ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ABRAHAM ROBINSON

A new approach to the theory of algebraic numbers. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **40** (1966), n.5, p. 770–774.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_5_770_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

NOTE PRESENTATE DA SOCI

Logica matematica. — A new approach to the theory of algebraic numbers. Nota II di Abraham Robinson ^(*) presentata ^(**) dal Socio B. Segre.

RIASSUNTO. — Questa Nota II continua lo sviluppo (iniziato nella Nota I) di una teoria degli anelli di Dedekind, D, usufruendo dei metodi dell' « analisi non-standard ». In particolare si mostra che ogni elemento di D possiede una rappresentazione come prodotto di elementi primi di *D. Questa rappresentazione è unica, a prescindere dall'ordine dei fattori e dalla loro eventuale sostituzione con elementi ad essi associati.

1. In a previous paper (ref. [I]), we considered a Dedekind domain D containing at least one proper ideal (i.e., ideal different from D and zero), and we introduced an *enlargement* *D of D. Defining the *monad* μ of *D by $\mu = \bigcap_{v} J_{v}$, where J_{v} varies over the proper ideals of D, we then investigated the quotient ring $\Delta = *D/\mu$. We showed that the canonical mapping φ from *D to Δ maps all *internal* ideals in *D on principal ideals in Δ ; and that any finite set of non-zero elements in Δ possesses a greatest common divisor. Continuing our investigation, we shall arrive at a detailed understanding of the laws of divisibility and factorization in Δ . The reader is referred to ref. [I] for some definitions and results used in the present paper.

2. Let J be an internal proper ideal in *D.

THEOREM.— $\varphi(J) = \Delta$ if and only if all the internal prime divisors of J are non-standard.

Proof.—The condition is necessary. For suppose *P divides J where P is a prime ideal in D. Then $P \neq D$ so there exists an element $a \in D$ — P. Now if $\varphi(J) = \Delta$ then $\varphi(*P) = \Delta$ and so $\varphi(a) \in \varphi(*P)$. But then $a \in (*P, \mu) = *P$, contrary to the fact that $a \notin *P$, by transfer from D to *D.

The condition is also sufficient. We established in ref., section 3, (iii), that there exists an internal proper ideal in *D, to be called here J_0 , such that $J_0 \subset \mu$. Let $J_1 = (J, J_0)$; then J_1 does not possess any standard prime divisors. Let $J_2 = J : J_1$. Then $J_2 \subset \mu$ since J_2 is divisible by all $*P_v^n$ where P_v is any prime ideal in D and n is any finite natural number. Also, $(J, J_2) = *D$, and so $(J, \mu) = *D$, $\varphi(J) = \Delta$, as asserted.

3. Let J be an internal proper ideal in *D. We know that $\varphi(J) = o$ if and only if J is divisible by all $*P_{v_1}^n$, P_v any prime ideal in D, *n* any finite natural number. $\varphi(J)$ will be called a zero divisor if $\varphi(J) \neq o$ and if there exists an element $a \neq o$ in Δ such that $\varphi(J) a = o$.

(*) Supported, in part by the National Science Foundation (Grant. No. GP-4038). (**) Nella seduta del 16 aprile 1966. THEOREM.—In order that $\varphi(J)$ be a zero divisor, it is necessary and sufficient that $\varphi(J) \neq 0$ and that there exist a prime ideal P in D such that J is divisible by all finite powers of *P.

Proof.—The conditions are necessary. For suppose that $\varphi(J)$ is a zero divisor. Then $\varphi(J) \neq 0$, by definition. Suppose that J is not divisible by any infinite power of any $*P_v$, where P_v varies over the prime ideals of D, but that $\varphi(J)$ is a zero divisor. Then $\varphi(J) a = 0$ for some $a \neq 0$ in Δ , $a = \varphi(b)$ say, where $b \in *D$, $b \Rightarrow 0$. Let $J_1 = (b)$, so that J_1 is an internal ideal in *D. Then $\varphi(J) \varphi(J_1) = \varphi(JJ_1) = 0$. It follows that for any prime ideal P_v in D, JJ_1 is divisible by all finite powers of $*P_v$, and hence is divisible by some infinite power of $*P_v$. Writing $\operatorname{ord}_Q(A)$ for the exponent of the highest power of an ideal Q, by which an ideal $A \neq 0$ is divisible, we then have $\operatorname{ord}_{*P_v}(JJ_1) = m_v$ where m_v is an infinite natural number and $\operatorname{ord}_{*P_v}(J) = n_v$, where n_v is finite. But $\operatorname{ord}_Q(AB) = \operatorname{ord}_Q(A) + \operatorname{ord}_Q(B)$ for any ideals Q, $A \neq 0$, $B \neq 0$, and so $\operatorname{ord}_{*P_v}(J_1) = \operatorname{ord}_{*P_v}(JJ_1) - \operatorname{ord}_{*P_v}(J) = m_v - n_v$ is infinite. This implies $\varphi(J_1) = 0$, a = 0, contrary to assumption.

