## Classe Scienze Fisiche Matematiche Naturali

## Rendiconti

## Abraham Robinson

## A new approach to the theory of algebraic numbers. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 40 (1966), n.5, p. 770-774.<br>Accademia Nazionale dei Lincei<br>[http://www.bdim.eu/item?id=RLINA_1966_8_40_5_770_0](http://www.bdim.eu/item?id=RLINA_1966_8_40_5_770_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

## NOTE PRESENTATE DA SOCI

Logica matematica. - A new approach to the theory of algebraic numbers. Nota II di Abraham Robinson ${ }^{(*)}$ presentata (*) dal Socio B. Segre.

Riassunto. - Questa Nota II continua lo sviluppo (iniziato nella Nota I) di una teoria degli anelli di Dedekind, D, usufruendo dei metodi dell' «analisi non-standard». In particolare si mostra che ogni elemento di D possiede una rappresentazione come prodotto di elementi primi di *D. Questa rappresentazione è unica, a prescindere dall'ordine dei fattori e dalla loro eventuale sostituzione con elementi ad essi associati.
I. In a previous paper (ref. [I]), we considered a Dedekind domain D containing at least one proper ideal (i.e., ideal different from D and zero), and we introduced an enlargement ${ }^{*} \mathrm{D}$ of D . Defining the monad $\mu$ of $* \mathrm{D}$ by $\mu=\cap_{v}^{*} \mathrm{~J}_{v}$, where $\mathrm{J}_{v}$ varies over the proper ideals of D , we then investigated the quotient ring $\Delta=* \mathrm{D} / \mu$. We showed that the canonical mapping $\varphi$ from ${ }^{*} \mathrm{D}$ to $\Delta$ maps all internal ideals in ${ }^{*} \mathrm{D}$ on principal ideals in $\Delta$; and that any finite set of non-zero elements in $\Delta$ possesses a greatest common divisor. Continuing our investigation, we shall arrive at a detailed understanding of the laws of divisibility and factorization in $\Delta$. The reader is referred to ref. [r] for some definitions and results used in the present paper.
2. Let J be an internal proper ideal in *D.

THEOREM. $-\varphi(\mathrm{J})=\Delta$ if and only if all the internal prime divisors of J are non-standard.

Proof.-The condition is necessary. For suppose *P divides J where P is a prime ideal in D . Then $\mathrm{P} \neq \mathrm{D}$ so there exists an element $a \in \mathrm{D}-\mathrm{P}$. Now if $\varphi(\mathrm{J})=\Delta$ then $\varphi\left({ }^{*} \mathrm{P}\right)=\Delta$ and so $\varphi(a) \in \varphi\left({ }^{*} \mathrm{P}\right)$. But then $a \in\left({ }^{*} \mathrm{P}, \mu\right)={ }^{*} \mathrm{P}$, contrary to the fact that $a \notin * \mathrm{P}$, by transfer from D to ${ }^{*} \mathrm{D}$.

The condition is also sufficient. We established in ref., section 3, (iii), that there exists an internal proper ideal in ${ }^{*} \mathrm{D}$, to be called here $\mathrm{J}_{0}$, such that $\mathrm{J}_{0} \mathrm{C} \mu$. Let $\mathrm{J}_{1}=\left(\mathrm{J}, \mathrm{J}_{\mathbf{0}}\right)$; then $\mathrm{J}_{1}$ does not possess any standard prime divisors. Let $\mathrm{J}_{2}=\mathrm{J}: \mathrm{J}_{1}$. Then $\mathrm{J}_{2} \mathrm{C} \mu$ since $\mathrm{J}_{2}$ is divisible by all ${ }^{*} \mathrm{P}_{v}^{n}$ where $\mathrm{P}_{v}$ is any prime ideal in D and $n$ is any finite natural number. Also, $\left(J, J_{2}\right)={ }^{*} \mathrm{D}$, and so $(J, \mu)=* D, \varphi(J)=\Delta$, as asserted.
3. Let $J$ be an internal proper ideal in *D. We know that $\varphi(J)=0$ if and only if J is divisible by all ${ }^{*} \mathrm{P}_{v}^{n}, \mathrm{P}_{v}$ any prime ideal in $\mathrm{D}, n$ any finite natural number. $\varphi(\mathrm{J})$ will be called a zero divisor if $\varphi(\mathrm{J}) \neq 0$ and if there exists an element $a \neq 0$ in $\Delta$ such that $\varphi(\mathrm{J}) a=0$.
${ }^{(*)}$ Supported, in part by the National Science Foundation (Grant. No. GP-4038).
${ }^{* *}$ ) Nella seduta del 16 aprile 1966.

