ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

MARCELLO CARAPEZZA

Influenza della fugacità dell'ossigeno sulla temperatura di fusione delle lave. - Nota I. La lava etnea del 1928

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **40** (1966), n.3, p. 470–478. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_3_470_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Petrologia. — Influenza della fugacità dell'ossigeno sulla temperatura di fusione delle lave. – Nota I. La lava etnea del 1928^(*). Nota di MARCELLO CARAPEZZA^(**), presentata^(***) dal Corrisp. P. GALLITELLI.

SUMMARY. — Melting temperatures were experimentally determined for the lava of Màscali (Etna), erupted in 1928. The lava is an "olivin andesine basalt". The melting point was established with the quenching method after the runs were equilibrated in current of air, of CO_2 and of different constant ratios of H_2 and CO_2 : this in order to define the influence of the oxygen partial pressures on the melting temperatures of the lava.

The experimental data demostrate that those values are very close to a linear relationship $-\log p_{O_2} = A/T - B$ where A = 21,80 and B = 141,5226. The first appearance of crystals shows a metallic phase in the runs carried out in air and in CO₂ and a silicate phase in the runs carried out in more reducing atmospheres.

INTRODUZIONE.

La conoscenza delle temperature di fusione sia parziale che totale delle lave, per le strette connessioni termodinamiche legate all'andamento della cristallizzazione, può considerarsi uno dei principali campi d'indagine della petrologia e della minerogenesi negli ultimi cinquant'anni.

Le prime ricerche sistematiche si debbono forse a Sosman e Merwin (1913); le più recenti sono quelle pubblicate nell'imponente lavoro di Yoder e Tilley (1962) ed in Fudali (1965).

Occorre tuttavia dire che solo raramente le esperienze eseguite su materiali naturali hanno tenuto il passo con l'enorme progresso che si aveva contemporaneamente nello studio di sistemi artificiali e che sono state magnificamente condensate e interpretate in Osborn (1959), in Osborn e Roeder (1960) e in Osborn (1962 $a \in b$). Questa osservazione vale sopratutto per quel che riguarda l'impiego di particolari tecniche sperimentali, quali quelle che consentono il controllo della pressione parziale d'ossigeno, che hanno consentito un ben più deciso avvicinamento alle condizioni che si hanno in natura.

Nella maggior parte dei lavori finora pubblicati, la temperatura di fusione delle lave è stata determinata o in aria, o sotto vuoto, o in tubi chiusi, o ancora, seguendo la tecnica di Bowen e Schairer (1932) in crogioli di ferro e in corrente di azoto. Queste tecniche, pur avendo portato dei contributi di altissimo interesse, non sono in grado di riprodurre le condizioni che esistono in natura durante la cristallizzazione di un magma.

Le esperienze eseguite in aria, e cioè con una pressione parziale d'ossigeno equivalente a 10-0.68 atm., avvengono in condizioni molto più ossidanti di quelle naturali. Le esperienze eseguite in crogioli di ferro avvengono viceversa in condizioni in cui è difficile valutare la pressione parziale d'ossigeno, ma che sono indubbiamente molto più riducenti di quelle naturali. Infine quelle eseguite in tubo chiuso possono portare a diversi rapporti di distribuzione di alcuni elementi nei minerali che costituiscono la roccia, essendo le condizioni nettamente isoplettiche.

(*) Istituto di Mineralogia e Petrografia della Università di Bologna.

(**) Lavoro eseguito secondo i programmi di ricerca e con il contributo finanziario del Gruppo di ricerca per lo studio dell'Etna, sezione di Bologna.

(***) Nella seduta dell'8 gennaio 1966.

Indubbiamente la storia della cristallizzazione di un magma è argomento assai complesso. Si consideri ad esempio il caso di una lava. Le temperature del liquido sono impossibili da misurare direttamente, le temperature di estrusione sono comprese in un punto intermedio fra quella del liquido e quella del solido, ma la posizione di questo punto dipende da tanti fattori, di cui solo alcuni sono connessi all'andamento della cristallizzazione.