The conditions (taken together) are also sufficient. Suppose that $\varphi(J) \neq 0$ and that there exists a prime ideal P in D such that $\operatorname{ord}_{*P}(J) = n$ is infinite. Let $J_0 \subset \mu$ be the ideal which was introduced in Section 2 above and let $\operatorname{ord}_{*P}(J_0) = m$, so that *m* is infinite. Then the ideal $J_1 = J_0 : *P^m$ is not divisible by *P. Hence, J_1 is not a subset of μ although $JJ_1 \subset \mu, \varphi(JJ_1) = 0$. Choose $b \in J_1 - \mu$, so that $a = \varphi(b) \neq 0$. Then $\varphi(J) a \subset \varphi(JJ_1)$ and so $\varphi(J) a = 0$, $\varphi(J)$ is a zero divisor.

4. Let J be an internal proper ideal in *D, such that $\phi\left(J\right)$ is different from the zero ideal and is not a zero divisor.

THEOREM.— $\varphi(J)$ is a prime ideal in Δ if and only if $\operatorname{ord}_{*P_{\psi}}(J) = o$ for all prime ideals P_{ψ} in D except one, P, for which $\operatorname{ord}_{*P} = I$.

Proof.—The condition is sufficient. Suppose that $J = *PJ_1$ where J_1 does not have any standard prime divisors (so that $J_1 = *D$ or J_1 is the product of non standard prime ideals). Then $\varphi(J) = \varphi(*P) \varphi(J_1) = \varphi(*P)$. Let $ab \in \varphi(*P)$ where $a = \varphi(a_0)$, $b = \varphi(b_0)$. Then $\varphi(a_0) \varphi(b_0) = \varphi(a_0 b_0) \in \varphi(*P)$ and so $a_0 b_0 \in (*P, \mu) = *P$. Since *P is prime it follows that one of the factors a_0 or b_0 belongs to *P, e.g. $a_0 \in *P$. Hence $\varphi(a_0) \in \varphi(*P)$, $a \in \varphi(*P)$. On the other hand, $\varphi(*P) \neq \Delta$, by Section 2, and $\varphi(*P) \neq o$. This shows that $\varphi(J) = \varphi(*P)$ is prime.

The condition is also necessary. For suppose that $J = *P_1^m *P_2^n Q$ where P_1 and P_2 are prime ideals in D, equal or different, and Q is not divisible by either P_1 or P_2 . Since $\varphi(J)$ is not a zero divisor *m* and *n* must be finite. Now $\varphi(J) = (\varphi(*P_1))^m (\varphi(*P_2))^n \varphi(Q)$. If $\varphi(J)$ were prime we should then conclude that either $\varphi(*P_1) = \varphi(J)$ or $\varphi(*P_2) = \varphi(J)$ or $\varphi(Q) = \varphi(J)$. In the first case $\varphi(*P_1) \subset \varphi(*P_1 *P_2)$ and so $*P_1 \subset (*P_1 *P_2, \mu) = *P_1 *P_2$, which is impossible. A similar argument applies to the remaining two cases. This completes the proof.

As shown in the course of the proof, $\varphi(J) = \varphi(*P)$ if *P is the unique prime divisor of J. Thus, as P ranges over all the prime ideals of D, $\varphi(*P)$

ranges over all the prime ideals $\varphi(J)$ in Δ which are mentioned in the theorem. Moreover, if P₁ and P₂ are distinct prime ideals in D, then $\varphi(*P_1) \neq \varphi(*P_2)$. For if $a \in P_1 - P_2$ then $a \in *P_1 - *P_2$ and so $\varphi(a) \in \varphi(*P_1)$. However, $\varphi(a) \in \varphi(*P_2)$ would imply $a \in (*P_2, \mu) = *P_2$, contrary to assumption. Thus, φ provides a multiplicative bijection between the standard prime ideals of *D and the prime ideals of Δ which are not zero divisors and which are images of internal ideals in *D.

