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Analisi matematica. — On the determination of persistent eigen-
values. Nota ) del Socio Straniero ALEXANDER WEINSTEIN ),

RIASSUNTO. — Discussione dei rapporti fra i tre metodi per la determinazione degli
autovalori persistenti nella teoria dei problemi intermedi.

I. INTRODUCTION.—This paper deals with the determination of persistent
eigenvalues in the method of intermediate problems. This method leading to
lower bounds for eigenvalues was introduced by the author in 1935-37 [3]
in the determination of the eigenvalues for clamped plates. Later other types
of problems, always following the same scheme, were considered by several
authors. The general scheme of intermediate problems is the following. First
we have to introduce a solvable base problem which gives rough lower bounds
for the eigenvalues of a given problem. Secondly, we have to define intermediate
problems depending on a finite number of functions p1, p2,..., p,, which
give improved intermediate eigenvalues. Thirdly, we have to devise methods
for solving the intermediate problems theoretically and numerically in terms
of the base problem. One of the characteristics of intermediate problems is
that some of their eigenvalues may already appear as eigenvalues of the base
problem in which they usually have a larger index. These are called persistent
eigenvalues. There are at present three procedures for the determination of per-
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sistent eigenvalues each of which has its merits from either the theoretical or
the computational point of view. Any exposition of the theory without a
thorough discussion of these three procedures would be rather incomplete.
The purpose of this note is to establish the relationships among the various
methods, a question which has not been discussed up to now. The connection
is the same regardless of the type of problems used so we shall use the oldest
type of problems in as much as it appears in the theory of plates and in the
new maximum-minimum theory. For completeness we shall have to recapit-
ulate some of the older results in a somewhat different form. For the con-
venience of ordering the eigenvalues in an increasing sequence we consider
a compact symmetric negative definite operator A on a Hilbert space H having

the inner product (#,7). Let M <A <. be the eigenvalues and 2, g ,- - -
the corresponding orthonormal set of eigenvectors for the equation
(1) Au = .

We call (1) the base problem and denote by R («) the Rayleigh quotient
(A, u)[(e,u). Let S be a subspace of H and let P denote the projection
operator on S. Then the given problem would be the variational problem
corresponding to

min R (#).

Pu=0

LetS,, be the subspace of S spanned by the 7z independent vectors g1, pz,- - -, p,,
and let P,, be the corresponding projection operator. The problem

(2) Au—P, Au =
P,u=o0

is called the 7% intermédiate problem. A —P, A is a compact symmetric
negative definite operator on the subspace defined by P,,# = 0. Obviously
any eigenvector of (2) corresponding to a non-zero eigenvalue satisfies P, % = o.

2. NON-PERSISTENT EIGENVALUES.—Let us first briefly discuss as in [1]
the non-persistent eigenvalues. In place of (2) we write the equation
(3) Au—hw=arp1+ azp2 +- -+ a, p,
(n,p)=o0 i=1,2,--,m

where we consider the coefficients a; as parameters to be adjusted later. Clearly
not all @; vanish. The unique solution of (3) is given by

(4) U = 2 a; RL pz‘

=1

where R, p; denotes the resolvent

S (1)
(5) Ry p; = 2 o %
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Using equations (3), (4) and (5) we obtain

m

Q8w (o)
©) 2o X | LN (g, )| =

=1 =1

(k=1,2,--,m).

Since not all @; = o in this case, the determinant in (6) must be zero. Using
Parseval’s formula and omitting the non-zero factor A we can write the deter-
minant in the following compact form

) Wy = det | 3 B Burt)

Such a compact form for W (2) is not available in other types of intermediate
problems. The multiplicity of the non-persistent eigenvalue A is equal to the
nullity of the matrix in the Weinstein determinant (7).

3. THE DISTINGUISHED CHOICE.—We now turn to the determination of
persistent eigenvalues. Let us first discuss the method of the distinguished
choice (or distinguished sequence) given by Weinstein [3]. This is the oldest
method and it includes the special distinguished choice, or for short special
choice, introduced later by Bazley [4]. 7Ve essence of this method is to reduce
the determination of a persistent eigenvalue to the problem of determining a
non-persistent eigenvalue. Let L, be a persistent eigenvalue of multiplicity
and letz!,22,..., 4* be an orthonormal basis for the eigenspace U, of A,.

Let py = p', po = p2,- -+, pu = p* be a distinguished choice of vectors in S
namely such that

<8> det<pz %k :I:O (Z’,k:I,Z,...’“’).