Anche la variazione della composizione totale è un'incognita. Si consideri infatti che l'ossigeno costituisce poco meno del 50 % nella composizione chimica delle rocce eruttive: ebbene proprio la fugacità dell'ossigeno, nel corso della cristallizzazione, è una delle grandezze più difficili da precisare, dipendendo fra l'altro dalla temperatura, dalla pressione e dalle fugacità degli altri gas presenti; tre grandezze tutte incognite cui è stato possibile avvicinarsi con discreta approssimazione, sopratutto in virtù delle indagini fatte su sistemi artificiali.

Dal punto di vista del comportamento di un magma rispetto alla fugacità d'ossigeno, possiamo comunque distinguere tre momenti fondamentali: quello in cui il magma si trova nel serbatoio magmatico, quello in cui si trova ad occupare parzialmente un condotto vulcanico e infine quello che si ha al momento dell'estrusione.

Nel secondo di questi momenti la fugacità di ossigeno potrà essere fortemente influenzata dalle rocce che occupano il condotto stesso e che si trovano improvvisamente in equilibrio instabile a contatto col magma; se le rocce sono di tipo carbonatico si potrà avere un improvviso innalzamento dei valori di f_{O_s} (in misura molto minore lo stesso effetto potrebbe anche essere dato dalla presenza di quantità d'acqua relativamente elevate).

Al momento dell'estrusione la lava, parzialmente fusa, si trova immediatamente in un ambiente a temperatura bassa e ad una f_{O_a} molto più elevata. Tuttavia l'effetto di questo innalzamento si farà sentire in misura inversamente proporzionale alla viscosità della lava stessa, per motivi su cui non si ritiene opportuno dilungarsi in questa Nota. Basti intanto precisare che l'aumento della f_{O_a} avrà un effetto che è, anche questo, molto variabile da caso a caso.

Quanto sopra è stato precisato per sottolineare la difficoltà di ricostruire in laboratorio tutti i momenti della cristallizzazione di un magma, difficoltà che può essere superata solo se si è in grado di avere delle correlazioni fra le più importanti variabili chimiche e chimico-fisiche del magma stesso.

In un programma di ricerche che riguarda lo studio del vulcano etneo mi sono proposto di effettuare delle indagini su alcune lave di particolare interesse, studiando l'influenza della fugacità d'ossigeno sull'andamento della cristallizzazione. In questa prima Nota viene mostrata l'influenza sulla temperatura di fusione totale (curva del liquido).

METODI SPERIMENTALI.

a) Variazione della p_{O_s} durante l'esperienza.

La scelta del metodo sperimentale era di particolare importanza per motivi che si ritiene opportuno discutere brevemente. Allorché si compie un'esperienza in atmosfera controllata è possibile sia ottenere la stessa pressione parziale di ossigeno per tutte le temperature in cui si compie l'esperienza, sia far variare la p_{O_2} in conformità a dei valori desiderati. La scelta fra queste due possibilità implica in un certo senso una convinzione su quello che è il comportamento di un magma naturale. E cioè se il raffreddamento di un magma avviene (nelle condizioni più generali e prima dell'estrusione) ad una p_{O_2} costante o variabile.

Il metodo che ha informato le indagini che qui si riferiscono è basato su un controllo dell'atmosfera ottenuto *da un rapporto costante di* $H_2 e CO_2$ alle varie temperature. Operando in queste condizioni le reazioni chimiche fra i due gas sono date dalle reazioni

$$CO_2 + H_2 = CO + H_2O$$
 e $2CO_2 = 2CO + O_2$

La p_{O_s} che si ottiene viene calcolata in base alle costanti dipendenti dalla temperatura

$$K_{1} = \frac{(\not p_{CO_{2}})(\not p_{H_{2}})}{(\not p_{CO})(\not p_{H_{2}O})} \quad e \quad K_{2} = \frac{(\not p_{CO_{2}})^{2}}{(\not p_{CO})^{2}(\not p_{O_{2}})}.$$

I valori di K₁ e K₂ sono stati calcolati da Coughlin (1954) per varie temperature. Da esse si risale alla p_{O_n} in base alla formula:

$$p_{O_2} = K_2^2/4 \left[(r-1) \pm \sqrt{(r-1)^2 + 4r/K_1} \right]^2$$

in cui «r » esprime il rapporto in cui sono mescolati inizialmente i flussi di CO2 e H2.

