Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Robert Carroll

Some differential problems related to spectral theory in several operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 39 (1965), n.3-4, p. 170-174.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1965_8_39_3-4_170_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - Some differential problems related to spectral theory in several operators. Nota ${ }^{(*)}$ di Robert Carroll ${ }^{(* *)}$, presentata dal Socio Straniero A. Weinstein.
I. We will show that for a wide class of differential equations with operator coefficients a Green's operator can be constructed by spectral considerations and consequently the Cauchy problem can be solved for suitable data. The results generalize some theorems of $[1 ; 2]$ in certain respects and apply to a much wider class of problems. Some of the results have been sketched in a lecture [4] at the Séminaire de Mathématiques Supérieures, Université de Montréal, été 1965 , and will appear in detail in the mimeographed proceedings of this seminar to be ready some time next year; additional details can be found in $[\mathrm{I} ; 2 ; 3 ; 5]$ and with these as references we are also able to furnish in this note the demonstrations of the other theorems announced here whose proofs are not be found in [I;4].
2. We consider the differential operator

$$
\begin{equation*}
\mathrm{M}(u)=u^{(m)}+\sum_{j=0}^{m-1} \mathrm{P}_{j}\left(t, \Lambda_{k}, b_{l}\right) u^{(j)} \tag{2.1}
\end{equation*}
$$

where $u^{(j)}=d^{j} u l d t^{j}, \mathrm{P}_{j}$ is a polynomial in $\left(\Lambda_{j}, b_{l}\right)$ of degree p_{j} in the Λ_{k}, the $\Lambda_{k}(k=\mathrm{I}, \cdots, \mathrm{N})$ are self-adjoint (densely defined) positive operators in a separable Hilbert space $\mathrm{H}\left(\left(\Lambda_{k} u, u\right) \geq c_{k}\|u\|^{2}\right)$, the $a_{k}=\Lambda_{k}^{-1}$ and $b_{l}(l=\mathrm{I}, \cdots, \mathrm{L})$ are commuting bounded operators in $\mathrm{H}, a_{k} \Lambda_{s} \subset \Lambda_{s} a_{k}$ and $b_{l} \Lambda_{s} \subset \Lambda_{s} b_{l}$, and $t \rightarrow u(t)$ takes values in H with $\mathrm{o} \leq t \leq \mathrm{T}<\infty$. Let A be the Banach algebra generated by the a_{k}, b_{l}, and the identity e and let $\sigma_{\mathrm{A}} \subset \mathbf{C}^{\mathrm{N}+\mathrm{L}}$ be the joint spectrum of the generators a_{k}, b_{l}, defined as the image of the carrier space Φ_{A} under the map $\gamma: \Phi_{\mathrm{A}} \rightarrow \mathbf{C}^{\mathrm{N}+\mathrm{L}}$ where $\varphi(x)=\hat{x}(\varphi)$ and $\gamma(\varphi)=\left(\hat{a}_{1}(\varphi), \cdots, \hat{a}_{\mathrm{N}}(\varphi), \hat{b}_{1}(\varphi), \cdots, \hat{b}_{\mathrm{L}}(\varphi)\right)$. We recall that σ_{A} is compact and homomorphic to Φ_{A}. The spectral variables corresponding to a_{k} are denoted by z_{k} and similarly $b_{l} \sim z_{l}^{\prime}$; we write $\lambda_{k}=\mathrm{I} / z_{k}(k=\mathrm{I}, \cdots, \mathrm{N})$ and note that $c_{k} \leq \lambda_{k} \leq \infty$ or $\mathrm{o} \leq z_{k} \leq c_{k}^{-1}$.

