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NOTE PRESENTATE DA SOCI

Logica matematica. — A new approack to the theory of algebraic
numbers. Nota II di ABranAM Rosinson ) presentata ©” dal Socio
B. SEGRE.

RIASSUNTO. — Questa Nota II continua lo sviluppo (iniziato nella Nota I) di una teoria
degli anelli di Dedekind, D, usufruendo dei metodi dell’ « analisi non-standard ». In parti-
colare si mostra che ogni elemento di D possiede una rappresentazione come prodotto di
elementi primi di *D. Questa rappresentazione & unica, a prescindere dall’ordine dei fattori
e dalla loro eventuale sostituzione con elementi ad essi associati.

1. In a previous paper (ref. [1]), we considered a Dedekind domain D con-
taining at least one proper ideal (i.e., ideal different from D and zero), and we
introduced an en/argement *D of D. Defining the monad p. of *D by u =0 ¥J.,
where J, varies over the proper ideals of D, we then investigated the quotient
ring A = *D/u. We showed that the canonical mapping ¢ from *D to A maps
all snternal ideals in *D on principal ideals in A; and that any finite set of
non-zero elements in A possesses a greatest common divisor. Continuing our
investigation, we shall arrive at a detailed understanding of the laws of
divisibility and factorization in A. The reader is referred to ref. [1] for some
definitions and results used in the present paper.

2. Let J be an internal proper ideal in *D.

THEOREM.—¢ (]) = A if and only if all the internal prime divisors of ]
are non-standard.

Proof —The condition is necessary. For suppose *P divides ] where P is
a prime ideal in D. Then P == D so there exists an element ¢ € D — P. Now
if ¢ (J)=A then ¢ (*P) = A and so ¢ (@) € ¢ (*P). But thena € (*P, w) = *P,
contrary to the fact that a € *P, by transfer from D to *D.

The condition is also sufficient. We established in ref., section 3, (iii),
that there exists an internal proper ideal in *D, to be called here Jo, such
that JoCu. Let Ji = (J, Jo); then J1 does not possess any standard prime
divisors. Let Jos = J: Ji. Then JaC w since Jz is divisible by all *P} where P,
is any prime ideal in D and # is any finite natural number. Also, (J, J2) = *D,
and so (J,w) =*D, ¢ (J) = A, as asserted.

3. Let J be an internal proper ideal in ¥*D. We know that ¢ (J) = o if
and only if | is divisible by all *P}; P, any prime ideal in D, # any finite na-
tural number. ¢ (J) will be called a zero divisor if ¢ (J)==o0 and if there
exists an element a==0 in A such that ¢ (J)a = o.

(*) Supported, in part by the National Science Foundation (Grant. No. GP-4038).
(**) Nella seduta del 16 aprile 1966.
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THEOREM.—/n order that ¢ (]) be a zero divisor, it is necessary and
sufficient that ¢ (J) == 0 and that there exist a prime ideal P in D such that
J s divisible by all finite powers of *P.

Proof —The conditions are necessary. For suppose that ¢ (]) is a zero
divisor. Then ¢ (J) ==o0, by definition. Suppose that J is not divisible by
any infinite power of any *P,, where P, varies over the prime ideals of D,
but that ¢ (J) is a zero divisor. Then ¢ (J) 2 = o forsomea=Fo0 in A,a = ¢ (4)
say, where 6 € *D , 6 ==0. Let J1 = (4), so that J; is an internal ideal in *D.
Then ¢ (J) ¢ (J1) = ¢ (J]J1) = o. It follows that for any prime ideal P, in D,
JJ1 is divisible by all finite powers of *P,, and hence is divisible by some infi-
nite power of *P,. Writing ordq (A) for the exponent of the highest power of
an ideal Q, by which an ideal A == 0 is divisible, we then have ordsp (] J1) = 2,
where 72, is an infinite natural number and ordsp (J)= 7,, where #, is finite.
But ordg (AB) = ordq (A) + ordq (B) for any ideals Q, A ==0,B==0, and so
ord*pv(]l) = ord*pv (JJ) — ord»pV (]) = m,—mn, is infinite. This implies
¢ (J1) = 0,a = o, contrary to assumption.

