
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Alexander Weinstein

On the determination of persistent eigenvalues

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 40 (1966), n.4, p. 515–522.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_4_515_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1966_8_40_4_515_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1966.



RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fìsiche, matematiche e naturali

Seduta del 16 aprile ig 6 6  

Presiede il  Presidente B eniamino S egre

N O T E  D I  S O C I

Analisi matematica. — On the determination op persistent eigen­
values. Nota (#) del Socio Straniero A le x a n d e r  W e in s te in  (**b

R iassunto. — Discussione dei rapporti fra i tre metodi per la determinazione degli 
auto valori persistenti nella teoria dei problemi intermedi.

I. INTRODUCTION.—This paper deals w ith the determ ination of persistent 
eigenvalues in the m ethod of interm ediate problems. This m ethod leading to 
lower bounds for eigenvalues was introduced by the author in 1935-37 [3] 
in the determ ination of the eigenvalues for clam ped plates. L ater other types 
of problem s, always following the same scheme, were considered by several 
authors. T he general scheme of interm ediate problem s is the following. F irst 
we have to introduce a solvable base problem  which gives rough lower bounds 
for the eigenvalues of a given problem . Secondly, we have to define interm ediate 
problems depending on a finite num ber of functions p i , pz ,. • ., p m which 
give im proved in term ediate eigenvalues. Thirdly, we have to devise m ethods 
for solving the interm ediate problem s theoretically and num erically in term s 
of the base problem . One of the characteristics of interm ediate problem s is 
th a t some of their eigenvalues m ay already appear as eigenvalues of the base 
problem  in which they  usually  have a larger index. These are called persistent 
eigenvalues. T here are at present three procedures fo r  the determination of per-
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Grant AFOSR 400-64.

35. -  RENDICONTI 1966, Voi. XL, fase. 4 .



5 16 Lincei -  Rend. Sc. fis. mat. e nat. -  Voi. XL -  aprile 1966

sistent eigenvalues each of which has its m erits from  either the theoretical or 
the com putational point of view. A ny exposition of the theory  w ithout a 
thorough discussion of these three procedures would be ra th e r incomplete. 
T he purpose of this note is to establish the relationships am ong the various 
m ethods, a question which has not been discussed up to now. T he connection 
is the sam e regardless of the type of problem s used so we shall use the oldest 
type of problem s in as m uch as it appears in the theory  of plates and in the 
new m axim um -m inim um  theory. For completeness we shall have to recapit­
ulate some of the older results in a som ewhat different form. For the con­
venience of ordering the eigenvalues in an increasing sequence we consider 
a com pact sym m etric negative definite operator A  on a H ilbert space H having 
the inner product (u ,v ) .  L et ^  • • • be the eigenvalues and u\ , uz , • • •
the corresponding orthonorm al set of eigenvectors for the equation

(1) A  u =  \u .

W e call (1) the base problem  and denote by  R (u) the Rayleigh quotient 
(Au , u)l(u , u). L et S be a subspace of H and let P denote the projection 
operator on S. T hen  the given problem  would be the variational problem  
corresponding to

L et SOT be the subspace of S spanned by the m independent vectors p i ,p z , -  • - , p m 
and let ? m be the corresponding projection operator. T he problem

is called the mth interm èdiate problem . A  — P m A  is a com pact sym m etric 
negative definite operator on the subspace defined by Pm u =  o. Obviously 
any  eigenvector of (2) corresponding to a non-zero eigenvalue satisfies Pm u =  o.

2. N on-persistent eigenvalues.—Let us first briefly discuss as in [1] 
the non-persistent eigenvalues. In  place of (2) we w rite the equation

(3) —■ \u  =  ai p \  +  a% pz +  • • • +  am p m

m in R  (u).
P̂  = 0

(2) A u ■— Pw A u =  \u  

Pm u =  o

( u  , A ) — 0 z’ — I , 2 , • • • ,  m

where we consider the coefficients as param eters to be adjusted  later. C learly 
not all a{ vanish. T he unique solution of (3) is given by

m
(4) «  =  Rj. Pi

where denotes the resolvent

(5)
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U sing equations (3), (4) and (5) we obtain

(6) X  ai X
i = 1 j= 1

X .  , u.) (Ò, , u. )
— * 1 - { p i , p òX.-J

=  o 1 , 2 , - -, w) .