We suppose that there is a compact set $\Xi \subset \mathbf{C}^{\mathrm{N}+\mathrm{L}}$ with $\sigma_{\mathrm{A}} \subset \Xi$ or not and $z_{k} \geq 0$ real in $\Xi(k=\mathrm{I}, \cdots, \mathrm{N})$, such that for any polynomial $p\left(z, z^{\prime}\right)$ one has $\|p(a, b)\| \leq c \sup \left|p\left(z, z^{\prime}\right)\right|$ for $\left(z, z^{\prime}\right) \in \Xi$ (we write $\left.p(a, b)=\Gamma p\left(z, z^{\prime}\right)\right)$. Such a set will be called a p-spectral set and we will describe in various ways the construction (always possible) of such sets (as small as we can make them) and the nature of the constant c which intervenes; moreover our

[^0](**) Research supported by NSF grant GP 4575.
p-spectral sets will be made polynomially convex (p-convex) for reasons to appear. A set Ξ is p-convex if for any $\zeta \notin \Xi$ there is a polynomial p such that $p(\zeta)=\mathrm{I}$ and $|p(\eta)|<\mathrm{I}$ for $\eta \in \Xi$. It is. well known that σ_{A} is p-convex for example (see [6] for Banach algebras, with suitable precautions concerning the false theorem I on p. 86, and [6;7] for functional calculi).

The spectral form of the Green's operators is obtained formally as

$$
\begin{align*}
g\left(t, \tau, \lambda, z^{\prime}\right) & =\exp \left[-(t-\tau) \mathrm{P}\left(\lambda, z^{\prime}\right)\right] \tag{2.2}\\
\mathrm{P}\left(\lambda, z^{\prime}\right) & =\left(\begin{array}{cccc}
\mathrm{O} & -\mathrm{I} & \cdots & \mathrm{o} \\
\cdots & \cdots & \cdots & \cdots \\
\mathrm{o} & \mathrm{o} & \cdots & -\mathrm{I} \\
\mathrm{P}_{0} & \mathrm{P}_{1} & \cdots & \mathrm{P}_{m-1}
\end{array}\right) \tag{2.3}
\end{align*}
$$

where $\mathrm{P}_{j}=\mathrm{P}_{j}\left(\lambda, z^{\prime}\right)$ is assumed independent of t. The case of time dependent coefficients can be handled as well of course (cf. [8]) but we will not spell out the details since it will be routine after seeing the present cases. The characteristic roots of $-\mathrm{P}\left(\lambda, z^{\prime}\right)$ are the roots of

$$
\begin{equation*}
\mathrm{Q}\left(\zeta^{\prime}, \lambda, z^{\prime}\right)=\zeta^{m}+\sum_{j=0}^{m} \mathrm{P}_{j}\left(\lambda_{k}, z_{l}^{\prime}\right) \zeta^{j} \tag{2.4}
\end{equation*}
$$

and we set $\psi\left(\lambda, z^{\prime}\right)=\max \operatorname{Re} \zeta_{k}\left(\lambda, z^{\prime}\right)$.
We denote by $\sigma_{\mathrm{A}}(b)$ the joint spectrum of the b_{l} in \mathbf{C}^{L}, i.e. the image of Φ_{A} under the map $\alpha: \Phi_{\mathrm{A}} \rightarrow \mathbf{C}^{\mathrm{L}}$ given by $\alpha(\varphi)=\left(\hat{b}_{1}(\varphi), \cdots, \hat{b}_{\mathrm{L}}(\varphi)\right)$; evidently $\sigma_{\mathrm{A}}^{\prime}(b)=p r_{\mathrm{L}} \sigma_{\mathrm{A}}$ where $p r_{\mathrm{L}}$ is the projection onto the space \mathbf{C}^{L}. $\mathrm{M}(u)$ will be called Ξ hyperbolic if $\psi\left(\lambda, z^{\prime}\right) \leq c|\lambda|+c_{1}$ for z^{\prime} bounded and $\psi\left(\lambda, z^{\prime}\right) \leq c_{2}$ for real $\lambda_{k} \geq c_{k}$ and $z^{\prime} \in \sigma_{\mathrm{A}}(b)\left(|\lambda|=\left(\Sigma\left|\lambda_{i}\right|^{2}\right)^{1 / 2}\right) ; \mathrm{M}(u)$ will be called Ξ parabolic if $\psi\left(\lambda, z^{\prime}\right) \leq-c|\lambda|^{h}+c_{1}$ for real $\lambda_{k} \geq c_{k}$ and $z^{\prime} \in \sigma_{\mathrm{A}}(b)$ where $\mathrm{o}<h \leq \max p_{k \mid(m-k)}(0 \leq k \leq m-\mathrm{I})$. In order to complete the definition of g later we shall have to consider also the sets $\mathrm{V}_{j}=\left\{\left(\tilde{z}^{\prime}, z^{\prime}\right) \in \Xi, z_{j}=0\right\}, \mathrm{I} \leq j \leq \mathrm{N}$. Finally we define $\dot{\mathrm{C}}(\boldsymbol{\Xi})$ to be the uniform closure of the polynomials on Ξ and $\vec{M}(\Xi)$ to be the bounded Baire functions obtained from $\stackrel{C}{C}(\Xi)$ by taking iterated pointwise bounded sequential limits (i. e. $f_{n} \in \check{\mathrm{C}}(\Xi),\left|f_{n}\right| \leq c$, and $f_{n}^{\prime}(\zeta) \rightarrow f(\zeta)$ for each $\zeta \in \Xi$ implies
 $\rightarrow(\Gamma(f) x, y)_{\mathrm{H}}: \stackrel{\mathrm{C}}{ }(\Xi) \rightarrow \mathbf{C}$ define by Hahn-Banach a family of measures $\nu_{x y}$ on Ξ with $(\Gamma(f) x, y)_{\mathrm{H}}=\int f d v_{x y}$ and, using the Lebesgue bounded convergence theorem, one can extend Γ as a homomorphism (algebraic) to $\stackrel{M}{(\Xi)}$ with values in $\mathcal{L}(\mathrm{H})(\mathcal{L}(\mathrm{H})$ denotes bounded operators). We use the same symbol $\Gamma: \mathrm{P}(\Xi) \rightarrow \mathrm{A}, \Gamma: \stackrel{\mathrm{C}}{ }(\Xi) \rightarrow \mathrm{A}$, and $\Gamma: \stackrel{\mathrm{M}}{ }(\Xi) \rightarrow 2(\mathrm{H})$.