Nella fig. 1 sono segnate quattro curve riferentisi ognuna ad un rapporto diverso di CO_2 e H_2 . Nello stesso grafico sono state segnate due curve di particolare importanza nella cristallizzazione del magma (Osborn 1963). Esse si riferiscono agli equilibri

$$3 \operatorname{Fe_2SiO_4} \xrightarrow{\longrightarrow} 2 \operatorname{Fe_3O_4} + 3 \operatorname{SiO_2} - \operatorname{O_2}$$

$$6 \operatorname{Fe_2O_3} \xrightarrow{\longrightarrow} 4 \operatorname{Fe_3O_4} + \operatorname{O_2}$$

alle varie temperature e sono state segnate in base ai dati riportati da Eugster e Wones (1962) e calcolati da misure eseguite per la prima reazione da Muan (1955) e da Schenck et al. (1932), e per la seconda reazione da Norton (1955).

Come si vede dal grafico l'andamento di queste due curve è molto simile a quello delle curve segnate a tratto intero. È proprio questa considerazione che ha suggerito di adottare, per le esperienze descritte in questa Nota (e per le altre successive condotte fino alla curva del solido), un rapporto costante di H₂ e CO₂ per ogni ciclo di esperienze.

b) Crogioli.

Nelle esperienze che si conducono ad alte temperature, il problema dei crogioli è di grandissima importanza per le reazioni che possono avvenire fra contenente e contenuto. Per quel che riguarda le lave, il problema sarebbe affrontato nel modo migliore adottando dei crogioli in lega Ag-Pd; alcune interessanti ricerche di Muan (1962) hanno portato infatti a stabilire che la perdita di Fe in quella lega è praticamente insignificante. Non disponendo di tali crogioli ho dovuto ricorrere ad una tecnica che ritengo opportuno descrivere.

I crogioli da me adoperati erano di platino. Pertanto la lava da me usata avrebbe perduto parte del ferro che sarebbe passato in lega nel platino. Tuttavia la quantità di ferro perduta è funzione della temperatura e della p_{O_a} . Poiché ognuna delle esperienze da me fatta era preordinata per un valore fisso di quelle due variabili, ho compiuto le esperienze in due tempi. Il crogiolo è stato pertanto riempito di lava polverizzata e portato per alcune ore nelle condizioni di T e p_{O_a} desiderate. È stato quindi vuotato e riempito con nuova polvere. Quattro determinazioni di FeO ed Fe₂O₃ compiute sul materiale così ottenuto hanno dimostrato che la perdita in Fe è con questo sistema inferiore allo 0,07 %. Lo stesso crogiolo può essere usato in queste condizioni anche per una serie di esperienze se in esse le variazioni di T e p_{O_a} non sono molto elevate.

c) Tecnica usata nelle esperienze.

La lava adoperata è stata polverizzata in uno « Spex Mixer » con camera in carburo di tungsteno per circa 20 minuti. Quantità variabili da 60 a 80 mg sono state quindi inserite nel crogiolo di platino. Quest'ultimo è stato sospeso in un forno a resistenza di Pt·Rh 40 % a mezzo di un sottilissimo filo di Pt collegato a due fili di Pt.Rh 40 %, inseriti in una guaina di allumina e fuoriuscenti dalla parte superiore del forno. Al momento desiderato il filo di Pt veniva istantaneamente fuso a mezzo di una corrente elettrica lanciata dall'esterno e veniva effettuato il quenching. Il forno veniva mantenuto alla temperatura desiderata a mezzo di un pirometro registratore Speedomax G. della Leeds e Northrup. La temperatura veniva controllata prima e dopo l'esperienza con una termocoppia Pt·Rh 10 % calibrata sui seguenti punti fissi: punto di fusione di Au = 1062,6° C; prima apparizione di vetro in una polvere di diopside artificiale = 1391,5° C; prima apparizione di vetro in una polvere di pseudowollastonite artificiale = 1544° C.

La forza elettromotrice della termocoppia veniva misurata da un potenziometro Leeds e Northrup collegato ad un galvanometro a specchio e scala della stessa casa.

