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Presiede il  Presidente B eniamino S egre

N O T E  D I  S O C I

Analisi matematica. — On the determination op persistent eigen
values. Nota (#) del Socio Straniero A le x a n d e r  W e in s te in  (**b

R iassunto. — Discussione dei rapporti fra i tre metodi per la determinazione degli 
auto valori persistenti nella teoria dei problemi intermedi.

I. INTRODUCTION.—This paper deals w ith the determ ination of persistent 
eigenvalues in the m ethod of interm ediate problems. This m ethod leading to 
lower bounds for eigenvalues was introduced by the author in 1935-37 [3] 
in the determ ination of the eigenvalues for clam ped plates. L ater other types 
of problem s, always following the same scheme, were considered by several 
authors. T he general scheme of interm ediate problem s is the following. F irst 
we have to introduce a solvable base problem  which gives rough lower bounds 
for the eigenvalues of a given problem . Secondly, we have to define interm ediate 
problems depending on a finite num ber of functions p i , pz ,. • ., p m which 
give im proved in term ediate eigenvalues. Thirdly, we have to devise m ethods 
for solving the interm ediate problem s theoretically and num erically in term s 
of the base problem . One of the characteristics of interm ediate problem s is 
th a t some of their eigenvalues m ay already appear as eigenvalues of the base 
problem  in which they  usually  have a larger index. These are called persistent 
eigenvalues. T here are at present three procedures fo r  the determination of per-

(*) Presentata nella seduta del 16 aprile 1966.
(**) This work supported in part by the Air Force Office of Scientific Research under 
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sistent eigenvalues each of which has its m erits from  either the theoretical or 
the com putational point of view. A ny exposition of the theory  w ithout a 
thorough discussion of these three procedures would be ra th e r incomplete. 
T he purpose of this note is to establish the relationships am ong the various 
m ethods, a question which has not been discussed up to now. T he connection 
is the sam e regardless of the type of problem s used so we shall use the oldest 
type of problem s in as m uch as it appears in the theory  of plates and in the 
new m axim um -m inim um  theory. For completeness we shall have to recapit
ulate some of the older results in a som ewhat different form. For the con
venience of ordering the eigenvalues in an increasing sequence we consider 
a com pact sym m etric negative definite operator A  on a H ilbert space H having 
the inner product (u ,v ) .  L et ^  • • • be the eigenvalues and u\ , uz , • • •
the corresponding orthonorm al set of eigenvectors for the equation

(1) A  u =  \u .

W e call (1) the base problem  and denote by  R (u) the Rayleigh quotient 
(Au , u)l(u , u). L et S be a subspace of H and let P denote the projection 
operator on S. T hen  the given problem  would be the variational problem  
corresponding to

L et SOT be the subspace of S spanned by the m independent vectors p i ,p z , -  • - , p m 
and let ? m be the corresponding projection operator. T he problem

is called the mth interm èdiate problem . A  — P m A  is a com pact sym m etric 
negative definite operator on the subspace defined by Pm u =  o. Obviously 
any  eigenvector of (2) corresponding to a non-zero eigenvalue satisfies Pm u =  o.

2. N on-persistent eigenvalues.—Let us first briefly discuss as in [1] 
the non-persistent eigenvalues. In  place of (2) we w rite the equation

(3) —■ \u  =  ai p \  +  a% pz +  • • • +  am p m

m in R  (u).
P̂  = 0

(2) A u ■— Pw A u =  \u  

Pm u =  o

( u  , A ) — 0 z’ — I , 2 , • • • ,  m

where we consider the coefficients as param eters to be adjusted  later. C learly 
not all a{ vanish. T he unique solution of (3) is given by

m
(4) «  =  Rj. Pi

where denotes the resolvent

(5)
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U sing equations (3), (4) and (5) we obtain

(6) X  ai X
i = 1 j= 1

X .  , u.) (Ò, , u. )
— * 1 - { p i , p òX.-J

=  o 1 , 2 , - -, w) .

