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NOTE PRESENTATE DA SOCI

Algebra. — 77rilinear equations in a finite field. Nota di A. DuaNE
PorTER, presentata @ dal Socio B. SEGRE.

SUNTO. — Si determina il numero delle soluzioni di una o due equazioni trilineari, in
un qualunque numero di variabili, sopra un campo di Galois.

1. INTRODUCTION.—Let F = GF (g) be the finite field of ¢ = p ele-
ments, p arbitrary. We wish to consider the trilinear equations

”n ”n
(1.1) Elajxjyjzjza ; Eléjxj-yjzjz b,
J= J=

with all coefficients from F. In the case of bilinear equations, the number
of solutions of a single bilinear equation may be obtained from a theorem of
John H. Hodges [2; Th. 3]. Also, the number of simultaneous solutions of
2 bilinear equations may be found in a result of the author [3].

In this paper, we are able to obtain corresponding results for trilinear
equations. In Theorem I, we obtain the number of solutions in F of a single
trilinear equation, and in Theorem II, we obtain the numbeér of simultaneous
solutions in F of the system (1.1), when ¢;6,9=0, 1 <j < #. Finally, in
Theorem IIT we find the number of simultaneous solutions of (1.1) without
any restrictions on the coefficients. The proof of Theorem III is not included
since it is similar to that of Theorem II, although much more cumbersome to
write down.

It is of interest to note that no solvability criterion, such as given by E.
Cohen [1], depending only on the number of variables, can be given here, for,
if we take @; =06, =1,1<j<m,a=o0,b=1 in (1.1) it is easy to see
that this corresponding system will be unsolvable for every # =1 and
every field F.

2. NOTATION AND PRELIMINARIES.—If & is an element of F, we define

(2.1) e (o) = e2=#@Ip | fla) = f alp . ot T
so that #(«) is an element of GF(p). One may prove from (2.1) that
(2:2) e(w+B)=e(@e(®),
and '
‘ E . g y &= o ’
(2.3) - e(af) = 0, a0,

(*) Nella seduta del 12 febbraio 1966.
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where the indicated sum is over all 8 in F. If we let ¢ denote the Legendre
function for F, so ¢(«) =0, 1,—1, according as « = 0, a nonzero square
or. a non-square of F, we may define,

(2.4) v (@) = 1— ().
In view of (2.3) and (2.4), one can easily verify

(2.5) Y (@) =v<oc>q—j§le<a@j>-

ﬁ+ﬁl ’,. e B;

3. ONE TRILINEAR.—We now prove
THEOREM 1.—7Ve number N = N(n,a) of solutions in ¥ of the single
trilinear equation ayxiyier~+---+ a,x,v,2, =a is given by

N=g¥14[v(@g—1][2¢—1]"¢" 1,

where v(a) is defined by (2.5).
Proof. 1In view of (2.3), we have

N= ¥ 13| Sanrs—as

62V %

)

where the sum over x;, y;, z; indicates a sum in which these elements, for
I < j <, take on all values of F independently. If we now multiply out
the above expression, interchange the order of sums and products, and sum
over z;, we have

(3.1) N :g“lge(—aa)gg;v(ajxjyjoc)g.

Clearly, we must have a;x,y,¢ = 0, all 1< j <<, or the value of the product
over 7 is zero. Hence, we break the sum over « into « = o plus the sum over
o == o.

When « = o, x; and y; may be arbitrary for all 1<<; <%, so the sum
of the corresponding terms of (3.1) is ¢3#—1,

When o == o0, we must have x;y;=o0, all 1 <j<<n. To this end, we
may have, for each j, as the x; and y, take on all values of F, either

(a) x;,=o0 , y; arbitrary, and

G ®) z+o , y=o,

or

(a) y;=o0 , x; arbitrary, and
® w0 , x=o.

However, both (3.2) and (3.3) yield ¢ + (7 — 1) choices for x;3; = 0. Hence,
for each 7 we have the same number of choices, regardless of how the sums

(3-3)
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over x; and y; are formed. Hence, we may write (3.1) as

N=g?Xe(—an [T12g—1]g,
which in view of (2.3) and (2.5) yields
(3-4) N=[p@g—r1]l2¢g—1]"¢

Combining (3.4) with the value of (3.1), Theorem I is established.

4. TWO TRILINEAR EQUATIONS.—To shorten the details of the proof,
we only consider systems (1.1) in which @;6,94=0, 1 <j <<#. We then re-
arrange the coefficients of (1.1) in the following way: Let 51,52, --s, be

nonzero integers such that s34 .-+ + s, =n  Letf,---,f; be distinct
nonzero elements of F such that

—alby=f;, all si4- F s a9<j<sit---+s5,
for 2 <7<#4, and for 7 =1,

we define sy =o0.