Theorem.-In order that $\varphi(\mathrm{J})$ be a zero divisor, it is necessary and sufficient that $\varphi(\mathrm{J}) \neq 0$ and that there exist a prime ideal P in D such that J is divisible by all finite powers of *P.

Proof.-The conditions are necessary. For suppose that $\varphi(\mathrm{J})$ is a zero divisor. Then $\varphi(J) \neq 0$, by definition. Suppose that $J$ is not divisible by any infinite power of any ${ }^{*} \mathrm{P}_{v}$, where $\mathrm{P}_{v}$ varies over the prime ideals of D , but that $\varphi(\mathrm{J})$ is a zero divisor. Then $\varphi(\mathrm{J}) a=0$ for some $a \neq 0$ in $\Delta, a=\varphi(b)$ say, where $b \in{ }^{*} \mathrm{D}, b \neq=0$. Let $\mathrm{J}_{1}=(b)$, so that $\mathrm{J}_{1}$ is an internal ideal in ${ }^{*} \mathrm{D}$. Then $\varphi(\mathrm{J}) \varphi\left(\mathrm{J}_{1}\right)=\varphi\left(\mathrm{J}_{1}\right)=\mathrm{o}$. It follows that for any prime ideal $\mathrm{P}_{v}$ in D , $\mathrm{J}_{1}$ is divisible by all finite powers of ${ }^{*} \mathrm{P}_{v}$, and hence is divisible by some infinite power of $* \mathrm{P}_{v}$. Writing ord $_{\mathrm{Q}}(\mathrm{A})$ for the exponent of the highest power of an ideal $Q$, by which an ideal $A \neq 0$ is divisible, we then have $\operatorname{ord}{ }_{*} P_{v}\left(J J_{1}\right)=m_{v}$ where $m_{v}$ is an infinite natural number and ord ${ }_{P_{v}}(\mathrm{~J})=n_{v}$, where $n_{v}$ is finite. But $\operatorname{ord}_{\mathrm{Q}}(\mathrm{AB})=\operatorname{ord}_{\mathrm{Q}}(\mathrm{A})+\operatorname{ord}_{\mathrm{Q}}(\mathrm{B})$ for any ideals $\mathrm{Q}, \mathrm{A}=\mathrm{O}, \mathrm{B} \neq \mathrm{o}$, and so $\operatorname{ord}{ }_{\mathrm{P}_{v}}\left(\mathrm{~J}_{1}\right)=\operatorname{ord}{ }_{\mathrm{P}_{v}}\left(\mathrm{~J} \mathrm{~J}_{1}\right)-\operatorname{ord}{ }_{\mathrm{P}_{v}}(\mathrm{~J})=m_{v}-n_{v} \quad$ is infinite. This implies $\varphi\left(\mathrm{J}_{1}\right)=0, a=0$, contrary to assumption.