Since not all a{ — o in this case, the determ inant in (6) m ust be zero. Using 
P arseval’s form ula and om itting the non-zero factor X we can write the deter
m inant in the following com pact form

(7) W(X) =  det I S  SÉL’ y  j •
!y=i Ay ~ x )

Such a com pact form  for W  (X) is not available in other types of in term ediate 
problem s. T he m ultiplicity  of the non-persistent eigenvalue X is equal to the 
nullity  of the m atrix  in the W einstein determ inant (7).

3. The D istinguished Choice.—We now tu rn  to the determ ination of 
persistent eigenvalues. Let us first discuss the m ethod of the distinguished 
choice (or distinguished sequence) given by W einstein [3]. This is the oldest 
m ethod and it includes the special distinguished choice, or for short special 
choice, introduced later by  Bazley [4]. The essence of this method is to reduce 
the determination of a persistent eigenvalue to the problem of determining a 
non-persistent eigenvalue. L et X* be a persistent eigenvalue of m ultiplicity jx 
and let u1 , u2 , • • •, u  ̂ be an orthonorm al basis for the eigenspace U* of X*. 
Let p x =  p 1 , p 2 =  p *1 , • • •, p^ =  pv* be a distinguished choice of vectors in S 
nam ely such th a t

(8) det (p l , uk) f  = o . (i , k =  1 , 2 , • • •, [x) .

This condition m eans th a t there is no non-zero vector in which is orthogonal 
to U* . Such distinguished choices exist for every subspace provided the eigen
vectors common to the given problem  and the base problem  are excluded. 
We sta^t by considering the following interm ediate problem  of order ?x

(9) A u —  \u  =  a±p l +  a2 p *1 +  • • • +  p * .

P ^  =  o.

It is easy to see th a t this problem  does not adm it the eigenvalue X*. In  fact, 
the Fredholm  conditions

M-
( 10) (A  , Uk) =  O (k =  I , 2 , . • •, (x)

yield by  (8), =  <22 =  • • • =  =  o, which would im ply u =  c1 id- -\-
c*i +  • • • +  ^  UP. However, since P^ u =  O, we again use (8) to get u =  o, 
which proves th a t X* is not persistent. Following [i]  we shall now use

( u )  A u —  ¥ v,K u  =  X*u

P^ u =  o
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as a new base problem  and introduce additional orthogonality conditions. 
Let us consider the interm ediate problem  of order p, +  s

(12) Au Au A* u =  p^+i +  ^+2 iV+2 +  * • • +  a^+s P^+s

P^L +  J ^  —  O .

This problem  (12) m ay again adm it A* as a persistent eigenvalue except in 
the case A* — Ai. To solve this problem  we proceed as in [3] or [5]. In  view 
of (8) we can change the basis of so th a t the additional independent vec
tors p ^+1 , p ^+2 , • • •, p^+s are all orthogonal to the subspace U* . We use 
the same notation for the new basis, so th a t we have

C13) (Pv+i ,u k) =  o (i , =  i , 2 , ■ • •, S ; k =  1 , 2 , • • •, |x).

U sing (13) and F redholm ’s orthogonality  conditions we see th a t (P^ A u.,uk) =  o 
for k =  1 , 2 , • • •, p,. Since p 1 , p *, • • •, pv is a distinguished choice this m eans 
th a t P ^A ^  =  o, so instead of (12) we can write

( r4) A U \ ^ M  — P p + l .+  <2̂ + 2 P [i+ 2  +  • • • +  & n+ s P i l+ s  •

Since (13) holds, the general solution of (14) is

(15) u =  2  aii+t Rz* A 1+1 +  b iu 1 +  b2 u2 --------Y by, uP
i—1

where denotes the resolvent (5) w ith the term s corresponding to u1, ^ 2, • • •, up 
om itted. In  order to have a non-vanishing solution which is orthogonal to 
Sp+s we m ust satisfy the equations

(16) ip h , U )  =  O (k =  I , 2 , • • • , (A +  s).