The conditions (taken together) are also sufficient. Suppose that ¢ (J) 5= 0
and that there exists a prime ideal P in D such that ord«p (J) = # is infinite.
Let JoC @ be the ideal which was introduced in Section 2 above and let ord«p
(Jo) = m, so that = is infinite. Then the ideal J1 = Jo: *P” is not divisible
by *P. Hence, J1 is not a subset of u although JJiCwu, ¢ (JJi) = o. Choose
b€J1—up, sothat a = ¢ (6)==0. Then ¢ (J)aCo (JJ1) and so ¢ (J) a = o,

¢ (J) is a zero divisor.

4. Let J be an internal proper ideal in *D, such that ¢ (J) is different
from the zero ideal and is not a zero divisor.

THEOREM.—¢ (]) is @ prime ideal in A if and only if ordwp, (]) = o for
all prime ideals P, in D except one, P, for whick ordsp = 1.

Proof —The condition is sufficient. Suppose that J = *PJ; where J;
does not have any standard prime divisors (so that J; = *D or Ji is the
product of non standard prime ideals). Then ¢ (J) = ¢ (*P) ¢ (J1) = ¢ (*P).
Let ab € ¢ (*P) where a = ¢ (a0) , 6 = ¢ (bo). Then ¢ (ao) ¢ (bo) = ¢ (a0 bo) €
€ ¢ (*P) and so ap 6o € (*P , p) = *P. Since *P is prime it follows that one of
the factors ag or & belongs to *P, e.g. a9 € *P. Hence ¢ (a) € ¢ (*P), a € ¢ (*P).
On the other hand, ¢ (*P)==A, by Section 2, and ¢ (*P)==0. This shows
that ¢ (J) = ¢ (*P) is prime.

The condition is also necessary. For suppose that ] = *P} *P;Q where
P; and Ps are prime ideals in D, equal or different, and Q is not divisible by
either P1 or Pa. Since ¢ (J) is not a zero divisor 7 and 7z must be finite. Now
¢ (J)=(p (*Pr))” (¢ *Pa))" ¢ (Q). If ¢ (J) were prime we should then conclude
that either @ (*P1) = ¢ (J) or ¢ (*P2)= ¢ (J) or ¢ (Q) =¢ (J). In the first case
@ (*P1)C ¢ (*P1 *P3) and so *P1C (*P1 *P2, ) = *P1 *Pa, which is impossible. A
similar argument applies to the remaining two cases. This completes the proof.

As shown in the course of the proof, ¢ (J) = ¢ (*P) if *P is the unique
prime divisor of J. Thus, as P ranges over all the prime ideals of D, ¢ (*P)
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ranges over all the prime ideals ¢ (J) in A which are mentioned in the theorem.
Moreover, if Py and P; are distinct prime ideals in D, then ¢ (*P1) == ¢ (*Py).
For if @ €P1— Py then @ €*P; —*P, and so o (@) € ¢ (*P1). However,
¢ (@) € ¢ (*P2) would imply @ € (*Pz, u) = *Pq, contrary to assumption. Thus,
¢ provides a multiplicative bijection between the standard prime ideals of *D
and the prime ideals of A which are not zero divisors and which are images
of internal ideals in *D.

5. The monad y is not an internal set in the sense of Non-standard Anal-
ysis. For suppose it were. Then ord«p () = 7p would be infinite for all prime
ideals P in D. Choose one such P = Py and define po = p.: Po. Then goDdu,
po=F p. On the other hand, yo would still be divisible by all finite powers of
*P for any prime ideal P in D, and so woC i, po = @. This contradiction shows
that p is not internal.

It follows that if we regard A = *D/p. as a set of subsets of *D then A
cannot be an internal entity; for in that case, u also would be an internal entity.

Let J be a principal ideal in A, J = (¢). We know that an ideal in A
is principal if and only if it is the image under ¢ of an internal ideal in *D.
If ] = A, then a is a unitin A and, conversely, if 2 is a unit in A then J = A
If @ is a zero divisor in A, so that 26 = 0 in A for 4 = o then ] is a zero divi-
sor for in that case Jé6 = o. Conversely, if ] is a zero divisor, then « is a
zero divisor.

