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Matematica. — Some differential problems related to spectral
theory in several operators. Nota @ di RoBErT CARROLL ™
tata dal Socio Straniero A. WEINSTEIN.

, presen-

1. We will show that for a wide class of differential equations with ope-
rator coefficients a Green’s operator can be constructed by spectral conside-
rations and consequently the Cauchy problem can be solved for suitable
data. The results generalize some theorems of [1; 2] in certain respects and
apply to a much wider class of problems. Some of the results have been
sketched in a lecture [4] at the Séminaire de Mathématiques Supérieures,
Université de Montréal, été 1965, and will appear in detail in the mimeogra-
‘phed proceedings of this seminar to be ready some time next year; additional
details can be found in [1; 2; 3; 5] and with these as references we are also
able to furnish in this note the demonstrations of the other theorems announc-
ed here whose proofs are not be found in [r1; 4].

2. We consider the differential operator

m—1

(2.1) M () = u + ¥ P (¢, Ay, b)) u?

7=0
where %) = d7u|dt’, P; is a polynomial in (A;, 4,) of degree p; in the A,,
the A, (4 =1,---,N) are self-adjoint (densely defined) positive operators
in a separable Hilbert space H ((A,%,u) > ¢|| «|[2?), the a, = Ay " and

b,({=1,---,L) are commuting bounded operators in H, 2, A,CA, a, and
b, A, C A, b, and t —u (¢) takes values in H with 0 <<#<<T <<oco. Let A
be the Banach algebra generated by the a,,4,, and the identity e and
let 64 C CY*" be the joint spectrum of the generators ak , 0;, defined as the
image of the carrier space ®, under the map 1: @y - CV Y where ¢ (x) =% (9)
and v (@) = (@, (), - -, ax (), b ((p) . by (¢)). We recall that 6, is com-
pact and homomorph1c to ®4. The spectral variables corresponding to a,
are denoted by z; and similarly &, ~ z;; we write N, = 1/z, (b =1,---,N)
and note that ¢, <<, << oo or 0 <z, < ¢

‘We suppose that there is a compact set E CC"™ with 65 CE or nor
and z,> o real in E (£ =1, - -, N), such that for any polynomial p(z, #) one
has ||p (2, 8)||< csup | p(z,2)| for (2,2) €E (we write p(a, s) =Tp (2,2)).
Such a set will be called a p—spectral set and we will describe in various ways
the construction (always possible) of such sets (as small as we can make
them) and the nature of the constant ¢ which intervenes; moreover our

(*) Pervenuta all’Accademia il 6 settembre 1965.
(**) Research supported by NSF grant GP 4575.
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p—spectral sets will be made polynomially convex (p—convex) for reasons
to appear. A set & is p-convex if for any {€Z there is a polynomial »
such that p ({) =1 and |p (n)|<1 for n €E. It is.well known that o, is
p—convex for example (see [6] for Banach algebras, with suitable precautions
concerning the false theorem 1 on p. 86, and [6; 7] for functional calculi).
The spectral form of the Green’s operators is obtained formally as

(2.2) g, v, 0\, z)=exp[—(¢—1)P (1,2
o —1 o

(23) P,Z)=lo o ... 1
P, P, .- P, ,

where P; = P; (A, #) is assumed independent of # The case of time depend-
ent coefficients can be handled as well of course (cf. [8]) but we will not spell
out the details since it will be routine after seeing the present cases. The
characteristic roots of — P (A, ") are the roots of

m—1

4) QEAN =T+ X P04,V

and we set ¢ (\,2) =maxRel, (1, ).

We denote by 64 () the joint spectrum of the &, in C", i.e. the i image
of ®, under the map a:®y— C" given by a(p)= (bi(e), -, b (cp))
evidently o4 (6) = pr1. 6o where pr1, is the projection onto the space C".
M (z) will be called E hyperbolic if n[) < c|7\1 -+ ¢, for 2 bounded and
b, &) < for real N, =¢; and 2 €04 (8) (|A| = (Z|ND1R); M () will
be called E parabolic if ¢ (A,2) < —c¢|M|*+ ¢ for real ), >¢, and
€0, (b) where 0 </ < max pym_sn(0 <,k <m—1). In order to com-
plete the definition of g later we. shall have to con31der also the sets
V;={(e,2)€E , 5, = o}, 1< j=<N. Finally we define C (&) to be the
umform closure of the polynormals on & and M (&) to be the bounded Baire
functions obtained from C (E) by taking iterated pointwise bounded sequential
limits (i.e. f,€ ¢ &, 1l <¢ and Jo (®) = f (&) for each €= implies
Vi eM (&) and repetltlons give all M (E)).- The continuous maps 3,,:f —
Tz, yn: C () — C define by Hahn- Banach a family of measures v,

xy

on E with ([‘(f )X, Yu= J Jdv., and, using the Lebesgue bounded convergence

theorem, one can extend I' as a homomorphism (algebraic) to M (&) with
values in £ (H) (2 (H) denotes bounded _operators). We use the same symbol
':PE)—-A,TI: C(._.)——>A and I': M(._.)~—>Q(H) \

First consider the parabolic case and define g by (2.2) for # >« with
g(t,7,,7) defined as 1 on E— UV, and zero on UV,. Using the
inequality

(2.5) lg|<c(1+ (t—rr)w |)\|)ﬁ(m*1) exp (—a (#—n7) }7\]}'
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Where p = max p; one shows that gEM (E) (ie. the elements of g belong
to M (8)). The crucial fact is that a functlon holomorphic in a neighbourhood
of the polynomially convex E belongs to € () (see [0]) and here one consi-

ders functions g, (#,7, A, 2") = exp [ (z‘—-’r)P( FE z)], e=(g1, -, en),
for # > which tend to g pointwise boundedly as & — o. Defining £., (H)

as £ (H) with the weak operator topology and H=H" we obtain (see [4]).
THEOREM 1.—Let M () be E parabolic with B a p—convex p-spectral set
Jor A as indicated. Then z‘/zere exists a weak Green's operator G (z‘ 7) =TIy

with (¢ T)—>G(t,'r) €CO0 (2, (H)) Jor t=7,t—>G(t,7) as well as v -G (¢,7)
belong to C' (S (H)) Jor t >, and G; 4 PG = o formally with G (z ,z) = 1.