Let us note th a t alx+1 , <%+2 ,• * •, a^+s cannot all be zero because then it would 
also follow by (8) and (16) th a t b\ =  b2 =  • • • =  b̂  =  o. In  view of (13) 
the equations (16) for k =  y1 +  i , p ,  +  2 , - - - , p ,  +  .s- only contain the u n k 
nowns a^+i , a^+2 , • • •, a^+s. For A* to be a persistent eigenvalue of (12) there 
m ust be some non-zero a^,- and therefore the determ inant

(17) W* (X*) -  det { (R k  p „+ i , p^+k) } =  det j f ) '  I

(1 , k i > 2 , • • •, s)

m ust be zero. T he independent solutions for the { a t } are determ ined by the 
nullity  v of W* (A*). For each of the solutions, the orthogonality  condi
tions (16) for k — 1 , 2 , • • •, p, are satisfied in view of (8) by a proper choice of 
b\ , b2 , • • - , b^. T he m ultiplicity  of A* in (12) is v. This has been proved by 
W einstein [3, p. 45]. W e give here a slightly modified proof. Denote by

( 18) vU) =  2  r 1 .  Pv.+1 +  2  ^  u' u =  i , 2 ,  • • •, v)
*=i *=1

the v solutions of (12) corresponding to the v independent solutions for
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Suppose there exist oc(1>, a (2), • • •, a(v) not all zero, such th a t ^  a 9‘) — o.
j=i

Since the vectors R p^+i are all orthogonal to  U *, (18) implies th a t both

( i 9)

and

E o c (y)D y U )
R X, Pv.+i =  O

±
(0,

Since the R ^ ^ +* are independent, it follows from (19) th a t 2  ^  af?+ i =  o
s=i

for i  — 1 ,2  , • • - , s which is a contradiction. I t is remarkable that W* (X*) 
w* form ally a Weinstein determinant. Its order is only s since p i , p2 , • • •, p^ 
do not appear. T he value [x can be very large for higher eigenvalues (e.g. 
for the m em brane problem ) so th a t our procedure could be of interest for the 
com putation of eigenvalues having large m ultiplicity.

4. The G enera l Choice.—W e now drop the assum ption th a t p ± , 
p2 , • • •, pp is a distinguished sequence belonging to X* and consider the in ter
m ediate problem  of order m (2). If  X* is to be a persistent eigenvalue we 
m ust first satisfy the Fredholm  conditions

m
(20) X  ai (Pi > ul) =  o (k =  I , 2 , • • • , fx) .

i=l

If  (20) is satisfied, the solution is given by
m li

^  R^# Pi “f- •
*=1 i=l

The condition Pm u =  o gives us m equations and (20) gives fx equations so 
th a t we| have m +  [i equations for the m +  [x unknowns a\ , a<i , • • •, am , b\ , 
b2 , • • •, b^ . In  order to have non-trivial solutions, the following m  +  fx by 
m +  [x determ inant m ust be zero.

m ___ ^ __

(Rk Pì >Pì) ( p i . ui)

> pt) 0
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Let v denote the nu llity  of (21). T hen the m ultiplicity  of X* is v. W einstein 
proposed this w ay of determ ining the persistency of X* [3, p. 33] but did not 
give a proof for its m ultiplicity. Such a proof was given by  Bazley and Fox [6] 
and was used here in section 3 instead of the original proof of W einstein. As 
a m atter of fact, the proof of the result of Bazley and Fox can be easily recon
structed  from the previous section. It is of interest to show the connection 
between this procedure and the m ethod of the distinguished choice. U sing 
a distinguished sequence p x =  p 1, ^  =  pv  in the case [l < m y
we see th a t the order m \l of (21) can be reduced to m —  [x. In  fact (21) 
becomes

I1  ___________ m —  [x [x^ - ■ ■ ----—---- — --------- -------

(R ( R L  p ‘ , Pk) (p % U k)

(Ri, P i, P*) (R?., Pi » Pt) O

(«*', p k) O O

Obviously this determ inant equals

(22) ' [det (/•',«*)]* W*(X*).

