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Chimica (Principi di Ingegneria Chimica). — Viscoelastic pro­
perties of very dilute solutions of Polymeric Materials. Nota di 
G io v a n n i  A s t a r it a  r> e A . B. M e t z n e r  (* (**)), presentata r,) dal 
Corrisp. G . M a l q u o r i .

R iassunto. — Tre tipi di esperimenti fluodinamici mettono in evidenza la presenza 
di considerevoli effetti viscoelastici anche per liquidi di viscosità costante, quali le soluzioni 
molto diluite di alcuni polimeri: i° il moto di bolle di gas entro tali liquidi; 2° il flusso tur­
bolento ben sviluppato entro condotti a sezione costante; 30 il flusso con improvvisa riduzione 
di sezione.

Risultati sperimentali relativi ai casi i° e 30 sono qui presentati e discussi insieme con 
una analisi delle equazioni reologiche ipotizzate per fluidi viscoelastici, alcune delle quali 
includono il modello di un fluido di viscosità costante e con un tempo naturale diverso da 
zero.

L’esperimento 30, in particolare, lascia intravedere la possibilità di determinare quanti­
tativamente i parametri elastici laddove risultano insensibili le tecniche convenzionali.

I n t r o d u c t io n .

Investigation of viscoelastic flow phenom ena requires the consideration 
of at least one rheological param eter having the dimensions of tim e [1, 2, 3], 
herein term ed the natu ra l tim e of the fluid T. T he value of this param eter 
is difficult to m easure directly  in dilute solutions of polym eric m aterials, which, 
under viscometric flow conditions, in  m any cases display an approxim ately 
constant (Newtonian) viscosity. Sim ilarly the deviatone norm al stresses 
m ay fee below the threshold of detectability. Nevertheless these solutions 
do exhibit viscoelastic effects if p roperly  significant flow fields are chosen for 
study.

A  theoretical analysis is given, which shows th a t elastic effects m ay indeed 
be im portan t in constant-viscosity liquids, and m ay be unrelated to the shear 
dependency of the viscosity in variable-viscosity liquids. For constant-visco­
sity liquids no value of T  can be obtained from the p, (T) =  constant curve, 
while elastic effects still need to be considered on the basis of some value of 
the natu ra l time. In  the experim ental portion of this paper a num er of criti­
cal experim ents are described which reveal the presence of elastic effects in 
such constant-viscosity liquids.

(*) Istituto di Chimica Industriale della 
(Newark — Delaware).

(**) Nella seduta del 16 aprile 1966,

Università di Napoli; University of Delaware
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T h e o r e t ic a l .

a) Dimensional Analysis.

W hen the constitutive equation for a viscoelastic liquid is m ade explicit 
in the stress:

( 0  S =  S ( B i >B2>- - 0

in which B„ denotes a properly invarian t definition of the ( n —  1) tim e deri­
vative of the ra te  of deform ation, dim ensional invariance requires the existence 
of as m any dim ensional rheological param eters as are required to m ake all 
the B„ tensors dim ensionally equivalent to S. As shown by Truesdell (1), a 
viscosity pQ and natu ra l tim e T  are sufficient: in fact, new kinem atic tensors 
dim ensionally equivalent to S m ay be defined as:

(2) Bj, =  po T* - 1 B„

For a purely viscous liquid, all the B„’s beyond Bi in E quation  (1) disap­
pear by definition [4] or, in other words, the natu ra l tim e T  is zero <r>. Still, 
a purely  viscous liquid m ay display any  viscosity function p (T) w hatsoever [4], 
so th a t a value of T  could artificially be derived from the shear dependency 
of viscosity by any one of the suggested procedures [2]. Such a value would 
of course ha ve no relationship to the non-existent elastic properties of the liquid.

b) Linear Viscoelasticity.