Since not all a{ — o in this case, the determ inant in (6) m ust be zero. Using 
P arseval’s form ula and om itting the non-zero factor X we can write the deter­
m inant in the following com pact form

(7) W(X) =  det I S  SÉL’ y  j •
!y=i Ay ~ x )

Such a com pact form  for W  (X) is not available in other types of in term ediate 
problem s. T he m ultiplicity  of the non-persistent eigenvalue X is equal to the 
nullity  of the m atrix  in the W einstein determ inant (7).

3. The D istinguished Choice.—We now tu rn  to the determ ination of 
persistent eigenvalues. Let us first discuss the m ethod of the distinguished 
choice (or distinguished sequence) given by W einstein [3]. This is the oldest 
m ethod and it includes the special distinguished choice, or for short special 
choice, introduced later by  Bazley [4]. The essence of this method is to reduce 
the determination of a persistent eigenvalue to the problem of determining a 
non-persistent eigenvalue. L et X* be a persistent eigenvalue of m ultiplicity jx 
and let u1 , u2 , • • •, u  ̂ be an orthonorm al basis for the eigenspace U* of X*. 
Let p x =  p 1 , p 2 =  p *1 , • • •, p^ =  pv* be a distinguished choice of vectors in S 
nam ely such th a t

(8) det (p l , uk) f  = o . (i , k =  1 , 2 , • • •, [x) .

This condition m eans th a t there is no non-zero vector in which is orthogonal 
to U* . Such distinguished choices exist for every subspace provided the eigen­
vectors common to the given problem  and the base problem  are excluded. 
We sta^t by considering the following interm ediate problem  of order ?x

(9) A u —  \u  =  a±p l +  a2 p *1 +  • • • +  p * .

P ^  =  o.

It is easy to see th a t this problem  does not adm it the eigenvalue X*. In  fact, 
the Fredholm  conditions

M-
( 10) (A  , Uk) =  O (k =  I , 2 , . • •, (x)

yield by  (8), =  <22 =  • • • =  =  o, which would im ply u =  c1 id- -\-
c*i +  • • • +  ^  UP. However, since P^ u =  O, we again use (8) to get u =  o, 
which proves th a t X* is not persistent. Following [i]  we shall now use

( u )  A u —  ¥ v,K u  =  X*u

P^ u =  o
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as a new base problem  and introduce additional orthogonality conditions. 
Let us consider the interm ediate problem  of order p, +  s

(12) Au Au A* u =  p^+i +  ^+2 iV+2 +  * • • +  a^+s P^+s

P^L +  J ^  —  O .

This problem  (12) m ay again adm it A* as a persistent eigenvalue except in 
the case A* — Ai. To solve this problem  we proceed as in [3] or [5]. In  view 
of (8) we can change the basis of so th a t the additional independent vec­
tors p ^+1 , p ^+2 , • • •, p^+s are all orthogonal to the subspace U* . We use 
the same notation for the new basis, so th a t we have

C13) (Pv+i ,u k) =  o (i , =  i , 2 , ■ • •, S ; k =  1 , 2 , • • •, |x).

U sing (13) and F redholm ’s orthogonality  conditions we see th a t (P^ A u.,uk) =  o 
for k =  1 , 2 , • • •, p,. Since p 1 , p *, • • •, pv is a distinguished choice this m eans 
th a t P ^A ^  =  o, so instead of (12) we can write

( r4) A U \ ^ M  — P p + l .+  <2̂ + 2 P [i+ 2  +  • • • +  & n+ s P i l+ s  •

Since (13) holds, the general solution of (14) is

(15) u =  2  aii+t Rz* A 1+1 +  b iu 1 +  b2 u2 --------Y by, uP
i—1

where denotes the resolvent (5) w ith the term s corresponding to u1, ^ 2, • • •, up 
om itted. In  order to have a non-vanishing solution which is orthogonal to 
Sp+s we m ust satisfy the equations

(16) ip h , U )  =  O (k =  I , 2 , • • • , (A +  s).