5. The monad μ is not an internal set in the sense of Non-standard Analysis. For suppose it were. Then $\operatorname{ord}_{*P}(\mu) = n_P$ would be infinite for all prime ideals P in D. Choose one such $P = P_0$ and define $\mu_0 = \mu : P_0$. Then $\mu_0 \supset \mu$, $\mu_0 \neq \mu$. On the other hand, μ_0 would still be divisible by all finite powers of *P for any prime ideal P in D, and so $\mu_0 \subset \mu$, $\mu_0 = \mu$. This contradiction shows that μ is not internal.

It follows that if we regard $\Delta = *D/\mu$ as a set of subsets of *D then Δ cannot be an internal entity; for in that case, μ also would be an internal entity.

Let J be a principal ideal in Δ , J = (a). We know that an ideal in Δ is principal if and only if it is the image under φ of an internal ideal in *D. If $J = \Delta$, then a is a unit in Δ and, conversely, if a is a unit in Δ then $J = \Delta$. If a is a zero divisor in Δ , so that ab = 0 in Δ for b = 0 then J is a zero divisor for in that case Jb = 0. Conversely, if J is a zero divisor, then a is a zero divisor.

Suppose now that J = (a), $a \neq 0$, where a is neither a unit nor a zero divisor. As usual, a is said to be *prime* if a is divisible only by units (invertible elements) and by elements associated with a.

THEOREM.—J is prime if and only if a is prime.

Proof.—Let J be prime. If a = bc then $bc \in J$, hence either $b \in J$ or $c \in J$. If $b \in J$, b = da for some $d \in \Delta$, then dac = a, a(dc - 1) = 0. Since a is not a zero divisor, we conclude that dc - 1 = 0, c is a unit, b is associated with a. A similar argument applies if $c \in J$. Hence, a is prime. On the other hand, suppose that a is prime and that $bc \in J$ but $b \notin J$, $c \notin J$. Let (a, b) = (d) so that d is a greatest common divisor of a and b. Since d divides a but is not in J it must be a unit, $(d) = \Delta$. Similarly $(a, c) = \Delta$, and so $(a, b) (a, c) = \Delta$. But $(a, b) (a, c) = (a^2, ac, ba, bc) = J$ and so $J = \Delta$, contrary to assumption. This proves our assertion.

6. Let $a \in \Delta$, $a \neq 0$, and let p be a prime element of Δ . If $p^n | a$ but $p^{n+1}a$ for some finite natural number $n \geq 0$ then we set $\operatorname{ord}_p(a) = n$. If $p^n | a$ for all finite natural numbers n then we set $\operatorname{ord}_p(a) = \infty$. Notice that p^n is not defined for infinite n.

For *a* and *p* as above, set (a) = A, (p) = P in Δ . Then there exists an internal ideal J in *D and a prime ideal Q in D such that $A = \varphi(J)$, $P = \varphi(*Q)$. Suppose that $p^n | a$ for some finite *n*. Then $P^n | A$ and so $\varphi(*Q^n) | \varphi(J)$, $\varphi(J) \subset \varphi \subset (*Q^n)$, $J \subset (*Q^n, \mu) = *Q^n$, $*Q^n | J$. Conversely, if $*Q^n | J$ then $P^n | A$ and so $p^n | a$. We conclude that if $\operatorname{ord}_{*Q}(J)$ is an infinite natural number then $\operatorname{ord}_{*p}(J) = \varphi(*Q) = \varphi(*Q) = \varphi(*Q) = \varphi(*Q) = \varphi(*Q) = \varphi(*Q)$. $(a) = \infty$, and conversely; while if $\operatorname{ord}_{*Q}(J)$ is finite then $\operatorname{ord}_{p}(a)$ is finite and conversely, and in this case $\operatorname{ord}_{p}(a) = \operatorname{ord}_{*Q}(J)$.