I f  a linear theory  of viscoelasticity such as discussed, for example, by 
Fredrickson [8] is accepted as a suitable model for discussing elastic effects 
in real liquids, the viscosity p tu rns out to be independent of the shear 
rate F:

OO

(3) p =  j  ^ (t) dt
0

in which (t) denotes the “ influence function ” , on a tim e-decaying elastic 
m odulus. In  contrast w ith this, a natu ra l tim e T m ay be defined as:

(4) P ll —" P22 
p r 2

(1) Ideally, a purely viscous liquid has no memory although real liquids which are 
usually regardqd as purely viscous may have relaxation times for structural rearrangements 
of the order of i o - 13 sec. [5]. This is essentially zero for the velocity fields of interest and 
will be taken as such. One should note that a number of measurements on conventional 
gases and liquids, though controversial, have yielded normal stresses equivalent to much 
larger relaxation times, however [6, 7].
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in which P11 and P22 denote the deviatone norm al stresses observed in visco­
m etric flow. T he value of T  tu rns out to be:

00

d

and m ay thus be finite in a constant-viscosity liquid. Analogous conclusions 
can be draw n from  other linear theories of viscoelasticity [9, 10], w ith one 
exception to be discussed below. Equations of the form  of this one m ay also 
accom odate the finite norm al stresses in ord inary  low m olecular weight fluids 
which are known to have constant viscosities, should the controversial results 
referred to earlier prove to be valid.

c) Variable Viscosity Theories.

M ore general theories of viscoelasticity such as Coleman and N oll’s theory  
of simple fluids [11], E ricksen’s theory  of anisotropic fluids [12], the R ivlin- 
E ricksen expansions [13], etc. predict behavior which, under viscometric 
flow conditions, say  under those conditions for which rheological data  can be 
obtained, are not distinguishable from  each other: in each case, three to tally  
unrelated m aterial functions are seen to be needed for the characterization of 
a viscoelastic liquid. One of these functions is the p, (V) curve, and no p roper­
ties of the other two functions, which typ ify  the elastic character of the liquid, 
can be inferred from  its knowledge.

M ore restricted theories which do predict a variable viscosity are, am ong 
others, the W hite and M etzner model [14] and O ldroyd’s “ l i n e a r ” theory  
of viscoelasticity [15].

According to W hite and M etzner’s model of a generalized M axwell fluid, 
the shear-dependency of T  is the same as th a t of p,, when the single elastic 
m odulus of the liquid is taken  as a constant, although the actual values of T  
cannot be inferred from  the p. (E) curve. In  its simplest form  (two constant 
coefficients) this m odel predicts the W eissenberg pattern  of norm al stresses 
which is known not to be correct in detail. If  a  generalization is m ade to 
accom m odate finite values of the second norm al stress difference even the 
shear ra te  dependencies of p, and T  m ay tu rn  out to be m utually  independent. 
Again, this m odel can accom m odate a finite value of T  together w ith a con­
stan t viscosity <2>.

(2) If White and Metzner’s model is used with a constant value of p, it is equivalent 
to a linear viscoelastic formulation.
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O ldroyd’s “ linear ” theory  of viscoelasticity assumes, for a second-order 
fluid, the following constitutive equation:

(7) (* +  a w ) S = = 2 P° ( I +  [a - T ] - f e ) Bl

where [x0 is the zero-shear viscosity, and D /D t are Jaum ann  time derivatives. 
Such a fluid has two tim e-constants, a and T, both of which are relevant to 
both the elastic properties and the viscosity curve. The p. (T) function is 
given by:

(8) T l  =  a T T 2
po 1 I +  a2 T2

while the two norm al stress differences are given by:

(9) Pn —  P22 =  2 (p 33 —  P22) =  2 jjio r 2 -— p r

Com parison of Equations 8 and 9 shows th a t the viscosity m ay be cons­
tan t (a =  o) and at the same tim e finite norm al stress m ay exist in visco­
m etric flow (T 4= o). T he converse is not true: when deviatone norm al stresses 
are zero (T =  o), the viscosity is necessarily constant.

