Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Vera Pless

The Number of Isotropic Subspaces in a Finite Geometry

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 39 (1965), n.6, p. 418-421.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1965_8_39_6_418_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - The Number of Isotropic Subspaces in a Finite Geometry. Nota di Vera Pless, presentata ${ }^{(\circ)}$ dal Socio B. Segre.
I. Introduction.-Let V be an n-dimensional vector space over a finite field $\mathrm{K}=\mathrm{GF}(q)$ on which a non-degenerate symmetric (orthogonal case) or skew symmetric (symplectic case) form f is defined. It is of interest to determine the number, denoted by $\sigma_{n, k}$, of isotropic subspaces of dimension k in such a space. The possibilities are the following: (I) V orthogonal, characteristic of $\mathrm{K} \neq 2$; (2) V symplectic, characteristic of K arbitrary; (3) characteristic of $\mathrm{K}=2$ and f a non-alternating, symmetric (= skew symmetric) form on V. By applying Segre's results [3, Theorem i, p. 4] for the number of linear subspaces of a fixed dimension contained in a quadric in projective space, we can get the answer for the first possibility. Let u be the dimension of a maximal isotropic subspace of V . If the characteristic of K is not 2 , and n is even, then there are two types of orthogonal geometries. For one of these $u=n / 2$ and we define ε to be I in this case, for the other $u=(n / 2)$ - I and we let $\varepsilon=$ - I here. If n is odd, there is one type of geometry and $v=(n-\mathrm{r} / 2)$. By the results mentioned [3, Theorem i, p. 4] for the first possibility we get

The solutions for possibility (2) and possibility (3) for n odd are formally the same when expressed in terms of ν. For possibility (2), $\nu=n / 2$ and for possibility (3) with n odd, $v=(n-1 / 2)$. For these cases,

$$
\sigma_{n, k}=\frac{\prod_{i=0}^{k-1}\left(q^{2(v-i)}-1\right)}{\prod_{i-1}^{k}\left(q^{i}-1\right)}
$$

(*) Nella seduta del 13 novembre 1965.

The only remaining case is possibility (3) with n even ($\nu=n / 2$) and for this we obtain

$$
\sigma_{n, k}=\frac{\left(q^{n-k}-1\right) \prod_{i=1}^{k-1}\left(q^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)}
$$

$$
k>2
$$

From these equations it is easy to compute the number of isotropic subspaces of maximal dimension ν for each type of geometry. For possibility (I) [3, Cor. I, p. 4],

$$
\begin{array}{ll}
\sigma_{n, v}=2 \prod_{i=1}^{v-1}\left(q^{v-i}+\mathrm{I}\right) & \text { for } n \text { even, } \varepsilon=\mathrm{I} \\
\sigma_{n, v}=\prod_{i=0}^{v-1}\left(q^{v+1-i}+\mathrm{I}\right) & \text { for } n \text { even, } \varepsilon=-\mathrm{I} \\
\sigma_{n, v}=\prod_{i=0}^{v-1}\left(q^{v-i}+\mathrm{I}\right) & \text { for } n \text { odd. }
\end{array}
$$

For possibility (2) and possibility (3) for n odd,

$$
\sigma_{n, v}=\prod_{i=0}^{v-1}\left(q^{v-i}+\mathrm{I}\right)
$$

For possibility (3) with n even,

$$
\sigma_{n, v}=\prod_{i=1}^{v-1}\left(q^{v-i}+\mathrm{I}\right)
$$

If K is a finite field of characteristic 2 , the bilinear form associated with a non-singular quadric in projective space is alternating (and degenerate for n odd). Further, a subspace contained in a quadric is isotropic (with respect to the bilinear form) but the converse does not hold. We mention these facts to distinguish this situation from the 2 characteristic cases considered here.

I wish to thank Professor Alex Rosenberg for informing me about Segre's results, [3] and also for much kind advice.
II. Proofs of cases (2) and (3).-Our notation and terminology are mainly as in Chapter III of [I]. Let σ_{n} denote the number of non-zero isotropic vectors in V .

Case (2). Let V be a symplectic space. Hence n is even and it is well known that V is the orthogonal sum of hyperbolic planes. Every isotropic vector x is contained in exactly $\sigma_{(n-2),(k-1)}$ isotropic subspaces of dimension k. This is so since x is contained in a hyperbolic plane P and $\langle x\rangle^{*}=\langle x\rangle \perp \mathrm{P}^{*}$ where P^{*} has the same type of geometry as V.