Il controllo della temperatura nel forno era valutato a \pm 3° C.

Il controllo dell'atmosfera veniva effettuato con un dispositivo essenzialmente simile a quello descritto da Darken e Gurry (1945). Sia H₂ che CO₂ erano gas purissimi prodotti dalla S.I.O.; il titolo dell'idrogeno era 99,99% con H₂O < 10 v.p.m. e O₂ < 5 v.p.m.; quello della CO₂ era 99,95% con H₂O < 200 v.p.m. I gas venivano fatti passare da un essicatore (Acquasorb) prima di essere immessi ai circuiti di dosaggio eliminando del tutto le piccole quantità di H₂O in esso contenute. Il flusso di gas che attraversava il forno veniva costantemente mantenuto alla velocità di 0,9 cm/sec.

DISCUSSIONE DEI RISULTATI.

Il campione che è stato scelto per questa prima serie di esperienze proviene dalla lava che fu eruttata dall'Etna nel novembre del 1928. Tale lava viene localmente chiamata «lava di Màscali », essendo tristemente famosa per avere completamente distrutto e sepolto l'abitato di questa fiorente cittadina.

La lava del 1928 è stata estrusa in tre tempi diversi, l'ultimo dei quali ha presentato anche un raro meccanismo d'eruzione da me precedentemente descritto in un lavoro (Carapezza 1960) al quale si rimanda il lettore per tutte le informazioni di carattere vulcanologico e bibliografico. Il fatto di poter disporre di lave eruttate dallo stesso magma e da tre diversi punti del condotto magmatico mi è sembrato potesse offrire dei preziosi dati di raffronto: da questo è stato suggerito il motivo della scelta.

Il campione è stato da me raccolto a circa 700 metri di direzione nordest dall'abitato di Màscali (tavoletta III nord-est del F^o 262 della Carta d'Italia). Le coordinate chilometriche del punto di raccolta sono 155797.

Esso è stato prelevato in un punto in cui uno sbancamento recente mostrava la sezione di una notevole porzione del fronte della colata; pur avendo prelevato dei campioni sia delle zone a tessitura bollosa (porzione superiore e inferiore della colata) che di quella a tessitura relativamente compatta (porzione centrale), solo quello proveniente da quest'ultima è stato usato per le esperienze.

Al microscopio la lava presenta una caratteristica struttura porfirica intergranulare; nessun accenno di tessitura fluidale (come tanto spesso si riscontra nelle lave dell'Etna), sia nei fenocristalli che nella pasta di fondo.

I fenocristalli sono costituiti da plagioclasi sempre fortemente zonati, da pirosseni e, in minore quantità, da olivine e magnetite. La pasta di fondo è costituita dagli stessi minerali che compaiono fra i fenocristalli (con minore

32. - RENDICONTI 1966, Vol. XL, fasc. 3.

quantità di olivina e notevolmente maggiore di magnetite) e pochi, piccoli cristalli di apatite. Difficile precisare le relazioni che intercorrono fra le singole fasi mineralogiche. La magnetite è contenuta sia nei plagioclasi e nei pirosseni che nelle olivine; i plagioclasi contengono piccoli inclusi di pirosseni, mentre i pirosseni contengono piccoli inclusi di plagioclasi.

I plagioclasi presenti fra i fenocristalli sono sempre geminati e fittamente zonati. Contrariamente ad altre lave dell'Etna, le sole leggi di geminazione riscontrate sono quelle « albite » e « albite-Carlsbad ». Determinazioni del massimo angolo di estinzione simmetrica in zona $\underline{1}$ (010) hanno dato valori che variano da 33° a 38° per le varie zone di uno stesso cristallo, corrispondenti ad un contenuto in anortite variabile dal 48% al 58% (Tröger 1956). Parallelamente misure di 2 V_z danno valori compresi fra 80° e 86°.

Nelle olivine, misure su diversi cristalli hanno invariabilmente mostrato $2 V_x = 84^{\circ}$ (Fo = 75%). Infine nei pirosseni ho misurato $2 V_z = 58^{\circ}-61^{\circ}$ e $\widehat{cz} = 49^{\circ}$, valori piuttosto comuni per delle caratteristiche augiti.

