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Logica matematica. — A4 new approack to the theory of algebraic
numbers. Nota di ABRAHAM RoBINSON, presentata @ dal Socio
B. SEGRrE.

RIASSUNTO. — Nella teoria degli ideli e adeli, gli ideali di un anello di Dedekind D
(per esempio di numeri algebrici o di funzioni algebriche) sono moltiplicativamente isomorfi,
a meno di elementi associati, ad un sotto—insieme di un anello, A, che & un’estensione di D.
L’idea fondamentale della teoria suaccennata fu concepita da Priifer e sviluppata poi da von
Neumann, Chevalley e altri. In questa Nota mostriamo come una teoria di questo tipo pud
venire rielaborata adoperando modelli non-standard definiti per mezzo di un linguaggio
formalizzato.

I. In the theory of idéles and adeéles (e.g. refs. [1], [3]), the ideals of
a given Dedekind domain D, e.g. within the realm of algebraic numbers or
of algebraic functions of one variable are shown to be multiplicatively iso-
morphic, up to associated elements, to a subset of a ring, A, which is an exten-
sion of D. In the special cases mentioned, the idea was first realized by
Priifer and, following him, by von Neumann, while the case of general Dede-
kind domains was treated by Krull (refs. [2], [4], [5]). We propose to show
that the theory can be developed conveniently by the use of the notion of a
non-standard enlargement of a given mathematical structure which has, in
recent years, been applied extensively to Analysis (refs. [6]-[9]). In the pre-
sent Note, we shall describe our method independently of the above mention-
ed approaches, leaving the study of the connection with them for a later
paper. We also propose to show subsequently that our tools are sufficiently
powerful to cope with infinite algebraic extensions of the rational number
field and of rational function fields of one variable.

2. Let M be a mathematical structure. Let K be the set of sentences
which are formulated in a higher order predicate language which comprises
all finite types (or alternatively, which are formulated within a suitable set-
theoretic framework) and which are true in M. Consider any binary relation
R(x,y) between individuals of M or between entities of other types (e.g. bet-
ween individuals and sets). An entity will be said to be i the domain of the
Jirst variable of R if there exists an entity 4 such that R (a,4) holds in M.
R (x, y) will be called concurrent if for any finite set of entities, a1,- - -, a, which
are in the domain of the first variable of R, there exists an entity & such that
R(a1,6),---,R(a,,6) all hold in M (and hence, belong to K). It is not
difficult to establish the existence of enlargements of M; i.e. of extensions *M
of M such that (i), M satisfies all sentences of K and (ii) for any concurrent

(*) Nella seduta del 12 febbraio 1966,
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relation R(x,) in M there exists an entity ég in *M such that R (@, r) holds
in *M for all entities ¢ which belong to the domain of the first variable of R
in M. However, referring to (i), it is understood that we interpret the sentences
of K in *M in non-standard fashion. That is to say, assertions concerning
entities of D other than individuals (e.g. sets, relations between individuals,
relations between relations, relations between sets) are to be interpreted
(in general) ot with regard to the totality of such entities in D but with regard
to an appropriate sub-class of these, called znternal (or admissible) entities.
For example, if N is the structure of the natural numbers and *N is an enlar-
gement of N, then the relation x < y, is concurrent. It follows that *N contains
" numbers which are Znfinite, i.e., larger that all numbers of N. However, it is
easy to see that the set of all infinite numbers of *N (still to be called natural)
does not contain a smallest element. It follows that this set is not internal.
For any non empty set of natural numbers in N does possess a smallest ele-
ment, and this is a fact which can be expressed within K and, accordingly,
must be true in *N for all non-empty #nternal sets. On the other hand, the
set of prime numbers in *N is an internal set in *N as can be seen by interpret-
ing, in *N, a sentence of K. which asserts the existence of this set (for N).

When dealing with a given mathematical theory, it is necessary to ezn-
large all the mathematical structures involved in the theory, simultaneously.
This can be done by supposing that these structures have first been embedded
in a single structure, M. Thus, when dealing with a ring R, we shall require
not only an enlargement *R of R but also a simultaneous enlargement *N
of the natural numbers N; for a discussion in ring theory may involve the
powers of a ring element, which are given by a mapping from R XN into. R.

3. Let D be a Dedekind domain. By a proper ideal we shall mean any
ideal other than the zero-ideal, o, or the entire ring. We shall suppose that D
possesses at least one proper ideal, i.e., that it is not a field. By a prime ideal
we shall mean a proper prime ideal. Every proper ideal in D possesses a unique
represéntation as the product of powers of distinct prime ideals.