Since the first factor in (22) does not vanish we see, as in section 3, th a t the 
m ultiplicity  of X* is the nu llity  of W* (X*).

5. A ronszajn’s R ule .—T he two m ethods in the previous sections 
allow us to com pute one persistent eigenvalue at a tim e as the zeros of certain 
determ inants which have to be formed for each X* separately. A ronszajn [7], 
however, has given a rule which determ ines all persistent eigenvalues from 
the zeros and poles of the W einstein determ inant (7) as follows. L et fx (X*)
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and \Lm (X*) denote the m ultiplicities of X* in the base problem  and the mth 
interm ediate problem  respectively. T hen we have A ronszajn’s rule

(23) OO =  (^*) 4“ (X*)

where Q0m (X*) is the order of the m erom orphic function W(X) =  W 0w(X) 
at the point X =  X*. This rule which is of unsurpassed elegance has great 
theoretical value. However, unlike the two previous m ethods, it is difficult 
to apply  in num erical com putations, due to the fact th a t some elements of 
W  (X*). m ay be zero while others are infinite. A ronszajn’s rule is based on the 
decomposition

W(X) =  Wo*(X) =  Wo1(X)Wlw>(X)

where W # is the W einstein determ inant which connects the zth interm ediate 
problem  w ith the kth interm ediate problem  and where i  — o denotes the base 
problem . By iteration we also have

(24) W 0„(X) =  W 0,(X )W ^ (X ).

All of these decompositions are valid only if (p± , p k) =  but of course 
A ronszajn ’s rule is independent of the basis chosen. Let us also note th a t in 
W ^(X ) the eigenvalues and eigenfunctions of the fith interm ediate problem  
appear, whereas in W 0fX(X) only the eigenvalues and eigenfunctions of the 
base problem  appear. W e now derive the connection between A ronszajn ’s 
rule and our rule of section 3. A gain let p ± =  p 1, p % =  =  pv be
a distinguished choice w ith respect to X*. By preserving the basis elements 
p 1, p 2 , ■ • *, the determ inant W 0m, rem ains unchanged. W e can replace 
iV+i > iV+2 > * * * >Pm by  new vectors (retaining the same notation) which are ortho
gonal to U* . T he effect of this will be to m ultip ly  W 0m and W ^  by the same 
positive factor. Since W 0fX is unchanged we still have form ula (24). W e again 
consider the mth interm ediate problem  (12) w ith m =  fx +  s. Proceeding as in 
section 3 we can again replace (12) by (14). This m eans th a t in the determ inant 
W pm, instead of using (9), we can use A u =  as the base problem . In  this 
w ay the m ultiplicity  o f X* is given by the nullity  of W* (X*). Now let us recon
sider (24). In  view of the choice of p^+iyp^+2 ,• • • , p m-it is clear th a t W* = W (Jim . 
Since p 1, p 2 , pv> is a distinguished sequence, X* is not an eigenvalue of (9), 
and therefore by  A ronszajn ’s rule W 0[x(X) has a pole of order [i at X =  X* or 
^Ojx(>v*) =  —  fx. E quation  (24) m eans th a t O0̂ (X*) =  Qo^ (X*)'+  (X*) so th a t
if X* is to be a persistent eigenvalue of (12) the determ inant W ^(X ) . = W *  (X) 
m ust have a zero at X =  X*. Furtherm ore the order of the zero determines 
the m ultiplicity  of X*. This completes the connection between the m ethods.

For recent expositions of the theo ry  of interm ediate problem s see the books 
by  G. Ficheira [8] and S. H . Gould [9]. Let us also note th a t Bazley and 
Fox [6] (see also [9] ) have shown th a t some of the m ethods discussed in 
this paper apply  to certain unbounded Schròdinger-type operators, thus 
opening an im portan t new field for applications.
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