Hence $\sigma_{n}=\frac{\sigma_{n, k}\left(q^{k}-1\right)}{\sigma_{(n-2),(k-1)}}$ which gives the recurssion

$$
\sigma_{n, k}=\frac{\sigma_{n} \sigma_{(n-2),(k-1)}}{\left(q^{k}-1\right)} .
$$

As is known, $\nu=n / 2$ and $\sigma_{n}=q^{2 v}-\mathrm{I}$.

$$
\text { Hence } \begin{aligned}
\sigma_{n, 1} & =\frac{\left(q^{2 v}-1\right)}{(q-1)} \\
\sigma_{n, 2} & =\frac{\left(q^{2 v}-1\right)\left(q^{2(v-1)}-1\right)}{\prod_{i=1}^{2}\left(q^{i}-1\right)}
\end{aligned}
$$

$$
\sigma_{n, k}=\frac{\prod_{i=0}^{k-1}\left(q^{2(v-i)}-\mathrm{I}\right)}{\prod_{i=1}^{k}\left(q^{i}-\mathrm{I}\right)}
$$

This proof is similar to the one in [3] for the number of linear subspaces contained in a quadric in projective space.

Case (3): Let V be a space on which a non-alternating form f is defined where the characteristic of K is 2 . Let N be the set of isotropic vectors in V. Then N is a subspace of dimension n - I [2] and we let $\langle h\rangle=\mathrm{N}^{*}$.

We distinguish between the cases where n is odd and where n is even. When n is odd, N is a non-singular symplectic space, $\mathrm{V}=\mathrm{N} \perp\langle h\rangle$, and $\nu=(n-\mathrm{I} / 2$). Applying case (2) to N we have

$$
\sigma_{n, k}=\frac{\prod_{i=0}^{k-1}\left(q^{2(v-i)}-\mathrm{I}\right)}{\prod_{i=1}^{k}\left(q^{i}-\mathrm{I}\right)} \text { for } \mathrm{V}
$$

Let n be even and let C be any complement of $\langle h\rangle$ in V. Clearly C is of odd dimension and can be shown to be non-singular. Let $\bar{\sigma}_{(n-1), k}$ denote the number of isotropic subspaces of dimension k in C .

To show that:

$$
\sigma_{n, k}=\bar{\sigma}_{(n-1),(k-1)}+\bar{\sigma}_{(n-1), k}+\bar{\sigma}_{(n-1),(k-1)}\left(q^{n-2 k}-1\right) .
$$

Proof: It is easy to see that $\bar{\sigma}_{(n-1),(k-1)}$ is the number of k dimensional isotropic subspaces of V which contain $\langle h\rangle$. The number of k dimensional isotropic subspaces of V which are contained in C is $\bar{\sigma}_{(n-1), k}$ by definition.

Let W be a k dimensional subspace of V which is not contained in C and which does not contain $\langle h\rangle$. Then W must be of the form $\langle h+x\rangle \perp \mathrm{U}$ where x is in $\mathrm{U}^{*} \cap \mathrm{C} \cap \mathrm{N}, x \notin \mathrm{U}$, and U is a $k-\mathrm{I}$ dimensional isotropic
subspace of C. For a fixed U there are ($q^{n-2 k}$ - I) distinct such subspaces. Since the subspaces of this form are distinct for distinct U, there are $\bar{\sigma}_{(n-1),(k-1)}\left(q^{(n-2 k)}-1\right) k$ dimensional isotropic subspaces of V which Q.E.D. do not contain $\langle h\rangle$ and are not contained in C.

Since we know $\bar{\sigma}_{(n-1),(k-1)}$ and $\bar{\sigma}_{(n-1), k}$ from case (3) for n odd,

$$
\sigma_{n, k}=\frac{\left(q^{n-k}-1\right) \prod_{i=1}^{k-1}\left(q^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)}, \quad k \geq 2
$$

and clearly

$$
\sigma_{n, 1}=\frac{\left(q^{n-1}-\mathrm{I}\right)}{(q-\mathrm{I})}
$$

References.

[i] E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics No. 3, Interscience, New York 1957.
[2] V. Pless, On Witt's Theorem for Non-Alternating Symmetric Bilinear Forms over a Field of Characteristic 2, Proc. American Mathematical Society 15 , December 1964, 979-983.
[3] B. Segre, Le geometrie di Galois, "Annali di Matematica Pura ed Applicata", ser. 4a, 48, I-96 (1959).

Sunto. - Per i vari tipi di polarità in uno spazio di Galois si determina il numero - già noto per le quadriche - degli spazi autoconiugati di data dimensione.