Suppose now that J = (), @ =}- 0, where @ is neither a unit nor a zero
divisor. Asusual, @ is said to be prime if a is divisible only by units (inverti-
ble elements) and by elements associated with a.

THEOREM.—] is prime if and only if a is prime.

Proof —Let ] be prime. Ifa = bcthendc€ J, henceeitherd € Jorce]. If
b€],b=da for some d €A, then dac = a,a (dc— 1) = o. Since a is not
a zero divisor, we conclude that dc — 1 = 0, ¢ is a unit, & is associated with a.
A similar argument applies if ¢ € J. Hence, a is prime. On the other hand,
suppose that @ is prime and that éc€ ] but 6 €], c ¢ ]. Let (a,6) = (d)
so that 4 is a greatest common divisor of @ and 4. Since & divides @ but is
not in J it must be a unit, (¢) = A. Similarly (a, ¢) = A, and so (@, 6) (¢, c)=A.
But(a, 6) (a,¢) = (@% ac, ba,bc) = ] and so J = A, contrary to assumptlon
This proves our assertion.

6. Leta € A, a == o0, and let p be a prime element of A. If p*|a but p*+1a
for some finite natural number %2> o then we set ord, (@) = ». If 2*|a for
all finite natural numbers 7 then we set ord, (@) = oco. Notice that p* is not
defined for infinite 7.

For @ and p as above, set (a) = A,(p) = P in A. Then there exists an
internal ideal J in *D and a prime ideal Qin D such that A = ¢ (]), P = ¢ (*Q).
Suppose that p”|  for some finite %#. Then P*|A and so ¢ (*Q*) le (D), e ()C
eC(*QM), JC(Q", w) = *Q*, *Q"|]J. Conversely, if *Q*| ] then P*|A and so
2"|a. We conclude that if ord«q (J) is an infinite natural number then ord,
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(@) = oo, and conversely; while if ordyg (J) is finite then ord, (a) is finite
and conversely, and in this case ord, (@) = ordeq (]).
THEOREM.—For a,b, p €A ,a=0,b=0, p prime:

ord, (ab) = ord, (@) + ord, ()

In this connection, the sum on the right hand side is defined to be oo
if at least one of ord, (), ord, (¢) is oo.

For, introducing A, P, J,Q as above and setting (6) =B, B = ¢ (K),
where K is an internal ideal in *D, suppose next that ord, (¢) and ord, ()
are finite. Then ordxq (J) and ordxq (K) also are finite and

ordeg (JK) = ordeg () 4 ordeg (K)
applies in *D. But
(@) = AB = ¢ (J) ¢ (K) = ¢ (JK)

and so ord, (@) = ord«q (JK). This establishes the assertion for finite ord, (a),
ord, (6). The remaining cases can be disposed of in a similar way.

The fact that ord, (@) = oo if and only if ordxq (J) is infinite also shows
that 2 € A, a==o0, is a zero divisor if and only if ord, (@) = oo for at least
one prime element p of A and « is a unit if and only if ord, (a) = o for all
prime elements p of A.

7. If p and ¢ are prime elements of A then ord, (¢) =1 if ¢ is associated
with p, and oi‘dP (¢9) = o in the alternative case. From every class of associated
primes select one, 7, calling it a representative prime. Nowlet e €A, a==0, a
not a zero divisor and possessing only a finite number of distinct representative
primes m,- -+, 7, 7> 0 as divisors. Thus, ord,; (@) = #; is a positive integer
for 7, - -, ®; and ord, (@) = o for any prime p not associated with one of these.

Consider the product & = IT/_, 7. & is a divisor of a. For since 77|a,
we have a = n’l'l a1 where oxrd,tl (a1) = o, ord,‘z; () =m;,i=2,---,7, by
the theorem of Section 6. Continuing in this way we show that &|a,a = €b.
Then ordg, (e) =o0,7 =1, --,7 and more generally ord, (¢) = o for all prime
elements p of A. This shows that € is a unit. Thus, we have represented
@ as a product of powers of distinct representative primes multiplied by a
unit. It is not difficult to see that this representation is unique.

