ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

LUIGI BRIATORE, CARLO CASTAGNOLI, ANGELO DE MARCO

Un limite sperimentale della vita media dei nucleoni

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **39** (1965), n.3-4, p. 189–195.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1965_8_39_3-4_189_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1965.

Fisica. — Un limite sperimentale della vita media dei nucleoni. Nota^(*) di LUIGI BRIATORE, CARLO CASTAGNOLI E ANGELO DE MARCO^(**), presentata dal Socio G. WATAGHIN.

I. INTRODUZIONE. – La legge di conservazione della carica barionica, inizialmente suggerita da Stueckelberg [1] e Wigner [2] sotto forma di conservazione del numero di nucleoni, si è successivamente mostrata in accordo con i risultati sperimentali [3]. Poiché essa è di grande importanza per il bilancio energetico dell'universo [4] (oltre che per le sue implicazioni teoriche), negli ultimi anni si è cercato di averne diretta conferma.

Poiché la stabilità dei nuclei è prova dell'universalità della legge di conservazione della carica nucleare, il limite di validità di questa legge è usualmente espresso dal limite della vita media τ dei nucleoni.

La misura di τ è stata effettuata utilizzando diversi metodi. Precisamente: a) dalla fissione spontanea del Th 232 [5] o di altri nuclei [6]; b) dalla generazione di calore all'interno della terra; c) dalla reazione [7] $p \to n + \text{prodotti}$ di decadimento; d) con misure direzionali [8]; e) con misure di anticoincidenza [9]; f) con misure sotto terra [10].

È importante in questo tipo di ricerca variare le tecniche, in quanto i risultati si basano quasi esclusivamente sull'esatta valutazione del background e dei vari possibili errori sistematici.

Noi abbiamo effettuato una misura basata su un metodo direzionale come d) ma utilizzando una tecnica diversa: i tempi di volo.

Prima di considerare i diversi canali attraverso i quali può avvenire il decadimento nucleonico, osserviamo che, assumendo valide le leggi di conservazione dell'energia, del momento, dello spin, della carica e del numero leptonico, si assumerebbe implicitamente valida quella della conservazione dei nucleoni. Infatti la produzione di qualsiasi particella richiede la violazione (almeno) di una di dette leggi, oltre a quella della conservazione dei nucleoni. Supponendo non valida la legge della conservazione del numero leptonico (in quanto la meno sicuramente fondata) e limitandoci ai decadimenti in cui almeno un prodotto è carico, considereremo i processi:

(\mathbf{I})	$\not p \rightarrow \nu + \pi^+$	(6)	$n \rightarrow \pi^+ + e^-$
(2)	$\rightarrow v + k^+$	(7)	$\rightarrow \mu^+ + k^-$
(3)	$\rightarrow \gamma + e^+$	(8)	$ ightarrow \mu^+ + e^- + \bar{\nu}$
(4)	$\rightarrow \gamma + \mu^+$	(9)	$\rightarrow \pi^+ + \pi^- + \nu$
(5)	$\rightarrow \mu^+ + \nu + \bar{\nu}$		

(*) Pervenuta all'Accademia il 9 agosto 1965.

(**) Istituto di Fisica Generale, Università di Torino. Gruppo Italiano di Fisica Cosmica del C.N.R., Sezione di Torino (FISCOT). 2. METODO E APPARATO DI MISURA. – L'esperienza consiste nel misurare l'eventuale flusso di particelle emergenti dal suolo di energia >50 MeV e dirette verso l'alto, che azionano due telescopi costituiti ciascuno da due scintillatori plastici da 70 × 70 × 13 cm posti alla distanza di 2,5 m. Essi sono stati posti in una galleria, sotto spessori di roccia variabili da ~ 100 a ~ 2500 metri, allo scopo di ridurre il background dei raggi cosmici. L'effetto del background radioattivo (<5 MeV) nei singoli contatori era reso trascurabile richiedendosi un impulso > 25 MeV in ognuno di essi, e nelle coincidenze doppie era ridotto dal forte tempo risolutivo (100 nsec). Un sistema di misura dei tempi di volo tra i due scintillatori permetteva di stabilire se la direzione d'arrivo della particella era dall'alto in basso o viceversa, con registrazione fotografica all'oscillografo.

Fig. 1.

I segnali dei fototubi (fig. 1) vengono discriminati (D/A, D/B) e comandano due circuiti di trigger (T) i cui impulsi di uscita vanno alle scale che registrano gli impulsi dei singoli contatori $(A_1 + A_2, B_1 + B_2)$ e al circuito di coincidenza. Da questo, attraverso ad un trigger (T/C) e ad un circuito « 5 vie » (5/C) i segnali giungono alla scala di conteggio delle doppie e al trigger dello oscillografo. I segnali sono inviati, tramite opportuni ritardi (« tempo zero »), all'asse y dell'oscillografo. Si hanno così due sistemi indipendenti di registrazione: una stampatrice temporizzata che legge le scale, l'ora e il timer a intervalli di tempo prefissati. L'oscillografo, il cui schermo viene fotografato, dà informazioni sulla sequenza temporale degli impulsi e sulla loro altezza. In fig. 2 è riportato l'istogramma della distribuzione dei tempi di volo. Si vede che esso approssima

molto bene una gaussiana con $\overline{\tau} = 15,09$ nsec e $\sigma = 2,8$. L'altra curva (tratteggiata) è la gaussiana che ci si aspetterebbe per particelle provenienti dal basso.