The conditions (taken together) are also sufficient. Suppose that $\varphi(J) \neq 0$ and that there exists a prime ideal P in D such that $\operatorname{ord}{ }^{\mathrm{P}}(\mathrm{J})=n$ is infinite. Let $\mathrm{J}_{0} \subset \mu$ be the ideal which was introduced in Section 2 above and let ord ${ }_{\mathrm{P}}$ ( $\mathrm{J}_{0}$ ) $=m$, so that $m$ is infinite. Then the ideal $\mathrm{J}_{1}=\mathrm{J}_{0}:{ }^{*} \mathrm{P}^{m}$ is not divisible by ${ }^{*} \mathrm{P}$. Hence, $\mathrm{J}_{1}$ is not a subset of $\mu$ although $\mathrm{J}_{1} \subset \mu, \varphi\left(\mathrm{JJ}_{1}\right)=0$. Choose $b \in \mathrm{~J}_{1}-\mu$, so that $a=\varphi(b) \neq 0$. Then $\varphi(\mathrm{J}) a \subset \varphi\left(\mathrm{~J}_{1}\right)$ and so $\varphi(\mathrm{J}) a=\mathrm{o}$, $\varphi(J)$ is a zero divisor.
4. Let J be an internal proper ideal in *D, such that $\varphi(\mathrm{J})$ is different from the zero ideal and is not a zero divisor.

Theorem.- $\varphi(\mathrm{J})$ is a prime ideal in $\Delta$ if and only if $\operatorname{ord} *_{\mathrm{P}_{v}}(\mathrm{~J})=\mathrm{o}$ for all prime ideals $\mathrm{P}_{v}$ in D except one, P, for which ord ${ }^{\mathrm{P}} \mathrm{F}=\mathrm{I}$.

Proof.-The condition is sufficient. Suppose that $\mathrm{J}={ }^{*} \mathrm{P}_{1}$ where $\mathrm{J}_{1}$ does not have any standard prime divisors (so that $\mathrm{J}_{1}={ }^{*} \mathrm{D}$ or $\mathrm{J}_{1}$ is the product of non standard prime ideals). Then $\varphi(\mathrm{J})=\varphi\left({ }^{*} \mathrm{P}\right) \varphi\left(\mathrm{J}_{1}\right)=\varphi\left({ }^{*} \mathrm{P}\right)$. Let $a b \in \varphi\left({ }^{*} \mathrm{P}\right)$ where $a=\varphi\left(a_{0}\right), b=\varphi\left(b_{0}\right)$. Then $\varphi\left(a_{0}\right) \varphi\left(b_{0}\right)=\varphi\left(a_{0} b_{0}\right) \in$ $\epsilon \varphi\left({ }^{*} \mathrm{P}\right)$ and so $a_{0} b_{0} \in\left({ }^{*} \mathrm{P}, \mu\right)={ }^{*} \mathrm{P}$. Since ${ }^{*} \mathrm{P}$ is prime it follows that one of the factors $a_{0}$ or $b_{0}$ belongs to ${ }^{*} \mathrm{P}$, e.g. $a_{0} \in{ }^{*} \mathrm{P}$. Hence $\varphi\left(a_{0}\right) \in \varphi\left({ }^{*} \mathrm{P}\right), a \in \varphi\left({ }^{*} \mathrm{P}\right)$. On the other hand, $\varphi\left({ }^{*} \mathrm{P}\right) \neq \Delta$, by Section 2 , and $\varphi\left({ }^{*} \mathrm{P}\right) \neq 0$. This shows that $\varphi(\mathrm{J})=\varphi\left({ }^{*} \mathrm{P}\right)$ is prime.