This condition means that there is no non-zero vector in S, which is orthogonal
to Uy . Such distinguished choices exist for every subspace provided the eigen-
vectors common to the given problem and the base problem are excluded.
We start by considering the following intermediate problem of order p.

(9) Au—7\%=alﬁ1+42p2—|—--~—|—cz},,;>l".

Pou=o.

It is easy to see that this problem does not admit the eigenvalue A,. In fact,
the Fredholm conditions

(IO> gdi(pi,%k>20 <,é:1,2,...’“)

yield by (8), @y =ay= --. =a, =0, which would imply u = ¢ ul +
cgu? + - -+ ¢y u*. However, since P,u = 0, we again use (8) to get # = o,
which proves that A, is not persistent. Following [1] we shall now use

(11) Awuw—PyAu = Nu

Pou=o0
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as a new base problem and introduce additional orthogonality conditions.
Let us consider the intermediate problem of order p -+ s
(12) Auw— Py Au— et = @yt pust + Gupa Pute + - Guis Pus
P}H.,u = 0.
This problem (12) may again admit A, as a persistent eigenvalue except in

the case A, = M. To solve this problem we proceed as in [3] or [5]. In view
of (8) we can change the basis of S, so that the additional independent vec-

tors puy1, Put2,- + s Puss are all orthogonal to the subspace U,. We use
the same notation for the new basis, so that we have

(I3> (Ibu+i:%k>zo (i’:I’z""!S;k:I’zi""p‘)
Using (13) and Fredholm’s orthogonality conditions we see that (P, Awu,u*) =o
for #=1,2,---,u Since pt, p2,- .-, p* is ¢ distinguished choice this means
that P, Ax = o, so instead of (12) we can write

(14) Au— Mo = @yt a1 + Gupr Pure + - F Gups Dugs

Since (13) holds, the general solution of (14) is

(15) u=;au+;Ri*ﬁH+1—|—51ul+bz%2+”~+5uu“‘

where R;, denotes the resolvent (5) with the terms corresponding to 22, 22, - - | u®

omitted. In order to have a non-vanishing solution which is orthogonal to
Su+s we must satisfy the equations

(I6> (s ,u)=0 (é:I’Z:""V“’f'S)'
Let us note that @1, @ut2,- -, @y, cannot all be zero because then it would
also follow by (8) and (16) that b1 =bs =---= 4, = 0. In view of (13)
the equations (16) for 2=u + 1, 4+ 2,---, & + s only contain the unk-
NOWNS @41, @ui2, -, @uys- For A, to be a persistent eigenvalue of (12) there

must be some non-zero ,; and therefore the determinant

(D) Wa () = det {(R, e, i)} = det| 3 Loeer ) Cusir )
J= 7 *

G, k=1,2,"-,9)

must be zero. The independent solutions for the {;} are determined by the
nullity v of W, (). For each of the solutions, the orthogonality condi-
tions (16) for £ =1, 2,- .., u are satisfied in view of (8) by a proper choice of
b1,62,---,b,. The multiplicity of A, in (12) is v. This has been proved by
Weinstein [3, p. 45]. We give here a slightly modified proof. Denote by

., S .. ’ I"" .. . .
(18) v(])=;“E{*)‘"RMP“+1+.215§D”’ (F=1,2,",9)
i= . i=

the v solutions of (12) corresponding to the v independent solutions for {a,;}.
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v

Suppose there exist a®, a®, ..., a® not all zero, such that ¥, « ) z() = o.
=1

Since the vectors R;_ p,,; are all orthogonal to Uy, (18) implies that both

v

§
(19) > o 2{ @} Ry, puri =0
e

A
and

v

3o ¥ =0
=1

7=1
4 I ..
Since the R} p,.; are independent, it follows from (19) that 21 adl =0
~

for i=1,2,---,s which is a contradiction. /¢ is remarkable that W, ()
is formally a Weinstein determinant. Its order is only s since p1, p2, -, p
do not appear. The value p can be very large for higher eigenvalues (e.g.
for the membrane problem) so that our procedure could be of interest for the
computation of eigenvalues having large multiplicity.

4. THE GENERAL CHOICE.—We now drop the assumption that p1,
P2, -, pu is a distinguished sequence belonging to A, and consider the inter-
mediate problem of order . (2). If A, is to be a persistent eigenvalue we
must first satisfy the Fredholm conditions

(20) i;lai(pi,uk)=o (k=1,2,--,p).

If (20) is satisfied, the solution is given by

m s
u = 21 a; Ry, p; + 21 b, ut.