If  (x is not constant ( a 4=0, T 4 =o), and a value of T  is to be inferred from 
the [x (T) curve, this would be taken  as the inverse of the T value at which 
(x starts being appreciably different from  p0 , say (x/[x0 =  1 —  S, with S a su ita­
bly defined num ber:

( 1 0 )  8  J L =  I —  .
a (A0

Thus, a pseudo-natural tim e would be obtained:

(n) = ■
Consideration of E quation 10 shows that:

( I2> Tn =  j / - ^ -  >  a  > T

say, the value of T^, by far exceeds the value of T, which, according to E q u a­
tion (9), is a natu ra l yardstick for elastic effects. Sim ilar conclusions m ay be 
draw n from  the analysis of higher-order fluids.

T he same conclusion can be draw n also directly from Truesdell’s sug­
gestion [ i ] on the evaluation of T  from  norm al stress data  as <3k

(1 3 ) t  =  1 V(Pn 4 ~ P22 — 2 P33)2 4 ~ (Pn — P22)2
2 ^(o) r _*0 *" T2

(3) Tfuesdell [1] gives Equation (13) with T instead of T2 in the denominator, which 
is an obvious misprint.
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while is to be evaluated as:

(T4) T m- =  H (a" (o) I / (x (o)

E quation (9) shows th a t the T  value in E quation (7) is indeed the natu ral 
tim e as obtained from  Equation (13); while the value of is given, according 
to Equation (14), by:

( 15) =  |/ocT

which, apart from the num erical factor | / i /§, coincides with E quation (12) 
above.

E x p e r im e n t a l .

Aqueous solutions of certain high m olecular weight substances, which 
are known to be viscoelastic at high concentrations, are characterized by a 
N ewtonian p, (T) curve at low concentrations. Due to experim ental diffi­
culties, norm al stresses in viscometric flows cannot be m easured for the dilute 
solutions, bu t neither can their finiteness be excluded. Indirect evidence of 
elastic properties of these dilute constant-viscosity solutions can be obtained by 
studying critical effects which m ay be shown to depend on the elastic p roper­
ties of the liquid. T hree different elastic flow phenom ena which have been 
observed in  such fluids are discussed below.

a) Velocity of spherical gas bubbles at high Reynolds numbers.

T he m otion of a spherical gas bubble at high Reynolds num bers has 
been discussed by  Levich [16], Chao [17] and M oore [18] for Newtonian 
liquids; by  A starita  and M arrucci [19] for purely viscous power-law fluids; 
and by  A starita  [20] for viscoelastic liquids; the term inal velocity is given, 
if the liquid has no elastic properties, by:

(16) v U = ^ -
9

where v is the kinem atic viscosity, is the g rav ity  acceleration and R  the bubble 
radius. For viscoelastic liquids, the velocity is predicted [20] to be appreciably 
lower th an  given by E quation (16).

Term inal velocities of spherical gas bubbles at Reynolds num bers larger 
th an  5 are plotted in fig. 1. T he straight line th rough the origin represents 
E quation (16). It is clear that, while the data  for the presum ably  purely  vi- 
scojis aqueous solution of sugar are reasonably well correlated by Equation (16) 
the data  relative to the two dilute polym er solutions are appreciably lower. 
This can be considered a reasonably direct indication of elasticity in the two 
polym er solutions having constant viscosities.
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R\ cm2
Fig. i. -  Velocities of spherical gas bubbles in inelastic and in elastic 

liquids. Reynolds numbers larger than 5.

b) Drag reduction.

The phenom enon of drag reduction during tu rbu len t flow of some polym er 
solutions has been observed by  a num ber of workers [21-30], and has ra ther 
firmly been established as being due to viscoelastic effects [21, 23, 24, 25, 26]. 
This phenom enon has been observed also in very dilute solutions which dis­
play a constant viscosity [27-31].

c) Entrance pressure drop in laminar flow  through pipes.

T he problem  is th a t of flow into a small tube from a large upstream  reser­
voir, as indicated in fig. 2. L et us assume that:

(i) T he upstream  reservoir is so large in extent th a t the fluid velocities 
and deform ation rates at Section 1 are negligibly small. This implies th a t 
both the kinetic energy and any  elastic energy developed in the fluid as a 
result of its deform ation are negligibly small at this section.