The condition is also necessary. For suppose that $J={ }^{*} \mathrm{P}_{1}^{m} * \mathrm{P}_{2}^{n} \mathrm{Q}$ where $P_{1}$ and $P_{2}$ are prime ideals in $D$, equal or different, and $Q$ is not divisible by either $\mathrm{P}_{1}$ or $\mathrm{P}_{2}$. Since $\varphi(\mathrm{J})$ is not a zero divisor $m$ and $n$ must be finite. Now $\varphi(\mathrm{J})=\left(\varphi\left({ }^{*} \mathrm{P}_{1}\right)\right)^{m}\left(\varphi\left({ }^{*} \mathrm{P}_{2}\right)\right)^{n} \varphi(\mathrm{Q})$. If $\varphi(\mathrm{J})$ were prime we should then conclude that either $\varphi\left({ }^{*} \mathrm{P}_{1}\right)=\varphi(\mathrm{J})$ or $\varphi\left({ }^{*} \mathrm{P}_{2}\right)=\varphi(\mathrm{J})$ or $\varphi(\mathrm{Q})=\varphi(\mathrm{J})$. In the first case $\varphi\left({ }^{*} \mathrm{P}_{1}\right) \subset \varphi\left({ }^{*} \mathrm{P}_{1}{ }^{*} \mathrm{P}_{2}\right)$ and so ${ }^{*} \mathrm{P}_{1} \subset\left({ }^{*} \mathrm{P}_{1} * \mathrm{P}_{2}, \mu\right)={ }^{*} \mathrm{P}_{1} * \mathrm{P}_{2}$, which is impossible. A similar argument applies to the remaining two cases. This completes the proof.

As shown in the course of the proof, $\varphi(\mathrm{J})=\varphi\left({ }^{*} \mathrm{P}\right)$ if ${ }^{*} \mathrm{P}$ is the unique prime divisor of J. Thus, as P ranges over all the prime ideals of $\mathrm{D}, \varphi\left({ }^{*} \mathrm{P}\right)$
ranges over all the prime ideals $\varphi(\mathrm{J})$ in $\Delta$ which are mentioned in the theorem. Moreover, if $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ are distinct prime ideals in D , then $\varphi\left({ }^{*} \mathrm{P}_{1}\right) \neq \varphi\left({ }^{*} \mathrm{P}_{2}\right)$. For if $a \in \mathrm{P}_{1}-\mathrm{P}_{2}$ then $a \in * \mathrm{P}_{1}-{ }^{*} \mathrm{P}_{2}$ and so $\varphi(a) \in \varphi\left({ }^{*} \mathrm{P}_{1}\right)$. However, $\varphi(a) \in \varphi\left({ }^{*} \mathrm{P}_{2}\right)$ would imply $a \in\left({ }^{*} \mathrm{P}_{2}, \mu\right)={ }^{*} \mathrm{P}_{2}$, contrary to assumption. Thus, $\varphi$ provides a multiplicative bijection between the standard prime ideals of *D and the prime ideals of $\Delta$ which are not zero divisors and which are images of internal ideals in *D.
5. The monad $\mu$ is not an internal set in the sense of Non-standard Analysis. For suppose it were. Then $\operatorname{ord}{ }_{\mathrm{P}}(\mu)=n_{\mathrm{P}}$ would be infinite for all prime ideals P in D . Choose one such $\mathrm{P}=\mathrm{P}_{0}$ and define $\mu_{0}=\mu: \mathrm{P}_{0}$. Then $\mu_{0} \supset \mu$, $\mu_{0} \neq \mu$. On the other hand, $\mu_{0}$ would still be divisible by all finite powers of *P for any prime ideal P in D , and so $\mu_{0} \mathrm{C} \mu, \mu_{0}=\mu$. This contradiction shows that $\mu$ is not internal.

It follows that if we regard $\Delta={ }^{*} \mathrm{D} / \mu$ as a set of subsets of ${ }^{*} \mathrm{D}$ then $\Delta$ cannot be an internal entity; for in that case, $\mu$ also would be an internal entity.

Let J be a principal ideal in $\Delta, \mathrm{J}=(a)$. We know that an ideal in $\Delta$ is principal if and only if it is the image under $\varphi$ of an internal ideal in *D. If $\mathrm{J}=\Delta$, then $a$ is a unit in $\Delta$ and, conversely, if $a$ is a unit in $\Delta$ then $\mathrm{J}=\Delta$. If $a$ is a zero divisor in $\Delta$, so that $a b=0$ in $\Delta$ for $b \neq 0$ then J is a zero divisor for in that case $\mathrm{J} b=0$. Conversely, if J is a zero divisor, then $a$ is a zero divisor.