First consider the parabolic case and define g by (2.2) for $t>\tau$ with $g\left(\tau, \tau, \lambda, z^{\prime}\right)$ defined as I on $\Xi-\cup \mathrm{V}_{j}$ and zero on $\cup \mathrm{V}_{j}$. Using the inequality

$$
\begin{equation*}
|g| \leq c\left(\mathrm{I}+(t-\tau)^{1 / p}|\lambda|\right)^{p(m-1)} \exp \left(-c_{1}(t-\tau)|\lambda|^{k}\right. \tag{2.5}
\end{equation*}
$$

where $p \geq \max p_{j}$ one shows that $g \in \stackrel{M}{(\Xi)}$ (i.e. the elements of g belong to $\stackrel{M}{M}(\Xi)$. The crucial fact is that a function holomorphic in a neighbourhood of the polynomially convex Ξ belongs to $\stackrel{C}{C}(\Xi)$ (see [9]) and here one considers functions $g_{\varepsilon}\left(t, \tau, \lambda, z^{\prime}\right)=\exp \left[-(t-\tau) \mathrm{P}\left(\frac{1}{z+\varepsilon}, z^{\prime}\right)\right], \varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{\mathrm{N}}\right)$, for $t>\tau$ which tend to g pointwise boundedly as $\varepsilon \rightarrow 0$. Defining $\mathscr{S}_{w}(\mathrm{H})$ as $\mathcal{L}(\mathrm{H})$ with the weak operator topology and $\overrightarrow{\mathrm{H}}=\mathrm{H}^{m}$ we obtain (see [4]).

Theorem i.-Let $\mathrm{M}(u)$ be Ξ parabolic with Ξ a p-convex p-spectral set for A as indicated. Then there exists a weak Green's operator $\mathrm{G}(t, \tau)=\Gamma g$ with $(t, \tau) \rightarrow \mathrm{G} \underset{\rightarrow}{(t, \tau)} \in \mathrm{C}^{0}\left(£_{w}(\overrightarrow{\mathrm{H}})\right)$ for $t \geq \tau, t \rightarrow \mathrm{G}(t, \tau)$ as well as $\tau \rightarrow \mathrm{G}(t, \tau)$ belong to $\mathrm{C}^{\prime}\left(\mathfrak{F}_{w}(\overrightarrow{\mathrm{H}})\right)$ for $t>\tau$, and $\mathrm{G}_{t}+\mathrm{PG}=0$ formally with $\mathrm{G}(\tau, \tau)=\mathrm{I}$.