In the general hyperbolic case ¢ will usually not be bounded (see however
[1; 2; 4] and remark 2) and we can treat this as a special case of a H—correct
problem where M (#) E—correct means ¢ (A,z) << ¢ for A\, >¢, real and
# €04 (6). Then one has an estimate |g| < (1 + |A])?” ™" and the index
of correctness is defined as the smallest number w such that for A, > ¢,
real, 2’ €04 (8), and 0 <7 <#<T < oo, there holds |g| <c (1 + |A])¥,
Let s >p and define K (¢, 7,A,2)=||A||*¢g(#,7,r,2) where |[[)\]|| =

= (@)™ (thus ||A]| =|r] in E). Then cons1der the functions &,

HE,r,1/z+¢,2),e= (¢, -, ex), where one chooses a branch of
lIl1/z + sH|~’ so as to deal with K, holomorphic in a neighborhood of E. Then
g, eC (&), K is continuous in (¢,7, A, ") for A< o, | He| < ¢ for (z,2) €&,
and H, — & as ¢ -0 where & is defined as K = [[[)\|||_’g for t >, A< o0
and & = o for ¢ > Tt and (z, z)GuV Hence & €M (E) and one deﬁnes

K@,m)=T&eg (H) To check continuity note that if (2,,r,) = (¢, 1)
then H(z,,7,,Ar,2) > H(,7,\,2) pointwise boundedly in E and hence
by bounded convergence K (7,,7,) - K (#,7) in the weak operator topo-
logy (note that [[|A][|7" = 0 on UV, when checking continuity at ().

‘Next observe that |3}/oz| = |— P& | < ¢ |r|? | K| and we take p = 2v even
now for convenience. Define an operator Q = ]_"(H|7\H|_2) =T (= 1/77H
which evidently makes sense (con51der [l 1/z+¢|||"* to conclude that 2] %€

eM (E)). Then 1f x = va and AK =K (#+ Az,7)— K (¢,7) we have,
using the Fubini-Tonelli theorems

(2.6) (AK7,2) = AKQ'y,7) = / ASE |1 [|[72 vy
24-At i
= [ ( [raiipi o)
i £ _

t4A2

—[ @I K697, .
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Setting g == [X 1/#2]-1 we note that I (r22g )T (g) x =0 implies x = o
and hence y =T'(g)x = Qx = o implies x =0, ie. Q is 1—1. We can
now state (cf. again [1; 4]).

THEOREM 2.—ZLet M () be B correct with index u,s >p p=2v
even, and B a p—com/ex p—spectral set for A as indicated. Then (¢,7)—

- K (l‘ T) €Co (L (H)) with t >K (¢,7) (and v —>XK(z, ‘r)) belonging to
C' (Cw D Q", H)) D (Q_V) has the graph topology).

Remarke 1 —Ev1dent1y to solve a homogeneous Cauchy problem one
considers initial data # of the form x=5SQ"y y where S is defined as F( A
Wlth the same ch01ce of branch as before Then w =K @#,71HQ" y satisfies

w "+ P, 6)w = o formally with w ('r) =z A
Remark 2.—Theorem 3 of [1] can be generalized con51derably by using
spectral sets E instead of uniform algebras (see [4] for details). This is a case

where g 1s bounded on & and it requires a much more delicate argument to
show g €M &) (see [1; 4]).

3. We give here two theorems about spectral sets which are proved in
detail in [4] The first idea is to construct & of the form E=m=xlo,a ' ]x]
where JCC" is a suitable compact p—convex set in C" containing 64 (4) such
that ||p (z,6)|| < csup|p(z,2)| for 2 €] (2 fixed). We give two ways
of finding such J, each with certain merits, one way based on the Weil inte-
gral [10] and the other on the Arens functional calculus [7]. Then one can
shows that E is p—convex and use the spectral theorem for self-adjoint ope-
rators to obtain the desired estimates.

THEOREM 3.—T here exist p-spectral p—convex sets B for A with z; >0
n& (=1, --,N) and o, CE.

An improvement of this in one direction (with a loss of knowledge in
another) can be obtained by recalling that if X||4,||2 <1 then there is a
Hilbert space ADH and permutable unitary operators U, ( =1, - -, L) with

by ‘= praUr, n; > o, where & ——prU means bx =PUx for P:H > H the
orthogonal projection (see [11]). Then if J is the joint spectrum in C* of
the U; con51dered as generators (with the identity) of a Banach algebra
Bin ¢ (H), i.e. J = og, it follows that the desired domination occurs with
~¢=1. One can then prove (since we can suppose Z||4||2 <1 without loss
of generality).

THEOREM 4.—p—spectral p—convex sets B for A can be found such that
2@, 0| <sup|p(e,2)| for (z,4)€ B with 2; >0 in & (i =1,---,N).
One expects sets & of some kind to exist; the point of the theorems is to
describe small ones, to find E with 2, >0, and to estimate the constants.
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