Purtroppo le dimensioni dei cristalli nella pasta di fondo sono tali da rendere molto ardue le determinazioni al tavolino universale: l'unica che ritengo attendibile riguarda un plagioclasio in cui il massimo angolo di estinzione simmetrica in zona \perp (010) risulta 23° (An = 35%).

L'analisi chimica ha dato i seguenti risultati:

SiO_2		•				•			•			47,80
TiO_2				•								1,61
Al_2O_3	•	•		•				•	•		•	I7,49
$\mathrm{Fe_2O_3}$	۰.	•	•				•	•		•		4,39
FeO .	•	•	•					•			•	6,14
MnO	•	•	•			•	•	۲.	۰.	•		0,10
MgO		•	•			۰.			· •	•	•	6,18
CaO .	•	•	•		•	۰.	•	•			•	10,78
SrO .	•		• '	• '	•			•		•	•	0,13
BaO .			•	•			•	•				0,04
Na_2O				•	•	•		•				3,46
K_2O .	÷			•	•					•	•	0,74
P_2O_5				•			•	•	•			0,92
H_2O^+							•		•	•		0,09
H_2O^-	·	•	•	•	٠	•	•	•	•	•	•	0,08
												99,95

essa porta a definire la roccia come un «basalto andesinico olivinico». Il campione polverizzato e inserito nei contenitori descritti nel capitolo precedente è stato trattato termicamente per un periodo di tempo variabile da un'esperienza all'altra, ma in ogni caso non inferiore complessivamente alle 48 ore. Ciò perché, come è stato osservato anche da Fudali (1965) il tempo necessario per raggiungere l'equilibrio è di particolare importanza in queste esperienze.

Si è inoltre ritenuto opportuno effettuare una serie di cicli termici in corrente di aria (p_{O_a} costante = 0,21 atm.) ed in corrente di pura anidride carbonica. I dati relativi alle esperienze effettuate sono tabulati nella Tabella I e rappresentati nella fig. 1.

Le curve *continue* mostrano le variazioni della p_{O_2} rispetto alla temperatura nei cicli termici eseguiti in aria, in CO₂ ed in miscele a rapporto costante di CO₂ ed H₂ (sotto ogni curva è di volta in volta indicato il logaritmo del rapporto). Le due curve *a tratti* indicano le variazioni di p_{O_2} che si hanno per le varie temperature negli equilibri segnati al di sopra delle curve stesse. Infine la curva *punteggiata* rappresenta la «curva del liquido» della lava etnea di Màscali.

In questa la curva punteggiata è ottenuta per interpolazione fra i punti in cui risulta dal quenching la prima comparsa di cristalli dal liquido e i punti in cui si ottiene solo vetro. Tale curva costituisce pertanto la *curva del liquido* della lava in esame ed è, con buona approssimazione, rappresentabile mediante la funzione lineare della pressione parziale d'ossigeno, data dalla seguente espressione:

$$-\log p_{O_2} = \frac{A}{T} - B$$

dove T è la temperatura espressa in Kelvin e dove A = 21,80 e B = 141,5226.

