
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Abraham Robinson

A new approach to the theory of algebraic numbers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 40 (1966), n.2, p. 222–225.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_2_222_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1966_8_40_2_222_0
http://www.bdim.eu/


222 Lincei -  Rend. Sc. fis. mat. e nat. -  Voi. XL -  febbraio 1966

Logica matematica. — A  new approach to the theory o f algebraic 
numbers. Nota di A braham R obinson, presentata °  dal Socio 
B. S egre.

R iassunto. — Nella teoria degli ideli e adeli, gli ideali di un anello di Dedekind D 
(per esempio di numeri algebrici o di funzioni algebriche) sono moltiplicativamente isomorfi, 
a meno di elementi associati, ad un sotto-insieme di un anello, A, che è un’estensione dì D. 
L’idea fondamentale della teoria suaccennata fu concepita da Priifer e sviluppata poi da von 
Neumann, Chevalley e altri. In questa Nota mostriamo come una teoria di questo tipo può 
venire rielaborata adoperando modelli non-standard definiti per mezzo di un linguaggio 
formalizzato.

1. In  the theory  of idèles and adèles (e.g. refs. [1], [3]), the ideals of 
a given D edekind dom ain D, e.g. w ithin the realm  of algebraic num bers or 
of algebraic functions of one variable are shown to be m ultiplicatively iso
m orphic, up to associated elements, to a subset of a ring, A, which is an exten
sion of D. In  the special cases m entioned, the idea was first realized by 
Priifer and, following him, by von N eum ann, while the case of general Dede
kind dom ains Was treated  by Krull (refs. [2], [4], [5]). W e propose to show 
th a t the theory  can be developed conveniently by the use of the notion of a 
non-standard  enlargem ent of a given m athem atical structure which has, in 
recent years, been applied extensively to Analysis (refs. [ój-dq]). In  the pre
sent Note, we shall describe our m ethod independently  of the above m ention
ed approaches, leaving the study of the connection w ith them  for a later 
paper. W e also propose to show subsequently th a t our tools are sufficiently 
powerful to cope w ith infinite algebraic extensions of the rational num ber 
field and of rational function fields of one variable.

2. Let M be a m athem atical structure. Let K be the set of sentences 
which are form ulated in a higher order predicate language which comprises 
all finite types for alternatively, which are form ulated w ithin a suitable set- 
theoretic fram ework) and which are true in M. Consider any b inary  relation 
R ( x >y) between individuals o fM  or between entities of other types (e.g. bet
ween individuals and sets). A n entity  will be said to be in  the domain of the 

f ir s t  variable of R if there exists an entity  b such th a t R (a , b) holds in M. 
K (x  y y )  will be called concurrent if for any finite set of entities, a±, • • •, an which 
are in the dom ain of the first variable of R, there exists an entity  b such th a t 
R (et\ , b) , • • - , R (an , b) all hold in M (and hence, belong to K). It is not 
difficult to establish the existence of enlargements of M; i.e. of extensions *M 
of M such th a t (i), M satisfies all sentences of K and (ii) for any concurrent

(*) Nella seduta del 12 febbraio 1966,
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relation R (x,y)  in M there exists an entity  Òr in *M such th a t R (a, Òr) holds 
in *M for all entities a which belong to the dom ain of the first variable of R 
in M. However, referring to (i), it is understood th a t we in terpret the sentences 
of K  in *M in non-standard  fashion. T h at is to say, assertions concerning 
entities of D other th an  individuals (e.g. sets, relations between individuals, 
relations between relations, relations between sets) are to be interpreted 
(in general) not w ith regard to the to tality  of such entities in D but with regard 
to an appropriate sub-class of these, called internal (or admissible) entities. 
For example, if N is the structure of the natural num bers and *N is an en lar
gem ent of N, then the relation x <  y, is concurrent. It follows th a t *N contains 
num bers which are infinite, i.e., larger th a t all num bers of N. However, it is 
easy to see th a t th e  set of all infinite num bers of *N (still to be called natural) 
does not contain a sm allest element. It follows th a t this set is not internal. 
For any non em pty set of natu ra l num bers in N does possess a smallest ele
m ent, and this is a fact which can be expressed w ithin K  and, accordingly, 
m ust be true in *N for all non-em pty internal sets. On the other hand, the 
set of prim e num bers in *N is an internal set in *N as can be seen by in terpret
ing, in *N, a sentence of K which asserts the existence of this set (for N).

W hen dealing w ith a given m athem atical theory, it is necessary to en
large all the m athem atical structures involved in the theory, simultaneously. 
This can be done by supposing th a t these structures have first been embedded 
in a single structure, M. Thus, when dealing with a ring R, we shall require 
not only an enlargem ent *R of R but also a sim ultaneous enlargem ent *N 
of the natiiral num bers N ; for a discussion in ring theory  m ay involve the 
powers of a ring element, which are given by a m apping from R x N  into R.

3. Let D be a Dedekind dom ain. By a proper ideal we shall m ean any 
ideal other th an  the zero-ideal, o, or the entire ring. We shall suppose th a t D 
possesses at least one proper ideal, i.e., th a t it is not a field. By a prime ideal 
we shall mea,n a proper prim e ideal. E very  proper ideal in D possesses a unique 
represèntation as the product of powers of distinct prim e ideals.