In the general hyperbolic case g will usually not be bounded (see however [$1 ; 2 ; 4]$ and remark 2) and we can treat this as a special case of a Ξ-correct problem where $\mathrm{M}(u) \Xi$-correct means $\psi\left(\lambda, z^{\prime}\right) \leq c$ for $\lambda_{k} \geq c_{k}$ real and $z^{\prime} \in \sigma_{\mathrm{A}}(b)$. Then one has an estimate $|g| \leq c_{1}(\mathrm{I}+|\lambda|)^{p(m-1)}$ and the index of correctness is defined as the smallest number μ such that for $\lambda_{k} \geq c_{k}$ real, $z^{\prime} \in \sigma_{\mathrm{A}}(b)$, and $0 \leq \tau \leq t \leq \mathrm{T}<\infty$, there holds $|g| \leq c(\mathrm{I}+|\lambda|)^{\mu}$, Let $s>\mu$ and define $\mathscr{F}\left(t, \tau, \lambda, z^{\prime}\right)=\| \| \lambda\| \|^{-s} g\left(t, \tau, \lambda, z^{\prime}\right)$ where $\|\lambda\| \|=$ $=\left(\Sigma \lambda_{i}^{2}\right)^{1 / 2}$ (thus $||\lambda||\left|=|\lambda|\right.$ in Ξ). Then consider the functions $\mathfrak{R}_{\varepsilon}=$ $\nVdash\left(t, \tau, \mathrm{I} / z+\varepsilon, z^{\prime}\right), \varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{\mathrm{N}}\right)$, where one chooses a branch of $\|\mathrm{I} / z+\varepsilon\| \|^{-s}$ so as to deal with $\mathscr{K}_{\varepsilon}$ holomorphic in a neighborhood of Ξ. Then $\mathscr{\Re}_{\varepsilon} \in \mathrm{C}(\Xi), \mathscr{\varkappa}_{\varepsilon}$ is continuous in $\left(t, \tau, \lambda, z^{\prime}\right)$ for $\lambda<\infty,\left|\Re_{\varepsilon}\right| \leq c$ for $\left(z, z^{\prime}\right) \in \Xi$, and $\mathscr{K}_{\varepsilon} \rightarrow \mathscr{H}$ as $\varepsilon \rightarrow 0$ where \mathscr{K} is defined as $\mathscr{H}=\| \| \lambda\| \|^{-s} g$ for $t \geq \tau, \lambda<\infty$ and $\mathscr{H}=0$ for $t \underset{\rightarrow}{\geq}$ and $\left(z, z^{\prime}\right) \epsilon \cup V_{j}$. Hence $\mathscr{\mathscr { H }} \in \stackrel{M}{M}(\Xi)$ and one defines $\mathrm{K}(t, \tau)=\Gamma \Re \in \mathcal{L}(\overrightarrow{\mathrm{H}})$. To check continuity note that if $\left(t_{n}, \tau_{n}\right) \rightarrow(t, \tau)$ then $\mathscr{H}\left(t_{n}, \tau_{n}, \lambda, z^{\prime}\right) \rightarrow \mathscr{F}\left(t, \tau, \lambda, z^{\prime}\right)$ pointwise boundedly in Ξ and hence by bounded convergence $\mathrm{K}\left(t_{n}, \tau_{n}\right) \rightarrow \mathrm{K}(t, \tau)$ in the weak operator topology (note that $\left\|\|\lambda\|^{-s}=\mathrm{o}\right.$ on $\cup \mathrm{V}_{j}$ when checking continuity at (τ, τ)). Next observe that $|\partial \mathscr{I} / \partial t|=|-\mathrm{P} \Re| \leq c|\lambda|^{p}|\mathscr{}|$ and we take $p=2 v$ even now for convenience. Define an operator $\Omega=\Gamma\left(\|\lambda\| \|^{-2}\right)=\Gamma\left(\left[\begin{array}{l}\left.\left.\mathrm{I} / z_{i}^{2}\right]^{-1}\right)\end{array}\right.\right.$ which evidently makes sense (consider $\mid\|\mathrm{I} / z+\varepsilon\|^{-2}$ to conclude that $\mid\|\lambda\|^{-2} \epsilon$
 using the Fubini-Tonelli theorems