Suppose now that $\mathrm{J}=(a), a \neq \mathrm{o}$, where $a$ is neither a unit nor a zero divisor. As usual, $a$ is said to be prime if $a$ is divisible only by units (invertible elements) and by elements associated with $a$.

ThEOREM.- J is prime if and only if $a$ is prime.
Proof.-Let J be prime. If $a=b c$ then $b c \in \mathrm{~J}$, hence either $b \in \mathrm{~J}$ or $c \in \mathrm{~J}$. If $b \in \mathrm{~J}, b=d a$ for some $d \in \Delta$, then $d a c=a, a(d c-\mathrm{I})=0$. Since $a$ is not a zero divisor, we conclude that $d c-\mathrm{I}=\mathrm{o}, c$ is a unit, $b$ is associated with $a$. A similar argument applies if $c \in \mathrm{~J}$. Hence, $a$ is prime. On the other hand, suppose that $a$ is prime and that $b c \in \mathrm{~J}$ but $b \notin \mathrm{~J}, c \notin \mathrm{~J}$. Let $(a, b)=(d)$ so that $d$ is a greatest common divisor of $a$ and $b$. Since $d$ divides $a$ but is not in J it must be a unit, $(d)=\Delta$. Similarly $(a, c)=\Delta$, and so $(a, b)(a, c)=\Delta$. But $(a, b)(a, c)=\left(a^{2}, a c, b a, b c\right)=\mathrm{J}$ and so $\mathrm{J}=\Delta$, contrary to assumption. This proves our assertion.
6. Let $a \in \Delta, a==0$, and let $p$ be a prime element of $\Delta$. If $p^{n} \mid a$ but $p^{n+1} a$ for some finite natural number $n \geq 0$ then we set $\operatorname{ord}_{p}(a)=n$. If $p^{n} \mid a$ for all finite natural numbers $n$ then we set $\operatorname{ord}_{p}(a)=\infty$. Notice that $p^{n}$ is not defined for infinite $n$.

For $a$ and $p$ as above, set $(a)=\mathrm{A},(p)=\mathrm{P}$ in $\Delta$. Then there exists an internal ideal J in ${ }^{*} \mathrm{D}$ and a prime ideal Q in D such that $\mathrm{A}=\varphi(\mathrm{J}), \mathrm{P}=\varphi\left({ }^{*} \mathrm{Q}\right)$. Suppose that $p^{n} \mid a$ for some'finite $n$. Then $\mathrm{P}^{n} \mid \mathrm{A}$ and so $\varphi\left({ }^{*} \mathrm{Q}^{n}\right) \mid \varphi(\mathrm{J}), \varphi(\mathrm{J}) \subset$ $\varphi \subset\left({ }^{*} Q^{n}\right), \mathrm{JC}\left({ }^{*} \mathrm{Q}^{n}, \mu\right)={ }^{*} \mathrm{Q}^{n},{ }^{*} \mathrm{Q}^{n} \mid \mathrm{J}$. Conversely, if ${ }^{*} \mathrm{Q}^{n} \mid \mathrm{J}$ then $\mathrm{P}^{n} \mid \mathrm{A}$ and so $p^{n} \mid a$. We conclude that if $\operatorname{ord}_{*_{Q}}(\mathrm{~J})$ is an infinite natural number then $\operatorname{ord}_{p}$
(a) $=\infty$, and conversely; while if $\operatorname{ord}_{* \mathrm{Q}}(\mathrm{J})$ is finite then $\operatorname{ord}_{p}(a)$ is finite and conversely, and in this case $\operatorname{ord}_{p}(a)=\operatorname{ord}_{\mathrm{Q}}(\mathrm{J})$.