(ii) Section 2 is sufficiently far downstream  from the en try  for the flow 
field (velocity profile and all stresses) to have become well-developed prior 
to this position.

An energy balance w ritten over the system  defined by Sections 1 and 2 
and the interm ediate walls of the vessel gives, for the case of no energy ex­
change with: the surroundings:

M ech. energy M ech. energy R ate of energy dissipation
flux at =  flux at +  in region bounded by Sections
Section 1. Section 2. 1 and 2 and walls of ducts.

41 . -  RENDICONTI 1966, Voi. XL, fase. 4 .
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or:

(17)

R R

pi w[p =  j  u ' 2 nr dr + (— Lli) U '2 nr dr -\-

R

+  E • u • 2 Tur dr -j- (Dy)
0 V

I 2
Fig. 2. -  Control surfaces for energy balance in tube inlet problems.

The sym bols used in E quation (17) are defined as follows: 

w  : m ass ra te  of flow,
p x : hydrostatic (isotropic) pressure at Section 1,
p : fluid density,
u : fluid velocity at radius r, at Section 2,
R  : radius of tube (Section 2),

Tn  : axial com ponent of total stress tensor, consisting of a hydro­
static pressure term  and a deviatone term  arising from the
fluid elasticity at Section 2:

Tu =  — P +  P11

E : stored elastic energy per un it volume of fluid,
Dy : dissipation ra te  per un it volume o f fluid
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E quation (17) "may be rearranged:

1 1 
(18) p 1 —  2 j p 2{^- ̂ x d x  =  2 j ^ ^ j x d x  +

0 0
1

+  2 j (E -  P n ) (£ )x d x  +  (E ) [ D v d \ J
0 V

in which x  denotes the dimensionless radial position r \R.
T he term  (E —  Pn) m ay be shown to be positive for real fluids [32]. 

Thus the energy balance differs from  th a t for purely-viscous m aterials (such 
as N ew tonian fluids) by the inclusion of this additional contribution, im plying 
th a t the m easured pressure drop over the entry, p \ — p%y will be greater for

X , INCHES

Fig. 3. -  Comparison of pressure-axial distance profiles for Newtonian and viscoelastic
fluids. Data of Feig [32].

The greater entrance pressure drop and shorter tube length required for development of a constant pressure gradient, as 
observed here for the viscoelastic fluid, are effects which appear to be common for viscoelastic fluids rather generally.

viscoelastic fluids. This difference between the values of { p i— p%) for purely 
viscous and viscoelastic fluids will be denoted as A P^ and m ay be obtained 
from  experim ental m easurem ents of the total pressure profile; A P ^ will contain 
any  additional dissipation term s in the viscoelastic case as well as the contri­
bution due to (E  — Pn).

The data  depicted in Figure 3 show th a t A P „ is large and well-defined. 
These results are for fairly  viscous system s [32] for which the physical proper­
ties m ay readily  be m easured rheogoniom etrically by m eans of any of several
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available techniques [33]- The same effects have, however, been noted in very 
dilute solutions having essentially constant viscosity coefficients and in which 
any stresses arising out of the fluid elasticity and m anifested as norm al stresses 
under steady lam inar shearing flow conditions appear to be too small to be 
m easured rheogoniom etrically [34]: i.e. in solution which would be described 
as N ew tonian if standard  Viscometric and rheogoniom etric techniques were 
em ployed to determ ine their physical properties.

T a b l e  I.

Excess pressure drop (end effect) fo r  flow  of viscoelastic flu ids into a tube.
Data of Pruitt and Crawford [31].