W e em bed D and the n a tu ra l num bers, N, sim ultaneously in a structure 
M and consider an enlargem ent *M of M. M contains enlargem ents *D and *N 
of D and N respectively. *D is an integral domain, as can be seen by  expressing 
the fact th a t D is an integral dom ain within K  and reinterpreting in M. (In 
the particu lar case when D is a ring of algebraic num bers, N m ay be regarded 
as a substructure of D; and M m ay then be taken to coincide with D. Accord
ingly, *M will coincide with *D). For any a E D , a =f= o, and for any  prop
er ideal J in D we write n — ordj (a) for the uniquely determ ined natural 
num ber n  such th a t a E ]n but a& Jn+1.

Let Q be the set of ideals in D, and let be the corresponding entity  
in *M. Thiat is to say, *Q is denoted by the sam e symbol as Q in the vocab
u lary  of K. T he elements of are the internal ideals of *D. A n internal 
ideal A  E *£2 is standard, by definition, if there exists an ideal B in D, such 
th a t A  = * B , i.e. such th a t A is denoted by the same symbol as B in the vocab-
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ulary  of K. T he notation n ~  ordj (a) still has a m eaning for all proper in ter
nal ideals in *D and for all a £ *D , a =f= o, but n m ay now be a finite or in fi
nite natu ra l num ber.

W e define the m onad fx of *D as the intersection of all proper standard  
ideals in *D. T hus [x =  O *Jv ? where Jv varies over the proper ideals of D

V

and *JV is the corresponding ideal in *D in each case, [x is an ideal in D, 
since it is an intersection of ideals; but it can be shown th a t jx is not internal. 
A n equivalent definition for fx is [x =  n  *Pv, where Pv varies over the prime

V

ideals of D and n  varies over the finite natu ra l num bers. The following facts 
can now be established w ithout difficulty.

(i) (X does not contain any element of D other than  zero. For if a e D ,  
a °> then  there exists a prim e ideal P in D such th a t a e P* for a sufficiently 
large finite n. Hence a € *P”, a g jx.

(ii) Let B be any  ideal in D. Then « € * B f ì  D if and only if a 6 B. 
For the relation a e B can be expressed w ithin K  for any  a e D and so, for 
such a e *B if and only if a e B.

(iii) There exists an internal proper ideal J in *D (i.e., J e *Q , J =f= o, 
J =f= *D) such th a t J C [x.

For consider the relation R ( x , y )  which is defined by the following e g r e s 
sion: “x  is a proper ideal, and y  is a proper ideal which is included in x ”. 
One verifies th a t R (x ,y) is concurrent in D (and in M). Accordingly, by one 
of the basic properties ofM,  there exists an internal proper ideal J in *D such 
th a t J C * J V, for any  proper ideal J v in D. Hence J C [x =  n  *JV , as asserted.

V

4. Let A =  *DI[i, so th a t A is the quotient ring of *D with respect 
to [x and, for any internal proper ideal J C [x in *D, such as exists according to 2. 
(iii) above, let Aj =  *D /J. Denote by 9 > 9j the canonical (homomorphic) 
m apping from  *D onto A , Aj, respectively. For J as considered there are 
m appings from Aj onto A with kernel 9 j (jx) and we have the com m utative 
diagram s

9
* D r~  — — -* a

'V '\  / bb
By a standard  results on Dedekind domains, the quotient ring of D with 

respect to a proper ide^l is a principal ideal ring. Form ulating this fact within K 
and  reinterpreting in *M, we conclude tha t the internal ideals of any quotient 
ring of *D with respect to an internal ideal are principal. T he internal ideals 
of *D/J are just the images 9j (A) of the internal ideals A  of *D. M oreover, 
a hom om orphic im age of a principal ideal is principal. Hence, the images 
9(A ) =  4,j(9 j(A )) are principal ideals in A for all internal ideals A  in *D. 
Conversely, if F  is a principal ideal in A, F =  (a), say, let a — 9 (b), b e *D.
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T hen F  =  9 ((b)),  so th a t F is the image of an internal ideal. W e conclude 
th a t an ideal in A is principal if and only if it is the image of an internal 
ideal in *D under 9.

M oreover, if A  and B are ideals in D, then 9 ((A , B)) =  (9 (A) , 9 (B)). 
I t follows th a t the dom ain of principal ideals in A is closed under the operation 
of tak ing  the greatest common divisor. W e conclude that, if an ideal F  in 
A has a finite base F  =  (a±, • • •, an), then F is actually principal since 
F  == (• • • (ai) , (af)) , (<23)) .(#»))• W e conclude further th a t for any a and b
in A , a o , b = j =  o, there exists a greatest common divisor d\ i.e., d  divides
a and b, and any d'  which divides a and b divides also d.

T he basis of a principal ideal in A, J =  (a), where a is not a divisor 
of zero, is uniquely  defined up to associated elements of A, i.e., up to m ulti
plication by  a un it of A. If  A i and A2 are distinct ideals of D , A i =(= A 2, 
then  *Ai =4= *A2 and 9 (*Ai) =4= 9 (*A2) in view of 3, (ii) above. Thus, 9 in 
duces a one-to-one m ultip licative m apping <D from the proper ideals of D
into the classes of associated elements of A.

The m apping 9 is one-to-one on D: for, if a 4 =  b for elements a and b 
of D, then a — -b=\= o and so 9 (a —  b) 4 =  o by 2, (i) above, and hence 
9 (a) —  9 (b) =4 o , 9 (a) =|= 9 (^)- Thus, 9 provides an injection of D into A; in 
other words, A m ay be regarded as an extension of D. Accordingly, A satis
fies the requirem ents m entioned at the beginning of this Note. A  m ore de
tailed description of the structure of A will be given in a subsequent paper (1).
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