Theorem.-For $a, b, p \in \Delta, a \neq 0, b \neq 0, p$ prime:

$$
\operatorname{ord}_{p}(a b)=\operatorname{ord}_{p}(a)+\operatorname{ord}_{p}(b)
$$

In this connection, the sum on the right hand side is defined to be $\infty$ if at least one of $\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b)$ is $\infty$.

For, introducing A, P, J, Q as above and setting (b) $=\mathrm{B}, \mathrm{B}=\varphi(\mathrm{K})$, where K is an internal ideal in ${ }^{*} \mathrm{D}$, suppose next that $\operatorname{ord}_{p}(a)$ and $\operatorname{ord}_{p}(b)$ are finite. Then $\operatorname{ord}_{*_{Q}}(\mathrm{~J})$ and ord ${ }_{* Q}(\mathrm{~K})$ also are finite and

$$
\operatorname{ord}_{*_{Q}}(\mathrm{JK})=\operatorname{ord} *_{Q}(\mathrm{~J})+\operatorname{ord}^{*} *_{\mathrm{Q}}(\mathrm{~K})
$$

applies in *D. But

$$
(a b)=\mathrm{AB}=\varphi(\mathrm{J}) \varphi(\mathrm{K})=\varphi(\mathrm{JK})
$$

and so $\operatorname{ord}_{p}(a b)=\operatorname{ord}^{2}(\mathrm{JK})$. This establishes the assertion for finite ord ${ }_{p}(a)$, $\operatorname{ord}_{p}(b)$. The remaining cases can be disposed of in a similar way.

The fact that $\operatorname{ord}_{p}(a)=\infty$ if and only if $\operatorname{ord}_{* \mathrm{Q}}(\mathrm{J})$ is infinite also shows that $a \in \Delta, a \neq 0$, is a zero divisor if and only if $\operatorname{ord}_{p}(a)=\infty$ for at least one prime element $p$ of $\Delta$ and $a$ is a unit if and only if $\operatorname{ord}_{p}(a)=0$ for all prime elements $p$ of $\Delta$.
7. If $p$ and $q$ are prime elements of $\Delta$ then $\operatorname{ord}_{p}(q)=\mathrm{I}$ if $q$ is associated with $p$, and $\operatorname{ord}_{p}(q)=0$ in the alternative case. From every class of associated primes select one, $\pi$, calling it a representative prime. Now let $a \in \Delta, a \neq 0, a$ not a zero divisor and possessing only a finite number of distinct representative primes $\pi_{1}, \cdots, \pi_{j}, j \geq 0$ as divisors. Thus, $\operatorname{ord}_{\pi_{i}}(a)=n_{i}$ is a positive integer for $\pi_{1}, \cdots, \pi_{i}$ and $\operatorname{ord}_{p}(a)=0$ for any prime $p$ not associated with one of these.

Consider the product $b=\prod_{i=1}^{j} \pi_{i}^{n_{i}} . \quad b$ is a divisor of $a$. For since $\pi_{1}^{n_{i}} \mid a$, we have $a=\pi_{1}^{n_{1}} a_{1}$ where $\operatorname{ord}_{\pi_{1}}\left(a_{1}\right)=0, \operatorname{ord}_{\pi_{i}}\left(a_{1}\right)=n_{i}, i=2, \ldots, j, \quad$ by the theorem of Section 6. Continuing in this way we show that $b \mid a, a=\varepsilon b$. Then $\operatorname{ord}_{\boldsymbol{\pi}_{i}}(\varepsilon)=0, i=\mathrm{I}, \cdots, j$ and more generally $\operatorname{ord}_{p}(a)=0$ for all prime elements $p$ of $\Delta$. This shows that $\varepsilon$ is a unit. Thus, we have represented $a$ as a product of powers of distinct representative primes multiplied by a unit. It is not difficult to see that this representation is unique.