1° C		$-\log p_{0_2}$	Fasi presenti
· · ·	I		
Quenching a	in corrente	d'aria	
1225	. 1	0.68	
1303		0,00	vetro
1302		0,00	vetro
1201		0,08	vetro
1201		0,00	
1249		0,08	vetro + fase metallica
1233		0,08	vetro + fase metallica
1203		0,08	vetro + tase metallica + silic
Quenching a	in corrente	$di \mathrm{CO}_2$	
1225	1	2 20	vietro
1220	1	2 27	vetro
1320		3,3/	vetro
1270		3,50	vetro
1231		3,00	vetro
1222		3,/0	vetro + lase metallica
1199		3,05	vetro + fase metallica
Quenching a	in corrente	di CO ₂ e H ₂ (log ($CO_2/H_2 = 1,584)$
1230		6,35	vetro
1209		6,62	vetro
1201		6,73	vetro
1188		6,85	vetro + silicati
Quenching	in corrente	di CO2 e H2 (log C	$CO_2/H_2 = 1.709$
Quenching 1	in corrente	$di \operatorname{CO}_2 e \operatorname{H}_2$ (log C	$\mathrm{CO}_2/\mathrm{H}_2 = \mathrm{I}_{,709}$
Quenching 1 1263	in corrente	<i>di</i> CO ₂ <i>e</i> H ₂ (log C 6,37 6 81	$O_2/H_2 = 1,709$) vetro
Quenching 1 1263 1230	in corrente	<i>di</i> CO ₂ <i>e</i> H ₂ (log C 6,37 6,81 7,22	$O_2/H_2 = 1,709)$ vetro vetro
Quenching 1 1263 1230 1201	in corrente	$di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{6,37}_{6,81}, 7,22$	$O_2/H_2 = 1,709)$ vetro vetro vetro vetro
Quenching 1263 1230 1201 1190	in corrente	<i>di</i> CO ₂ <i>e</i> H ₂ (log C 6,37 6,81 7,22 7,38 7 67	$CO_2/H_2 = 1,709)$ vetro vetro vetro + silicati vetro + silicati
Quenching 1 1263 1230 1201 1190 1170	in corrente	<i>di</i> CO ₂ <i>e</i> H ₂ (log C 6,37 6,81 7,22 7,38 7,67	$CO_2/H_2 = 1,709)$ vetro vetro vetro + silicati vetro + silicati
Quenching 1263 1230 1201 1190 1170 Quenching	in corrente	<i>di</i> CO ₂ <i>e</i> H ₂ (log C 6,37 6,81 7,22 7,38 7,67 <i>di</i> CO ₂ <i>e</i> H ₂ (log C	$CO_2/H_2 = 1,709)$ vetro vetro vetro vetro + silicati vetro + silicati $CO_2/H_2 = 1,901)$
Quenching 2 1263 1230 1201 1190 1170 Quenching 2 1211	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45	$CO_2/H_2 = 1,709)$ vetro vetro vetro vetro + silicati vetro + silicati $CO_2/H_2 = 1,901)$ vetro
Quenching 1 1263 1230 1201 1190 1170 Quenching 1 1211 1106	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68	$\begin{array}{c} \text{CO}_2/\text{H}_2 = 1,709) \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \\ & \text{vetro} + \text{silicati} \\ \\ \text{CO}_2/\text{H}_2 = 1,901) \\ & \text{vetro} \\ & \text{vetro} \end{array}$
Quenching 4 1263 1230 1201 1190 1170 Quenching 4 1211 1196 1186	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80	$\begin{array}{c} CO_2/H_2 = 1,709) \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \\ & \text{vetro} + \text{silicati} \\ CO_2/H_2 = 1,901) \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \end{array}$
Quenching a 1263 1230 1201 1190 1170 Quenching a 1211 1196 1186 1181	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85	$\begin{array}{c} CO_2/H_2 = 1,709) \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \end{array} \\ CO_2/H_2 = 1,901) \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \end{array} \end{array}$
Quenching 2 1263 1201 1190 1170 Quenching 2 1211 1196 1186 1181 1146	in corrente	$di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{6,37} 6,81 7,22 7,38 7,67$ $di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{7,45} 7,68 7,86 7,86 8,28$	$\begin{array}{c} CO_2/H_2 = 1,709) \\ & \begin{array}{c} vetro \\ vetro \\ vetro + silicati \\ vetro + silicati \\ \end{array} \\ CO_2/H_2 = 1,901) \\ & \begin{array}{c} vetro \\ vetro \\ vetro \\ vetro \\ vetro + silicati \\ vetro + silicati \\ vetro + silicati \\ \end{array} \end{array}$
Quenching 4 1263 1230 1201 1190 1170 Quenching 4 1211 1196 1186 1186 1181 1146	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38	$\begin{array}{c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709\mathrm{)} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901\mathrm{)} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ & & \mathrm{vetro} + \mathrm{silicati} \end{array}$
Quenching a 1263 1201 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a	in corrente	$di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{6,37} 6,81)$ 7,22 7,38 7,67 $di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{7,45} 7,68)$ 7,80 7,85 8,38 $di \operatorname{CO}_2 e \operatorname{H}_2(\log \operatorname{C}_{7,85} 6)$	$\begin{array}{c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709\mathrm{)} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901\mathrm{)} \\ & & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{O}_2/\mathrm{H}_2 = 2,728\mathrm{)} \end{array}$
Quenching a 1263 1201 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a 1230	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51	$\begin{array}{c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709\mathrm{)} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901\mathrm{)} \\ & & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{O}_2/\mathrm{H}_2 = 2,728\mathrm{)} \\ & & & & \mathrm{vetro} \end{array}$
Quenching 4 1263 1230 1201 1190 1170 Quenching 4 1211 1196 1186 1181 1146 Quenching 4 1230 1201	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51 7,92	$\begin{array}{c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709\mathrm{)} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} \\ & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901\mathrm{)} \\ & & & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{O}_2/\mathrm{H}_2 = 2,728\mathrm{)} \\ & & & & \mathrm{vetro} \end{array}$
Quenching a 1263 1230 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a 1230 1201 1197	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51 7,92 7,98	$\begin{array}{c c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709 \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901 \\ \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{O}_2/\mathrm{H}_2 = 2,728 \\ \\ & \mathrm{vetro} \\ & vet$
Quenching a 1263 1230 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a 1230 12201 1197 1190	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51 7,92 7,98 8,08	$\begin{array}{c c} \mathrm{CO}_2/\mathrm{H}_2 = 1,709 \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{CO}_2/\mathrm{H}_2 = 1,901 \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} \\ & \mathrm{vetro} + \mathrm{silicati} \\ \mathrm{O}_2/\mathrm{H}_2 = 2,728 \\ & \mathrm{vetro} $
Quenching a 1263 1201 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a 1230 1201 1197 1190 1186	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51 7,92 7,98 8,08 8,11	$\begin{array}{c c} CO_2/H_2 = 1,709 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \end{array} \\ CO_2/H_2 = 1,901 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \end{array} \\ \hline \\ O_2/H_2 = 2,728 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \end{array} \\ \end{array}$
Quenching a 1263 1201 1201 1190 1170 Quenching a 1211 1196 1186 1181 1146 Quenching a 1230 1201 1197 1190 1186 1174	in corrente	$di CO_2 e H_2 (\log C)$ 6,37 6,81 7,22 7,38 7,67 $di CO_2 e H_2 (\log C)$ 7,45 7,68 7,80 7,85 8,38 $di CO_2 e H_2 (\log C)$ 7,51 7,92 7,98 8,08 8,11 8,31	$\begin{array}{c c} CO_2/H_2 = 1,709 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \end{array} \\ CO_2/H_2 = 1,901 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} \\ & \text{vetro} + \text{silicati} \end{array} \\ O_2/H_2 = 2,728 \end{pmatrix} \\ & \begin{array}{c} & \text{vetro} \\ & \text{vetro} $