Now suppose in addition that & is an element of D regarded as a subset
of A. Let () = P P;fj be the representation of (2) as a product of powers -
of distinct prime ideals in D, so that *(@) = *Py"- - -*P’Y in *D. By Section 4
and 5 there exist representative primes 71 ,- - -, 7; of Asuch that ¢ (*P;) = (=),
=1, ---,7. Then ords,(@) =#n;, ¢=1,---,7in A and ord,(¢) = o for
prime elements of A not associated with w1, -, w;. Hence, a=em}" - - -ch'.’i ,
where ¢ is a unit. Thus, the multiplicative system H generated by the units
and prime elements of A contains all non-zero elements of D. For every ele-
ment @ of H there exists an internal ideal J in *D such that ¢ (J) = (&', For

54. — RENDICONTI 1966, Vol. XL, fasc. s.
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if a=ep--- p7 where e is a unit and p1,---, p; are prime elements of
A, then there exist prime ideals Pi,---,P; in D such that ¢ (*P;) = (P),
i=1,---,7. Then the ideal J defined by J=*P]" ... *P’J satisfies ¢ (J) =
=@ (P - cp‘(*P;f) = (@), as required. The elements of H will be called
Priifer—finite.

THEOREM.—Let a €A, a==0. Then a is Priifer-finite if and only if there
exists an element b €D |, b==0 suck that a|b in A.

Proof—The condition is sufficient. For let 6 €D, 4 <=0, so that 4 can
be written as 6 = ¢ ‘rc;’1 . Tc;f where m,---, w; are representative primes
and ¢ is a unit. Then |4 implies that a is not a zero-divisor and that it can
be written in the form @ = n=* - - 'rcj."'{' where 7 is a unit and o <wm; <#;,
i=1,--,7. Hence a €H.

The condition is also necessary. For suppose a €H,a=c¢cpl" ... pj’,’i
where € is a unit and p1,- - -, p; are prime elements of A. Then (p,) = ¢ (*P)),
{=1,...,7 where P1,---, P; are prime ideals in D, and so (2) = ¢ (*P}*- - -

. -*P;f). Choose 4, € P;, b;5=o0, then b6 = &[* - - - b;.’f is different from zero
and is contained in *P7' - .. *P;.'f' and hence in (). Thus, |4, as required.

8. In addition to the elements of H, we may consider also elements of A
which, while not zero divisors, are divisible by an infinite number of distinct
representative primes. Let @ be such an element of A. Then the function
ordp (@) takes finite values only. Moreover, if 4 is a second element of this
kind and ord, (@) = ord; (6) for all representative primes 7 then @ and 4 must
be associated. For let J and K be internal ideals in *¥D such that (@) = ¢ (J),
(6) =@ (K). Let R be the set of internal prime ideals P in *D such that

ordp (J) = ordp(K) = np >o0. Let Q =PIlP"P; Then Q|J,Q|K, ] =QJ,

K =QK'. Also, R includes all standard prime divisors of ] and K and so
o(J) =g (K)=A. Hence, ¢())=¢(Q =¢(K), (@ =), a and 6 arc
associated.

Now let f(w) be any function from the representative primes into the
finite natural numbers. We claim that there exists an element @ € A such that
ord, (@) = f () for all representative primes . Indeed, for any prime ideal
P in D there is a unique representative prime = such that ¢ (*P) = (), and
we write 7 = ¢ (P),f(n) =f (g (P)) = £ (P). Consider the relation R (x, »)
which holds if x is a prime ideal in D and y is an ideal in D, y == 0, such that
ord,(y) =% (x). Then R is concurrent. It follows that there exists an internal
ideal J==o0 in *D such that ords«p (J) = 4 (P) for all prime ideals P in D.
Let @ €A such that (@) = ¢ (J). Then ord; (@) =f () for any representa-
tive prime element t—as required. ‘
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