Now suppose in addition that $a$ is an element of D regarded as a subset of $\Delta$. Let $(a)=\mathrm{P}_{1}^{n_{1}} \cdots \mathrm{P}_{j}^{n_{j}}$ be the representation of $(a)$ as a product of powers of distinct prime ideals in D , so that ${ }^{*}(a)={ }^{*} \mathrm{P}_{1}^{n_{1}} \ldots{ }^{*} \mathrm{P}_{j}^{n_{j}}$ in ${ }^{*} \mathrm{D}$. By Section 4 and 5 there exist representative primes $\pi_{1}, \cdots, \pi_{j}$ of $\Delta$ such that $\varphi\left({ }^{*} \mathrm{P}_{i}\right)=\left(\pi_{i}\right)$, $i=1, \cdots, j . \quad$ Then $\operatorname{ord}_{\pi_{i}}(a)=n_{i}, \quad i=1, \cdots, j$ in $\Delta$ and $\operatorname{ord}_{p}(a)=\mathrm{o}$ for prime elements of $\Delta$ not associated with $\pi_{1}, \cdots, \pi_{j}$. Hence, $a=\varepsilon \pi_{1}^{n_{1}} \cdots \pi_{j}^{n_{j}}$, where $\varepsilon$ is a unit. Thus, the multiplicative system $H$ generated by the units and prime elements of $\Delta$ contains all non-zero elements of $D$. For every element $a$ of H there exists an internal ideal J in $* \mathrm{D}$ such that $\varphi(\mathrm{J})=\left(a^{\prime}\right.$. For
if $a=\varepsilon p_{1}^{n_{1}} \cdots p_{j}^{n_{j}}$ where $\varepsilon$ is a unit and $p_{1}, \cdots, p_{j}$ are prime elements of $\Delta$, then there exist prime ideals $\mathrm{P}_{1}, \cdots, \mathrm{P}_{j}$ in D such that $\varphi\left({ }^{*} \mathrm{P}_{i}\right)=\left(\mathrm{P}_{i}\right)$, $i=\mathrm{I}, \cdots, j$. Then the ideal J defined by $\mathrm{J}=* \mathrm{P}_{1}^{n_{1}} \ldots * \mathrm{P}_{j}^{n_{j}}$ satisfies $\varphi(\mathrm{J})=$ $=\varphi\left({ }^{*} \mathrm{P}_{1}^{n_{1}}\right) \cdots \varphi\left({ }^{*} \mathrm{P}_{j}^{n_{j}}\right)=(a)$, as required. The elements of H will be called Prüfer-finite.

Theorem.-Let $a \in \Delta, a \neq 0$. Then $a$ is Prüfer-finite if and only if there exists an element $b \in \mathrm{D}, b \neq 0$ such that $a \mid b$ in $\Delta$.

Proof.-The condition is sufficient. For let $b \in \mathrm{D}, b \neq 0$, so that $b$ can be written as $b=\varepsilon \pi_{1}^{n_{1}} \cdots \pi_{j}^{n_{j}}$ where $\pi_{1}, \cdots, \pi_{j}$ are representative primes and $\varepsilon$ is a unit. Then $a \mid b$ implies that $a$ is not a zero-divisor and that it can be written in the form $a=\eta \pi_{1}^{m_{1}} \cdots \pi_{j}^{m_{j}}$ where $\eta$ is a unit and $o \leq m_{i} \leq n_{i}$, $i=\mathrm{I}, \cdots, j$. Hence $a \in \mathrm{H}$.