Let us note th a t alx+1 , <%+2 ,• * •, a^+s cannot all be zero because then it would 
also follow by (8) and (16) th a t b\ =  b2 =  • • • =  b̂  =  o. In  view of (13) 
the equations (16) for k =  y1 +  i , p ,  +  2 , - - - , p ,  +  .s- only contain the u n k ­
nowns a^+i , a^+2 , • • •, a^+s. For A* to be a persistent eigenvalue of (12) there 
m ust be some non-zero a^,- and therefore the determ inant

(17) W* (X*) -  det { (R k  p „+ i , p^+k) } =  det j f ) '  I

(1 , k i > 2 , • • •, s)

m ust be zero. T he independent solutions for the { a t } are determ ined by the 
nullity  v of W* (A*). For each of the solutions, the orthogonality  condi­
tions (16) for k — 1 , 2 , • • •, p, are satisfied in view of (8) by a proper choice of 
b\ , b2 , • • - , b^. T he m ultiplicity  of A* in (12) is v. This has been proved by 
W einstein [3, p. 45]. W e give here a slightly modified proof. Denote by

( 18) vU) =  2  r 1 .  Pv.+1 +  2  ^  u' u =  i , 2 ,  • • •, v)
*=i *=1

the v solutions of (12) corresponding to the v independent solutions for
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Suppose there exist oc(1>, a (2), • • •, a(v) not all zero, such th a t ^  a 9‘) — o.
j=i

Since the vectors R p^+i are all orthogonal to  U *, (18) implies th a t both

( i 9)

and

E o c (y)D y U )
R X, Pv.+i =  O

±
(0,

Since the R ^ ^ +* are independent, it follows from (19) th a t 2  ^  af?+ i =  o
s=i

for i  — 1 ,2  , • • - , s which is a contradiction. I t is remarkable that W* (X*) 
w* form ally a Weinstein determinant. Its order is only s since p i , p2 , • • •, p^ 
do not appear. T he value [x can be very large for higher eigenvalues (e.g. 
for the m em brane problem ) so th a t our procedure could be of interest for the 
com putation of eigenvalues having large m ultiplicity.

4. The G enera l Choice.—W e now drop the assum ption th a t p ± , 
p2 , • • •, pp is a distinguished sequence belonging to X* and consider the in ter­
m ediate problem  of order m (2). If  X* is to be a persistent eigenvalue we 
m ust first satisfy the Fredholm  conditions

m
(20) X  ai (Pi > ul) =  o (k =  I , 2 , • • • , fx) .

i=l

If  (20) is satisfied, the solution is given by
m li

^  R^# Pi “f- •
*=1 i=l

The condition Pm u =  o gives us m equations and (20) gives fx equations so 
th a t we| have m +  [i equations for the m +  [x unknowns a\ , a<i , • • •, am , b\ , 
b2 , • • •, b^ . In  order to have non-trivial solutions, the following m  +  fx by 
m +  [x determ inant m ust be zero.

m ___ ^ __

(Rk Pì >Pì) ( p i . ui)

> pt) 0



520 Lincei -  Rend. Sc. fis. mat. e nat. -  Voi. XL -  aprile 1966

Let v denote the nu llity  of (21). T hen the m ultiplicity  of X* is v. W einstein 
proposed this w ay of determ ining the persistency of X* [3, p. 33] but did not 
give a proof for its m ultiplicity. Such a proof was given by  Bazley and Fox [6] 
and was used here in section 3 instead of the original proof of W einstein. As 
a m atter of fact, the proof of the result of Bazley and Fox can be easily recon­
structed  from the previous section. It is of interest to show the connection 
between this procedure and the m ethod of the distinguished choice. U sing 
a distinguished sequence p x =  p 1, ^  =  pv  in the case [l < m y
we see th a t the order m \l of (21) can be reduced to m —  [x. In  fact (21) 
becomes

I1  ___________ m —  [x [x^ - ■ ■ ----—---- — --------- -------

(R ( R L  p ‘ , Pk) (p % U k)

(Ri, P i, P*) (R?., Pi » Pt) O

(«*', p k) O O

Obviously this determ inant equals

(22) ' [det (/•',«*)]* W*(X*).