We embed D and the natural numbers, N, simultaneously in a structure
M and consider an enlargement *M of M. M contains enlargements *D and *N
of D and N respectively. *¥D is an integral domain, as can be seen by expressing
the fact that D is an integral domain within K and reinterpreting in M. (In
the particular case when D is a ring of algebraic numbers, N may be regarded
as a substructure of D; and M may then be taken to coincide with D. Accord-
ingly, *M will coincide with *D). For any « € D, a==0, and for any prop-
er ideal J in D we write # = ordy (a) for the uniquely determined natural
number 7 such that @ € J* but e e J**1, ‘

Let Q be the set of ideals in D, and let *Q be the corresponding entity
in *M. That is to say, *Q is denoted by the same symbol as Q in the vocab-
ulary of K. The elements of *Q are the internal ideals of *D. An internal
ideal A € *Q is standard, by definition, if there exists an ideal B in D, such
that A =*B, i.e. such that A is denoted by the same symbol as B in the vocab-
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ulary of K. The notation 7 = ordy (@) still has a meaning for all proper inter-
nal ideals in *D and for all 2 €*D, @ == o, but #» may now be a finite or infi-
nite natural number.

We define the monad g of *D as the intersection of all proper standard
ideals in *D. Thus w =nN*],, where J, varies over the proper ideals of D

v
and *J, is the corresponding ideal in *D in each case. w is an ideal in D,
since it is an intersection of ideals; but it can be shown that w is not internal.
An equivalent definition for w is w= *P}, where P, varies over the prime

ideals of D and # varies over the ﬁnitg natural numbers. The following facts
can now be established without difficulty.

(i) u does not contain any element of D other than zero. For if e €D,
a == o, then there exists a prime ideal P in D such that @ € P* for a sufficiently
large finite 7. Hence a ¢ *P*, a ¢ .

(if) Let B be any ideal in D. Then a €*BN D if and only if @ € B.
For the relation @ € B can be expressed within K for any @ € D and so, for
such @ € *B if and only if « € B.

(iii) There exists an internal proper ideal J in *D (i.e., J€*Q, J==o,
J=F*D) such that JCup.

For consider the relation R (x, ») which is defined by the following ex¥pres-
sion: “x is a proper ideal, and y is a proper ideal which is included in x
One verifies that R (#,y) is concurrent in D (and in M). Accordingly, by one
of the basic properties of M, there exists an internal proper ideal J in *D such
that JC*J,, for any proper ideal J, in D. Hence JCu = m *J,, as asserted.

4. Let A = *D/y, so that A is the quotient ring of *D with respect
to p and, for any internal proper ideal JC . in *D, such as exists according to 2.
(iif) above, let Ay = *D/]J. Denote by ¢, ¢; the canonical (homomorphic)
mapping from *D onto A, Aj, respectively. For J as considered there are
mappings Y5 from A; onto A with kernel ¢, (1) and we have the commutative
diagrams

*D A
AN A

/
o
J \AJ/ gy

By a standard results on Dedekind domains, the quotient ring of D with
respect to a proper ideal is a principal ideal ring. Formulating this fact within K
and reinterpreting in *M, we conclude that the znzernal ideals of any quotient
ring of *D with respect to an #nternal ideal are principal. The internal ideals
of *]D /] are just the images ¢;(A) of the internal ideals A of *D. Moreover,
a homomorph1c image of a principal ideal is principal. Hence, the images
®(A) = {5 (p;(A)) are principal ideals in A for all internal ideals A in *D.
Conversely, if F is a principal ideal in A, F = (a), say, let a = ¢ (§), 6 € *D.
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Then F = ¢ ((§)), so that F is the image of an internal ideal. We conclude
that an ideal in A is principal if and only if it is the image of an internal
ideal in *D under o. 4

Moreover, if A and B are ideals in D, then ¢ ((A, B)) = (9 (A), ¢ (B)).
It follows that the domain of principal ideals in A is closed under the operation
of taking the greatest common divisor. We conclude that, if an ideal F in
A has a finite base F = (a1, -+, 4,), then F is actually principal since

=(-+(m),(a)),(as)), - -, (a,). We conclude further that for any @ and &
in A, a==0, 6==0, there exists a greatest common divisor &; i.e., d divides
@ and 4, and any &’ which divides @ and 4 divides also 4.

The basis of a principal ideal in A, J = (@), where @ is not a divisor
of zero, is uniquely defined up to associated elements of A, i.e., up to multi-
plication by a unit of A. If A; and Ajs are distinct ideals of D, A; == As,
then *Aj;==*A2 and ¢ (*A1) == ¢ (*A) in view of 3, (ii) above. Thus, ¢ in-
duces a one-to-one multiplicative mapping ® from the proper ideals of D
into the classes of associated elements of A.

The mapping ¢ is one-to-one on D: for, if a=4 for elements « and &
of D, then a—&é==0 and so ¢ (¢—b)F=0 by 2, (i) above, and hence

¢(@—¢ ()= 0,¢(a)==9(4). Thus, ¢ provides an injection of D into A;
other words, A may be regarded as an extension of D. Accordmgly, A satis-
fies the requirements mentioned at the beginning of this Note. A more de-
tailed description of the structure of A will be given in a subsequent paper @.
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