The condition is also necessary. For suppose $a \in \mathrm{H}, a=\varepsilon p_{1}^{n_{1}} \cdots p_{j}^{n_{j}}$ where $\varepsilon$ is a unit and $p_{1}, \cdots, p_{j}$ are prime elements of $\Delta$. Then $\left(p_{i}\right)=\varphi\left({ }^{*} P_{i}\right)$, $i=\mathrm{I}, \ldots, j$ where $\mathrm{P}_{1}, \cdots, \mathrm{P}_{j}$ are prime ideals in D , and so $(a)=\varphi\left({ }^{*} \mathrm{P}_{1}^{n_{1}} \ldots\right.$ $\ldots * \mathrm{P}_{j}^{n_{j}}$ ). Choose $b_{i} \in \mathrm{P}_{i}, b_{i} \neq 0$, then $b=b_{1}^{n_{1}} \cdots b_{j}^{n_{j}}$ is different from zero and is contained in $* \mathrm{P}_{1}^{n_{1}} \ldots * \mathrm{P}_{j}^{n_{j}}$ and hence in ( $a$ ). Thus, $a \mid b$, as required.
8. In addition to the elements of H , we may consider also elements of $\Delta$ which, while not zero divisors, are divisible by an infinite number of distinct representative primes. Let $a$ be such an element of $\Delta$. Then the function $\operatorname{ord}_{\mathbf{P}}(a)$ takes finite values only. Moreover, if $b$ is a second element of this kind and $\operatorname{ord}_{\pi}(a)=\operatorname{ord}_{\pi}(b)$ for all representative primes $\pi$ then $a$ and $b$ must be associated. For let J and K be internal ideals in ${ }^{*} \mathrm{D}$ such that $(a)=\varphi(\mathrm{J})$, $(b)=\varphi(\mathrm{K})$. Let R be the set of internal prime ideals P in ${ }^{*} \mathrm{D}$ such that $\operatorname{ord}_{\mathrm{P}}(\mathrm{J})=\operatorname{ord}_{\mathrm{P}}(\mathrm{K})=n_{\mathrm{P}}>\mathrm{o}$. Let $\mathrm{Q}=\prod_{\mathrm{P} \in \mathrm{R}} \mathrm{P}^{n_{\mathrm{P}}}$. Then $\mathrm{Q}|\mathrm{J}, \mathrm{Q}| \mathrm{K}, \mathrm{J}=\mathrm{QJ}^{\prime}$, $\mathrm{K}=\mathrm{QK}^{\prime}$. Also, R includes all standard prime divisors of J and K and so $\varphi\left(\mathrm{J}^{\prime}\right)=\varphi\left(\mathrm{K}^{\prime}\right)=\Delta$. Hence, $\varphi(\mathrm{J})=\varphi(\mathrm{Q})=\varphi(\mathrm{K}),(a)=(b), a$ and $b$ are associated.

Now let $f(\pi)$ be any function from the representative primes into the finite natural numbers. We claim that there exists an element $a \in \Delta$ such that $\operatorname{ord}_{\pi}(a)=f(\pi)$ for all representative primes $\pi$. Indeed, for any prime ideal P in D there is a unique representative prime $\pi$ such that $\varphi\left({ }^{*} \mathrm{P}\right)=(\pi)$, and we write $\pi=g(\mathrm{P}), f(\pi)=f(g(\mathrm{P}))=h(\mathrm{P})$. Consider the relation $\mathrm{R}(x, y)$ which holds if $x$ is a prime ideal in D and $y$ is an ideal in $\mathrm{D}, y \neq \mathrm{o}$, such that $\operatorname{ord}_{x}(y)=h(x)$. Then R is concurrent. It follows that there exists an internal ideal $\mathrm{J} \neq \mathrm{o}$ in ${ }^{*} \mathrm{D}$ such that $\operatorname{ord}_{* \mathrm{P}}(\mathrm{J})=h(\mathrm{P})$ for all prime ideals P in D . Let $a \in \Delta$ such that $(a)=\varphi(\mathrm{J})$. Then $\operatorname{ord}_{\pi}(a)=f(\pi)$ for any representative prime element $\pi$-as required.

## Bibliography.

[r] A. Robinson, $A$ new approach to the theory of algebraic numbers, «Rend. Acc. Naz. Lincei», 40, 227-225 (1966).