Since the first factor in (22) does not vanish we see, as in section 3, th a t the 
m ultiplicity  of X* is the nu llity  of W* (X*).

5. A ronszajn’s R ule .—T he two m ethods in the previous sections 
allow us to com pute one persistent eigenvalue at a tim e as the zeros of certain 
determ inants which have to be formed for each X* separately. A ronszajn [7], 
however, has given a rule which determ ines all persistent eigenvalues from 
the zeros and poles of the W einstein determ inant (7) as follows. L et fx (X*)
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and \Lm (X*) denote the m ultiplicities of X* in the base problem  and the mth 
interm ediate problem  respectively. T hen we have A ronszajn’s rule

(23) OO =  (^*) 4“ (X*)

where Q0m (X*) is the order of the m erom orphic function W(X) =  W 0w(X) 
at the point X =  X*. This rule which is of unsurpassed elegance has great 
theoretical value. However, unlike the two previous m ethods, it is difficult 
to apply  in num erical com putations, due to the fact th a t some elements of 
W  (X*). m ay be zero while others are infinite. A ronszajn’s rule is based on the 
decomposition

W(X) =  Wo*(X) =  Wo1(X)Wlw>(X)

where W # is the W einstein determ inant which connects the zth interm ediate 
problem  w ith the kth interm ediate problem  and where i  — o denotes the base 
problem . By iteration we also have

(24) W 0„(X) =  W 0,(X )W ^ (X ).

All of these decompositions are valid only if (p± , p k) =  but of course 
A ronszajn ’s rule is independent of the basis chosen. Let us also note th a t in 
W ^(X ) the eigenvalues and eigenfunctions of the fith interm ediate problem  
appear, whereas in W 0fX(X) only the eigenvalues and eigenfunctions of the 
base problem  appear. W e now derive the connection between A ronszajn ’s 
rule and our rule of section 3. A gain let p ± =  p 1, p % =  =  pv be
a distinguished choice w ith respect to X*. By preserving the basis elements 
p 1, p 2 , ■ • *, the determ inant W 0m, rem ains unchanged. W e can replace 
iV+i > iV+2 > * * * >Pm by  new vectors (retaining the same notation) which are ortho­
gonal to U* . T he effect of this will be to m ultip ly  W 0m and W ^  by the same 
positive factor. Since W 0fX is unchanged we still have form ula (24). W e again 
consider the mth interm ediate problem  (12) w ith m =  fx +  s. Proceeding as in 
section 3 we can again replace (12) by (14). This m eans th a t in the determ inant 
W pm, instead of using (9), we can use A u =  as the base problem . In  this 
w ay the m ultiplicity  o f X* is given by the nullity  of W* (X*). Now let us recon­
sider (24). In  view of the choice of p^+iyp^+2 ,• • • , p m-it is clear th a t W* = W (Jim . 
Since p 1, p 2 , pv> is a distinguished sequence, X* is not an eigenvalue of (9), 
and therefore by  A ronszajn ’s rule W 0[x(X) has a pole of order [i at X =  X* or 
^Ojx(>v*) =  —  fx. E quation  (24) m eans th a t O0̂ (X*) =  Qo^ (X*)'+  (X*) so th a t
if X* is to be a persistent eigenvalue of (12) the determ inant W ^(X ) . = W *  (X) 
m ust have a zero at X =  X*. Furtherm ore the order of the zero determines 
the m ultiplicity  of X*. This completes the connection between the m ethods.

For recent expositions of the theo ry  of interm ediate problem s see the books 
by  G. Ficheira [8] and S. H . Gould [9]. Let us also note th a t Bazley and 
Fox [6] (see also [9] ) have shown th a t some of the m ethods discussed in 
this paper apply  to certain unbounded Schròdinger-type operators, thus 
opening an im portan t new field for applications.
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