_

TABELLA I.

Il riconoscimento delle fasi ottenute per quenching è stato effettuato a mezzo del microscopio.

Si è avuto modo di osservare che la formazione di cristalli di quenching è tanto più accentuata quanto più ossidanti sono le condizioni in cui è avvenuta la fusione. Alcune volte era particolarmente arduo distinguere se le fasi cristalline provenivano da un inizio di cristallizzazione o da un fenomeno dovuto esclusivamente al quenching. Tuttavia in quest'ultimo caso si può vedere ai più forti ingrandimenti che i cristalli sono costituiti da piccoli agglomerati ad estinzione ondulosa o da aghetti sottilissimi. In ogni caso la testimonianza più importante del fenomeno legato al quenching sta nella irregolarità della distribuzione dei cristalli. Un inizio di cristallizzazione è sempre comune a tutta la massa, mentre il fenomeno di cristallizzazione per quenching avviene soltanto nella zona più interna della sostanza fusa e bruscamente raffreddata.

Altra osservazione che si ritiene opportuno segnalare è la presenza di una fase metallica all'inizio della cristallizzazione in atmosfera di aria e anidride carbonica. Tale fase è stata identificata come magnetite al microscopio a riflessione, ma altre ricerche sono già in corso per definire chimicamente con maggiore precisione l'identità dei cristalli. Viceversa in tutte le altre esperienze le prime fasi sono silicatiche (pirosseni, olivine e plagioclasi).