Fluid Viscosity Shear rate AP**, p.s.i. AP ratio *description cp. sec-1 Dynes/cm2

wsR-301 (**)
250 ppm cone............  ( i -3 (5) 3 X  IO4 O 0 1.00

) 1 - 3 <4> 4 X  io4 2.5 x  IO5 3-6 3 -i

i-3  (0) I X IO5 7.5 X IO5 10.8 2.0

I i -4 (3) 0.3 X  IO4 0 0 1.00

K-PAM (***) '
\1 i -4 (0) I . X  IO4 2.5 X  IO4 0.36 4.2

250 ppm cone............  I1 1-3 (7) 3 . X  io4 9.1 X  IO4 I -31 2-3
1
ii

i - 3 (4) 1. X IO5 3.3 X  IO5 4-75 x-4

(*)
V*)
(***

AP. viscoelastic fluid
AP ratio denotes the .ratio:  ,---------

A P^ , Newtonian fluid
Polyethyleneoxide having a molecular weight of approx. 4 million.

0  Polyacrylamide having a molecular weight of approx. 8.3 million.

Table I sum m arizes the results of m easurem ents using two polymeric 
solutions at a concentration level of only 250 p.p.m . (0.025 %). These solutions 
were so nearly  N ew tonian th a t viscosity m easurem ents over a hundred-fold 
range of shear rates revealed only a 15 % change in one case and 10%  in the 
second, and a p art of even these small changes is quite possibly due to viscous 
heating effects at the high shear ra te  levels em ployed [35]. However, in spite 
of this near-constancy of the viscosity one notes very large values of the term  
A P^ to as m uch as over four times the value for com parable N ew tonian fluids.

T he significance of these results in the in terpretation of viscometric m easu­
rem ents is of interest, as the “ end effect ” pressure loss is sufficiently greater 
than  th a t of N ew tonian fluids to render conventional end effect corrections 
for the latter useless. This can be illustrated  by calculating the equiva­
lent length of a straight tube required to incur the same pressure loss, L e.
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Table II.

Equivalent length of tubes required to produce a pressure loss equivalent to A P ^ .

F l u i d Shear Rate 
sec-1

L e
Diameters

' 3 X IO4 O

WSR-301 .......................................  -I 4 X IO4 105

v I X IO5
1

125
1
f 0.3 X IO4 O

K-PAM ....................................................
] I X IO4
<■

40

I
j 3 X IO4 50
1
1 I X IO5 
1

55

As shown in T able II for fluid K —PAM  the “ equivalent length ” of the 
en try  is 50 diam eters at a shear ra te  of 3 X i-o4 sec- h This m eans th a t if a 
tube having a length of 50 diam eters were used in a viscosity determ ination 
(and this length/diam eter ratio  is in excess of th a t frequently  used), and  if 
the  conventional N ew tonian correction [36, 37] of 2,12 (p U 2/2) had been 
m ade to the  m easured pressure drop, the in terpretation of the rem aining pres­
sure drop over the system  in term s of viscous (Poiseuille) effects would lead 
to a value for the viscosity of just twice the true one. Sim ilarly, at a shear 
ra te  of io 5 s e c - 1 for fluid W SR-301 the  calculated viscosity would be in error 
by  a factor of (125 +  $o)l$o, or 3.5. Obviously the determ ination of the visco­
sity  of these highly elastic dilute solutions requires either the use of very long 
tubes (L >  1,250 D, for 10% error or less, for fluid W SR -301) or, m ore p rac­
tically, the use of several tube lengths to enable the  experim ental determ ina­
tion of the actual end effect, unless strain  gages are used to m onitor the pres­
sure grad ien t directly, thereby  elim inating an overall pressure drop m easure­
m ent. In  view of the w idespread use of dilute solution viscosity m easurem ents 
to evaluate m olecular properties of polym ers these comments are seen to be 
of broad significance unless care is exercised to restrict the m easurem ents to 
m oderate or low shear rates, under which conditions these elastic effects appear 
to be too small to be significant.

Acknowledgement.—This analysis is part of a study  of the structure and 
properties o f 'd ilu te  polym eric solutions, having application in w ater conser­
vation and treatm ent, and  has been supported by  the W ater Resources Center 
of the  U niversity  of Delaware.
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