3. RISULTATI SPERIMENTALI.

3.1. Il telescopio ha funzionato per $\Delta t = 7,8 \cdot 10^6$ sec; in questo periodo di tempo non si è avuta alcuna particella proveniente dal basso verso l'alto.

3.2. Questo risultato sperimentale permette di dare un limite inferiore alla vita media τ dei nucleoni. Infatti, la probabilità p che un nucleone decada nel tempo Δt è

$$(10) p = 1 - e^{-\Delta t/\tau}.$$

Siano ora: *n* il numero di nucleoni presenti, *r* il numero di decadimenti osservati, f(p) la densità di probabilità a priori, $\delta(r, p)$ quella a posteriori. Nel nostro caso assumiamo f(p) = costante. Sia p(r|p) la densità di probabilità che, essendosi verificato l'evento p, si siano ottenuti r conteggi:

(II)
$$p(r/p) = {n \choose r} p^r (I - p)^{n-r};$$

13. — RENDICONTI 1965, Vol. XXXIX, fasc. 3-4.

per il teorema di Bayes si ha

(12)
$$\delta(p/r) = \frac{f(p) p^{r} (1-p)^{n-r}}{\int_{0}^{1} f(n) n^{r} (1-n)^{n-r} dn}$$

e, essendo f(p) = cost

(12')
$$\delta(p/r) = \frac{(n+1)!}{r!(n-r)!} p^r (1-p)^{n-r}.$$

Nel nostro caso il risultato sperimentale è r = 0. Quindi

$$\delta(p/0) dp = \frac{(n+1)!}{n!} (I-p)^n dp = (n+1) (I-p)^n dp,$$

e, per la (10), si può scrivere

$$\delta(\tau/0) d\tau = -\frac{n+1}{\Delta t} \exp\left[-\frac{\Delta t (n+1)}{\tau}\right] \frac{d\tau}{\tau^2}.$$

La probabilità che, essendosi verificato un conteggio nullo osservando n nucleoni per un tempo Δt , la vita media dei nucleoni sia $>\tau$, sarà

(I3)
$$\delta(0; >\tau) = \int_{\tau}^{\infty} \delta(0, \tau) d\tau = I - \exp\left[\frac{\Delta t (n+I)}{\tau}\right].$$

3.3. Nella nostra esperienza il numero di nucleoni che possono subire decadimento sono quelli della roccia sottostante il telescopio e appartenenti ad un tronco di piramide retta a base quadrata di volume V, tale che le eventuali particelle di decadimento cariche possono azionare il telescopio. L'altezza h (E) del dominio sotterraneo cosí interessato è definita dal range R (E) della particella di decadimento di energia E. Dovrà infatti essere

(14)
$$h(E) = R(E) - 38 (gr \cdot cm^{-2})$$

dove 38 gr \cdot cm⁻² rappresenta lo spessore degli scintillatori e dello spessore di Pb ivi interposto.

In effetti, per tenere conto del fatto che l'angolo solito Ω sotteso dal telescopio varia sensibilmente al variare della posizione P (x, y, z) del nucleone che decade, invece del solo volume dovremo calcolare il fattore telescopico $\Omega(P) dV$. Considerando una densità $\rho = 2,6 \text{ gr} \cdot \text{cm}^{-3}$ per la roccia [11] si ottiene

(15)
$$N(h) = \frac{N}{2} \int_{V} \Omega(P) dV$$

nucleoni, dove N è il numero di Avogadro. Per determinare $\Omega(P) dV$ consideriamo l'angolo solido $\Omega(P)$ relativo al generico punto P (fig. 3). Esso è misurato dalla superficie S del quadrilatero curvilineo A' B' C' D', proiezione del quadrilatero ABCD da P sulla sfera unitaria con centro in P. Indicando con S_1 ed S_2 le superfici dei due triangoli sferici A' B' C' e C' D'A', di angoli

interni θ_i (i = 1, 2, 3 e, rispettivamente, 4, 5, 6), e con ε_1 ed ε_2 i loro eccessi sferici, si ha immediatamente:

(16)
$$\Omega(\mathbf{P}) = \mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2 = \sum_{i=1}^6 \theta_i - 2 \pi.$$

L'angolo solido medio cercato è allora:

(17)
$$\langle \Omega \rangle = \frac{\mathrm{I}}{\mathrm{V}} \int_{\mathrm{V}} \Omega(\mathrm{P}) d\mathrm{V} = \frac{\mathrm{I}}{\mathrm{V}} \int_{\mathrm{V}} \left(\sum_{i=1}^{6} \theta_{i} - 2\pi \right) d\mathrm{V}.$$