THEOREM.—For $a, b, p \in \Delta$, $a \models 0, b \neq 0, p$ prime:

$$\operatorname{ord}_{p}(ab) = \operatorname{ord}_{p}(a) + \operatorname{ord}_{p}(b)$$

In this connection, the sum on the right hand side is defined to be ∞ if at least one of $\operatorname{ord}_{p}(a)$, $\operatorname{ord}_{p}(b)$ is ∞ .

For, introducing A, P, J, Q as above and setting (b) = B, $B = \varphi(K)$, where K is an internal ideal in *D, suppose next that $\operatorname{ord}_{p}(a)$ and $\operatorname{ord}_{p}(b)$ are finite. Then $\operatorname{ord}_{*Q}(J)$ and $\operatorname{ord}_{*Q}(K)$ also are finite and

$$\operatorname{ord}_{Q}(JK) = \operatorname{ord}_{Q}(J) + \operatorname{ord}_{Q}(K)$$

applies in *D. But

$$(ab) = AB = \varphi(J)\varphi(K) = \varphi(JK)$$

and so $\operatorname{ord}_{p}(ab) = \operatorname{ord}_{*Q}(JK)$. This establishes the assertion for finite $\operatorname{ord}_{p}(a)$, $\operatorname{ord}_{p}(b)$. The remaining cases can be disposed of in a similar way.

The fact that $\operatorname{ord}_{p}(a) = \infty$ if and only if $\operatorname{ord}_{*Q}(J)$ is infinite also shows that $a \in \Delta$, $a \neq 0$, is a zero divisor if and only if $\operatorname{ord}_{p}(a) = \infty$ for at least one prime element p of Δ and a is a unit if and only if $\operatorname{ord}_{p}(a) = 0$ for all prime elements p of Δ .

7. If p and q are prime elements of Δ then $\operatorname{ord}_{p}(q) = 1$ if q is associated with p, and $\operatorname{ord}_{p}(q) = 0$ in the alternative case. From every class of associated primes select one, π , calling it a representative prime. Now let $a \in \Delta$, $a \neq 0$, anot a zero divisor and possessing only a finite number of distinct representative primes $\pi_1, \dots, \pi_j, j \ge 0$ as divisors. Thus, $\operatorname{ord}_{\pi_i}(a) = n_i$ is a positive integer for π_1, \dots, π_i and $\operatorname{ord}_{p}(a) = 0$ for any prime p not associated with one of these.

Consider the product $b = \prod_{i=1}^{j} \pi_{i}^{n_{i}}$. *b* is a divisor of *a*. For since $\pi_{1}^{n_{i}}|a$, we have $a = \pi_{1}^{n_{1}}a_{1}$ where $\operatorname{ord}_{\pi_{i}}(a_{1}) = 0$, $\operatorname{ord}_{\pi_{i}}(a_{1}) = n_{i}$, $i = 2, \dots, j$, by the theorem of Section 6. Continuing in this way we show that $b | a, a = \varepsilon b$. Then $\operatorname{ord}_{\pi_{i}}(\varepsilon) = 0$, $i = 1, \dots, j$ and more generally $\operatorname{ord}_{p}(a) = 0$ for all prime elements p of Δ . This shows that ε is a unit. Thus, we have represented a as a product of powers of distinct representative primes multiplied by a unit. It is not difficult to see that this representation is unique.

Now suppose in addition that a is an element of D regarded as a subset of Δ . Let $(a) = P_1^{n_1} \cdots P_j^{n_j}$ be the representation of (a) as a product of powers of distinct prime ideals in D, so that $*(a) = *P_1^{n_1} \cdots *P_j^{n_j}$ in *D. By Section 4 and 5 there exist representative primes π_1, \dots, π_j of Δ such that φ (*P_i) = (π_i) , $i = 1, \dots, j$. Then $\operatorname{ord}_{\pi_i}(a) = n_i$, $i = 1, \dots, j$ in Δ and $\operatorname{ord}_j(a) = 0$ for prime elements of Δ not associated with π_1, \dots, π_j . Hence, $a = \varepsilon \pi_1^{n_1} \cdots \pi_j^{n_j}$, where ε is a unit. Thus, the multiplicative system H generated by the units and prime elements of Δ contains all non-zero elements of D. For every element a of H there exists an internal ideal J in *D such that $\varphi(J) = (a)$. For