In questa sede non si ritiene di scendere in maggiore dettaglio per quanto riguarda le identificazioni delle fasi solide, che saranno argomento di una separata trattazione ancora in corso di elaborazione.

La curva del liquido che viene qui presentata conferma i dati che sono stati parzialmente enunciati da altri ricercatori. Yoder e Tilley (1962) trovarono sempre magnetite come prima fase cristallizzata in rocce dal chimismo simile a quella da me presa in esame. Fudali (1965) ha osservato che in esperienze condotte a 1200° e con p_{O_a} molto vicine a quelle usate nelle mie indagini con rapporto costante di H₂ e CO₂, i basalti e le andesiti sono completamente fusi.

Le ricerche in corso di elaborazione sulla curva del solido verranno presentate in una Nota successivamente e consentiranno di chiarire le relazioni, fra le fugacità di ossigeno del magma e la paragenesi, effettivamente osservate in natura.

BIBLIOGRAFIA.

BOWEN N. L. e SCHAIRER J. F., *The system* FeO—SiO₂, «Amer. J. Sci. », 4^a ser., 37, 487– 500 (1932).

CARAPEZZA M., Un esempio di eruzione laterale da faglia nell'apparato eruttivo etneo, «Acta Geol. Alp. », 8, 249–276 (1960).

COUGHLIN J. P., Contributions to the data on theoretical metallurgy. – XII Heats and free energies of formation of inorganic oxides. U.S. Bur. Mines Bull. 542 (1959).

DARKEN L. S. e GURRY R. W., The system iron-oxygen. - I. The wustite field and related equilibria, « J. Am. Chem. Soc. », 67, 1398-1412 (1945). EUGSTER H. P. e WONES D. R., Stability relations of the ferruginous biotite, Annite, « J. Petrol. », 3, 82-125 (1962).

FUDALI R. F., Oxygen fugacities of basaltic and andesitic magmas, «Geochim. et Cosmochim. Acta », 29, 1063–1075 (1965).

MUAN A., Phase equilibria in the system FeO-Fe2O3-SiO2, « J. Metals », 7, 1-12 (1955).

- MUAN A., The miscibility gap in the system Ag—Fe—Pd at 1000°, 1100° and 1200°, «Trans. A.I.M.E. » 229, 1080-1081 (1962).
- NORTON F. J., Dissociation pressures of iron and copper oxides, General Electric Res. Lab. Rept. N° 55-RL-1248, 16 pp. (1953).
- OSBORN E. F., Role of oxygen pressure in the crystallization and differentiation of basaltic magma, «Amer. J. Sci.», 257, 609-647 (1959).
- OSBORN E. F., Reaction series for subalkaline igneous rocks based on different oxygen pressure conditions, «Am. Mineral.», 47, 211–226 (1962 a).
- OSBORN E. F., Addendum note to «reaction series for subalkaline igneous rocks based different oxygen pressure conditions», «Am. Mineral.», 47, 1480–1481 (1962 b).
- OSBORN E. F., Some experimental investigation bearing on the origin of igneous magma of the earth's crust, « Estud. Geol. », XIX, 1-7 (1963).
- OSBORN E. F. e ROEDER P. L., Effect of oxygen pressure on crystallization in simplified basalt system, Rpt. Intern. Geol. Congr., XXI Sess., part. XIII, 147-155 (1960).
- SCHENK R., FRANZ H. e LAYMANN A., Gbeichgewichtsuntersuchung über die Reduktions-Oxidations- und Kohlungsvorgänge beim Eisen. XI, «Z. anorg. allgem. Chem. », 206, 129–151 (1932).
- SOSMAN R. B. e MERWIN H. E., Data on the intrusion temperature of the Palisade diabase, « J. Wash Acad. Sci. », 5, 293-303 (1913).
- TRÖGER W. E., Optische Bestimmung der gesteinsbildenden Minerale. Teil. I: Bestimmungstabellen, E. Schweizerbart'sche Verlagsbuchandlund, Stuttgart (1956).
- YODER H. S. e TILLEY C. E., Origin of basalt magmas: an experimental study of natural and synthetic rock system, « J. Petrol. », 3, 342-532 (1962).