(4.1)

We now state ‘
THEOREM I1.—If ajb;==0,1 <j<n, then the number N= N(n,a,b)
of simultancous solutions in F of the system (1.1) is given by

(4—2) N :g3n—2+ (29—1)" [7/<KZ>U(5) QZ—I]_q”—2+
+ z—gl [‘U<a+é_fl)—'—1] [(Zg_1>n—siqn+2si—2__(2'q >n n— 2]’

where v (a) is defined by (2.5); f; and s; by (4.1).
Proof. Clearly, noting (2.3), we have

N= ¥ X (jga,.x,.yﬂj_a)a{;e (g . )@%

A .

where the sum immediately to the right of the equality sign is defined as in
the paragraph above (3.1). If we multiply out the above expression, inter-
change the order of sums and products, and sum over z; in accordance with
(2.3) and' (2.5), we obtain

@ N=grTea—0 ] T Doty lan+ 48D

We now write N = N; + Ny, where

Ni = sum of terms of (4.3) for which « = o,

4-4) Nz = sum of terms of (4.3) for which a=<o0.
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When « = o, if we note (2.5), break the sum over B into 8 = o plus
the sum over B ==o0, and for B== 0, use the same reasoning as in (3.2) and
(3-3), then a straightforward calculation will yield

(4-5) Ni=g?+[w@)g—1llz¢g—1]"¢2.

If in (4.3), for an arbitrary but fixed a==o0, we choose B = f;«, then
since there are exactly s; ratios — «,/b; = f;, x; and y;, may be arbitrary for
si+ ot sia<j<si+---+ s, but x;y, must be zero for all other
7 or else N3 = 0. Hence, for these 7, we must use the same reasoning as in
(3-2) and (3.3), so that if B = f;«, the product over j in (4.3) equals

(46) (2g — 1) 7ig

When a==o0, if we break up the sum over B in (4.3) into B = fq,
I <7< 4, plus the sum over B==f;a,1 <7< 4, and for each i use (4.6)
as the value of the product over j, we obtain

Ne=g2 2 X (2¢—1)"g" e [(—a—bf)o] +

a0 7=1

g2y X e<—aa—bﬁ>§<zq—r>q,

a0 ﬁ:;:fz-a,lsigk

If we substitute the value of the sum over B, given by (2.5), into the above
equation, regroup terms, and sum over « in accordance with (2.3), we obtain

@) Ne= Xfola+ b —1llg— 1" g g1y +
+v(6) [v(@)g—1](2g—1)*¢g"1.

Hence, combining (4.5) and (4.7), and cancelling like terms, Theorem II is
restablished.

5. THE NUMBER N (#,a,6,a,,b;).—We now relax the restriction
a; bj:{: 0,1 <<j <<=, of Theorem II. Welets,,---, s, sz,1 be integers such
that so 4+ -4 sz41 = 7 with 55, 5z,1>0,5,>0 for 1<<7/ <4, and f1, - - N
be distinct nonzero elements of F. We then rearrange the coefficients of (1.1)
as follows:

a;=o0 , 1<7<s,, ‘@;== 0 otherwise,

(5.1)

;=0 , Sot it s<i<n, b;==0 otherwise,
( albi=—f:, so+-Fsia<j<so+- -+ 5,1 <i<k
We further let z%=#n — s;— s;,1, so % is the number of x;,¥;,%; with nonzero

coefficients in both equations. We suppose #>>1 so the problem is not trivial.
Finally, for any choice of x;,¥;,2;, 1 <j<sy, s+ #<j<mn, in F, we
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define
A:A(a,aj,xj,yj,zj)=a—"2 a]xjy]zj,
J=sotu+l
(5-2)

B = B(é’éj’xj’yj’zj):b——;éjxjyjz’j.
. J=

It is now possible to prove
THEOREM III.—7%e number N =N (n,a,b, a;, b;) of simultaneous
solutions of the system (1.1) is given by

N = 3@+9-2 4 (29— 1)*g2%-2 [N(A) N(B) g2 — ¢%] +
b
+ 2 IN(A+ B — ¢ [(2g— 075" — g — 1),

where

§ =50+ Say1 and both f; and s; are as defined in (4.1). If sz =0, then
N(a) =v(a), where v(a) is given by (2.5), and otherwise N(A) is the number of
solutions as given by Theorem I of the trilinear equation A=o, where A is given
by (5.2). If so=o0, then N (B) = v (8), and otherwise N (B) is the number
of solutions of the trilinear equation B = o, where B is given by (5.2). If
So = Skr1 =0, then N(A + Bf)) = v (a + bf;), and otherwise N (A + Bf)
is the number of solutions of the trilinear equation A + Bf; = o.

The proof will not be included, however for interests sake, we note that

the key to the proof lies in writing the first equation in the proof of Theo-
rem II as ‘

N=S5,,, §xyz g2 E e

So+2 3
( = (Y% A) «

j?su+

E ei( "Eléjxjyjzj—B)Bs,

B J=so+

where S,,, indicates a summation in which each Xy Y2, 1 <7< s,
So + #<j < » takes on all values of F independently, and Sxyz indicates a
similar sum in which ; varies sq + 1 <7 < s, + 2.
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