, 1502 (1957).
- [4] M. MIZUSHIMA, « J. Chem. Phys. », 21, 539 (1963).
- [5] S. GOLDEN e E. B. WILSON Jr., « J. Chem. Phys. », 16, 669 (1948).
- [6] KELLOG, RABI, RAMSEY e ZACHARIAS, « Phys. Rev. », 57, 677 (1940).
- [7] E. HIROTA e Y. MORINO, « Bull. Chem. Soc. Japan », 34, 341 (1961).
- [8] C. H. TOWNES e A. L. SCHAWLOW, Microwave Spectroscopy, McGrow Hill, N.Y. (1955).