^{54. –} RENDICONTI 1966, Vol. XL, fasc. 5.

if $a = \varepsilon p_1^{n_1} \cdots p_j^{n_j}$ where ε is a unit and p_1, \dots, p_j are prime elements of Δ , then there exist prime ideals P_1, \dots, P_j in D such that $\varphi(*P_i) = (P_i)$, $i = 1, \dots, j$. Then the ideal J defined by $J = *P_1^{n_1} \cdots *P_j^{n_j}$ satisfies $\varphi(J) = \varphi(*P_1^{n_1}) \cdots \varphi(*P_j^{n_j}) = (a)$, as required. The elements of H will be called *Prüfer-finite*.

THEOREM.—Let $a \in \Delta$, $a \neq 0$. Then a is Prüfer-finite if and only if there exists an element $b \in D$, $b \neq 0$ such that $a \mid b$ in Δ .

Proof.—The condition is sufficient. For let $b \in D$, $b \neq 0$, so that b can be written as $b = \varepsilon \pi_1^{n_1} \cdots \pi_j^{n_j}$ where π_1, \cdots, π_j are representative primes and ε is a unit. Then $a \mid b$ implies that a is not a zero-divisor and that it can be written in the form $a = \eta \pi_1^{m_1} \cdots \pi_j^{m_j}$ where η is a unit and $0 \leq m_i \leq n_i$, $i = 1, \dots, j$. Hence $a \in H$.

The condition is also necessary. For suppose $a \in H$, $a = \varepsilon p_1^{n_1} \cdots p_j^{n_j}$ where ε is a unit and p_1, \dots, p_j are prime elements of Δ . Then $(p_i) = \varphi (*P_i)$, $i = 1, \dots, j$ where P_1, \dots, P_j are prime ideals in D, and so $(a) = \varphi (*P_1^{n_1} \cdots \cdots *P_j^{n_j})$. Choose $b_i \in P_i$, $b_i \neq 0$, then $b = b_1^{n_1} \cdots b_j^{n_j}$ is different from zero and is contained in $*P_1^{n_1} \cdots *P_j^{n_j}$ and hence in (a). Thus, $a \mid b$, as required.

8. In addition to the elements of H, we may consider also elements of Δ which, while not zero divisors, are divisible by an infinite number of distinct representative primes. Let *a* be such an element of Δ . Then the function ord_P(*a*) takes finite values only. Moreover, if *b* is a second element of this kind and ord_π(*a*) = ord_π(*b*) for all representative primes π then *a* and *b* must be associated. For let J and K be internal ideals in *D such that (*a*) = $\varphi(J)$, (*b*) = $\varphi(K)$. Let R be the set of internal prime ideals P in *D such that ord_P(J) = ord_P(K) = $n_P > o$. Let $Q = \prod_{P \in R} P^{n_P}$. Then $Q \mid J, Q \mid K, J = QJ', K = QK'$. Also, R includes all standard prime divisors of J and K and so $\varphi(J') = \varphi(K') = \Delta$. Hence, $\varphi(J) = \varphi(Q) = \varphi(K)$, (*a*) = (*b*), *a* and *b* are associated.

Now let $f(\pi)$ be any function from the representative primes into the finite natural numbers. We claim that there exists an element $a \in \Delta$ such that $\operatorname{ord}_{\pi}(a) = f(\pi)$ for all representative primes π . Indeed, for any prime ideal P in D there is a unique representative prime π such that $\varphi(*P) = (\pi)$, and we write $\pi = g(P), f(\pi) = f(g(P)) = h(P)$. Consider the relation R(x, y) which holds if x is a prime ideal in D and y is an ideal in D, $y \neq 0$, such that $\operatorname{ord}_{x}(y) = h(x)$. Then R is concurrent. It follows that there exists an internal ideal J $\neq 0$ in *D such that $\operatorname{ord}_{*P}(J) = h(P)$ for all prime ideals P in D. Let $a \in \Delta$ such that $(a) = \varphi(J)$. Then $\operatorname{ord}_{\pi}(a) = f(\pi)$ for any representative prime element π —as required.

BIBLIOGRAPHY.

[1] A. ROBINSON, A new approach to the theory of algebraic numbers, «Rend. Acc. Naz. Lincei», 40, 227-225 (1966).