The condition P, #=o0 gives us 7 equations and (20) gives p equations so
that we have m 4 u equations for the 7 4+ w unknowns a1, a2, -, a,,, b1,
bz, -+, b,. In order to have non-trivial solutions, the following # + u by
m -+ u determinant must be zero.

m

[—— ~ — e —

(Ri, 2:5 28) (p:, u?)
(21) ;

e e — ™~ el
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Let v denote the nullity of (21). Then the multiplicity of A, is v. Weinstein
proposed this way of determining the persistency of A, [3, p. 33] but did not
give a proof for its multiplicity. Such a proof was given by Bazley and Fox [6]
and was used here in section 3 instead of the original proof of Weinstein. As
a matter of fact, the proof of the result of Bazley and Fox can be easily recon-
structed from the previous section. It is of interest to show the connection
between this procedure and the method of the distinguished choice. Using
a distinguished sequence p; = pl, p, = p2,..., p, = p* in the case p < m,
we see that the order m + p of (21) can be reduced to 7 — . In fact (21)
becomes

—~ I . ®
2 ®e, 2,8, Ry 22 ()
o N S
m—u (| Re,pi, 09 (Rip0, 20 o
w (o, pP) o o

Obviously this determinant equals
(22) [det (£, )2 W (A0).

Since the first factor in (22) does not vanish we see, as in section 3, that the
multiplicity of A, is the nullity of W, (). '

5. ARONSZAJN’S RULE.—The two methods in the previous sections
allow us to compute one persistent eigenvalue at a time as the zeros of certain
determinants which have to be formed for each A, separately. Aronszajn [7],
however, has given a rule which determines a// persistent eigenvalues from
the zeros and poles of the Weinstein determinant (7) as follows, Let u ())
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and u,,(\,) denote the multiplicities of A, in the base problem and the st
intermediate problem respectively. Then we have Aronszajn’s rule

(23) B (M) = 1 () + Qowm ()

where Q. () is the order of the meromorphic function W(A) = W, (0)
at the point A = A,. This rule which is of unsurpassed elegance has great
theoretical value. However, unlike the two previous methods, it is difficult
to apply in numerical computations, due to the fact that some elements of
W (M) may be zero while others are infinite. Aronszajn’s rule is based on the
decomposition

W) = Won (D) = Wor () Wy ()

where W,, is the Weinstein determinant which connects the 7t intermediate
problem with the 4% intermediate problem and where 7 = o denotes the base
problem. By iteration we also have

(24) Won (1) = Wop () W ()

All of these decompositions are valid only if (p;, ;) = 8; but of course
Aronszajn’s rule is independent of the basis chosen. Let us also note that in
Wi (M) the eigenvalues and eigenfunctions of the pth intermediate problem
appear, whereas in Wy, (A) only the eigenvalues and eigenfunctions of the
base problem appear. We now derive the connection between Aronszajn’s
rule and our rule of section 3. Again let p; = p1, py = p2,..-, p, = p* be
a distinguished choice with respect to A,. By preserving the basis elements
pY 2, -+, p* the determinant Wy, remains unchanged. We can replace
Dut1,Pus2, - 5 P DY new vectors (retaining the same notation) which are ortho-
gonal to U, . The effect of this will be to multiply Wy,, and W,,,, by the same
positive factor. Since Wy, is unchanged we still have formula (24). We again
consider the 7t intermediate problem (12) with 7 = p. + 5. Proceeding as in
section 3 we can again replace (12) by (14). This means that in the determinant
W, instead of using (9), we can use Az = A,z as the base problem. In this
way the multiplicity of A, is given by the nullity of W, (3,). Now let us recon-
sider (24). In view of the choice of 1, pui2, -, £, it is clear that W, =W,
Since pl, p%,- -, p* is a distinguished sequence, A, isnot an eigenvalue of (9),
and therefore by Aronszajn’s rule Wy, () has a pole of order p. at A = A, or
Qo (Ay) =— p.. Equation (24) means that Q,,(Ay) = Qg (\)+ Qo (A,) so that
if A4 is to be a persistent eigenvalue of (12) the determinant W, (\) =W, ()
must have a zero at A = A,. Furthermore the order of the zero determines
the multiplicity of A,. This completes the connection between the methods.

For recent expositions of the theory of intermediate problems see the books
by G. Fichera [8] and S. H. Gould [9]. Let us also note that Bazley and
Fox [6] (see also [9]) have shown that some of the methods discussed in
this paper apply to certain unbounded Schrédinger-type operators, thus
opening an important new field for applications.
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