Poiché gli angoli tra i lati dei triangoli sferici (definiti dai corrispondenti fra le tangenti nei vertici) coincidono con gli angoli diedri tra i piani contenenti i lati stessi, è immediato ricavare i cos θ_i dalle equazioni di detti piani. Se x, y, z, sono le coordinate di P nella terna d'assi di fig. 2, si perviene per $\Omega(P)$ all'espressione

$$(18) \ \Omega(\mathbf{P}) = \sum_{i=1}^{2} \arccos \left| \frac{[x + (-1)^{i} l] [y + (-1)^{i+1} l]}{\sqrt{\{(z - \mathbf{H})^{2} + [x + (-1)^{i} l]^{2}\} \{(z - \mathbf{H})^{2} + [y + (-1)^{i+1} l]^{2}\}}} \right| + \sum_{k=1}^{2} \sum_{k=1}^{2} \arccos \left| \frac{S_{k} (z - \mathbf{H})^{2} - [\zeta_{k} + (-1)^{k} l] (y - x)}{\sqrt{\{(z - \mathbf{H})^{2} + [\zeta_{k} + (-1)^{k} l]^{2}\} \{2 (z - \mathbf{H})^{2} + (y - x)^{2}\}}} \right| - 2\pi$$

dove

$$\begin{split} \xi_k &= x \quad , \quad \mathbf{S}_k = + \mathbf{I} \quad \text{ per } \quad k = \mathbf{I} \\ \xi_k &= y \quad , \quad \mathbf{S}_k = - \mathbf{I} \quad \text{ per } \quad k = 2 \, . \end{split}$$

Utilizzando la (18) il calcolo della (15) porta alla curva di fig. 4 che dà il valore N (h) Δt .

3.4. Per dare un valore di τ resta quindi la scelta su h, cioè su E, essendo N funzione di E attraverso h come già si è detto. Per diretto confronto con dati di precedenti lavori si può assumere che il prodotto carico di decadimento abbia un percorso R \geq 49 cm, corrispondente ad una energia $E_{\mu} \geq$ 250 MeV. Questo limite inferiore include infatti la maggior parte dei possibili canali di decadimento. Ad esempio, esso comprende i processi a due corpi (1), (3), (4), e, dei processi a tre corpi (5), (8), circa un terzo delle disintegrazioni.

Tabella	I
	_
	_
	_
	_

Metodo		а	Ь	с	d	е	\tilde{f}
Nucleoni liberi			· · · · · · · · · · · · · · · · · · ·		$(2,2\div4,7)\cdot10^{24}$	$> 4,7 \cdot 10^{24}$	$> 5 \cdot 10^{25}$
Nucleoni legati	τ (anni)	>10 ²⁰	\sim 10 ²¹	~ 10 ²³		$> 4,3 \cdot 10^{25}$ $3 \cdot 10^{27}$	$> 4 \cdot 10^{26}$ $> 3 \cdot 10^{28}$
Bigliografia		[5],[6]		[7]	[8]	[9]	[10]

In questo caso il nostro valore di τ risulta essere $\geq 0.9 \cdot 10^{27}$ anni. Esso va confrontato con i valori riportati in Tabella I, che si riferiscono a nucleoni legati. Il valore più recente dato da Reines et al. [12] è $(0.6 \div 4) \cdot 10^{28}$ anni.

È interessante confrontare questo insieme di valori con l'età dell'universo, valutata in $\sim 10^{10}$ anni.

BIBLIOGRAFIA.

- [1] E. C. G. STUECKELBERG, «Helv. Phys. Acta », 11, 299 (1938).
- [2] E. P. WIGNER, « Proc. Am. Phyl. Soc. », 93, 521, (1949); « Proc. Nath. Acad. Sci. USA », 38, 469 (1952).
- [3] J. J. SAKURAI, Lectures in Theoretical Phys., vol. 2, Interscience Publ., 1960 e « Annals of Physics », 2, 1 (1960); YAMAGUCHI, « Prog. Theor. Phys. », 22, 373 (1959).
- [4] YA! B. ZELDOVICH, «Soviet Physics Uspeckhi», 5, 931 (1963).
- [5] M. GOLDHABER, REINES et al., « Phys. Rev. », 96, 1157 (1954).
- [6] G. FLEROV et al., «Sov. Phys. Dokl.», 9, 78 (1958).
- [7] F. REINES et al., « Phys. Rev. », 109, 609 (1957).
- [8] G. BACKENSTOSS et al., «Nuovo Cim.», 16, 1773 (1960).
- [9] C. GIANNATI, F. REINES, « Phys. Rev. », 126, 2178 (1962).
- [10] M. MENON et al., «Nuovo Cim. », 30, 1208 (1963).
- [11] G. FIORITO, A. LONGHETTO, Rapporto int. Gruppo Raggi Cosmici di Torino, n. 9 (1964).
- [12] W. KROPP, F. REINES, « Phys. Rev. », 137, B739 (1965).