$$
\begin{align*}
(\Delta \mathrm{K} \vec{x}, \vec{z})_{\mathrm{H}} & =\left(\Delta \mathrm{K} \Omega^{v} \vec{y}, \vec{z}\right)=\int_{\Xi} \Delta \Re\|\lambda \lambda\|^{-2 v} d v \vec{y} \overrightarrow{ } \tag{2.6}\\
& =-\int_{t}^{t+\Delta t}\left(\int_{\Xi} \mathrm{P} \Re\|\lambda\|^{-2 v} d{ }_{\vec{y}} \vec{z}\right) d \eta \\
& =-\int_{t}^{t+\Delta t}\left(\Gamma\left(\mathrm{P}\|\lambda\|^{-p}\right) \mathrm{K}(\eta, \tau) \vec{y}, \vec{z}\right) d \eta
\end{align*}
$$

Setting $g=\left[\Sigma_{\mathrm{I}} / z_{i}^{2}\right]^{-1}$ we note that $\Gamma\left(\pi z_{k}^{2} g^{-1}\right) \Gamma(g) x=0$ implies $x=0$ and hence $y=\Gamma(g) x=\Omega x=0$ implies $x=0$, i.e. Ω is $\mathrm{I}-\mathrm{I}$. We can now state (cf. again [$1 ; 4]$).

Theorem 2.-Let $\mathrm{M}(u)$ be Ξ correct with index $\mu, s>\mu \quad p=2 v$ even, and Ξ a p-convex p-spectral set for A as indicated. Then $(t, \tau) \rightarrow$ $\rightarrow \mathrm{K}(t, \tau) \in \mathrm{C}^{0}\left(\varrho_{w v}(\overrightarrow{\mathrm{H}})\right.$) with $t \rightarrow \mathrm{~K}(t, \tau)$ (and $\tau \rightarrow \mathrm{K}(t, \tau)$) belonging to $\left.\mathrm{C}^{\prime}\left(\wp_{w} \overrightarrow{(\mathrm{D}}\left(\Omega^{-v}\right), \overrightarrow{\mathrm{H}}\right)\right)\left(\mathrm{D}\left(\Omega^{-v}\right)\right.$ has the graph topology).

Remark I.-Evidently to solve a homogeneous Cauchy problem one considers initial data \vec{x} of the form $\vec{x}=\mathrm{S} \Omega^{v} \vec{y}$ where S is defined as $\Gamma\left(\|\|\lambda\|\|^{-s}\right)$ with the same choice of branch as before. Then $\vec{w}=\mathrm{K}(t, \tau) \Omega^{v} \vec{y}$ satisfies $\overrightarrow{w^{\prime}}+\mathrm{P}(\Lambda, b) \vec{w}=\mathrm{o}$ formally with $\vec{w}(\tau)=\vec{x}$.

Remark 2.-Theorem 3 of [I] can be generalized considerably by using spectral sets Ξ instead of uniform algebras (see [4] for details). This is a case where g is bounded on Ξ and it requires a much more delicate argument to show $g \in \mathscr{M}(\boldsymbol{\Xi})$ (see $[\mathrm{I} ; 4]$).
3. We give here two theorems about spectral sets which are proved in detail in [4]. The first idea is to construct Ξ of the form $\Xi=\pi\left[0, c_{k}^{-1}\right] \times \mathrm{J}$ where $\mathrm{JC} \mathbf{C}^{\mathrm{L}}$ is a suitable compact p-convex set in \mathbf{C}^{L} containing $\sigma_{\mathrm{A}}(b)$ such that $\|p(z, b)\| \leq c \sup \left|p\left(z, z^{\prime}\right)\right|$ for $z^{\prime} \in \mathrm{J}$ (z fixed). We give two ways of finding such J , each with certain merits, one way based on the Weil integral [Io] and the other on the Arens functional calculus [7]. Then one can shows that Ξ is p-convex and use the spectral theorem for self-adjoint operators to obtain the desired estimates.

Theorem 3.-There exist p-spectral p-convex sets Ξ for A with $z_{i} \geq 0$ in $\Xi(i=\mathrm{I}, \cdots, \mathrm{N})$ and $\sigma_{\mathrm{A}} \subset \Xi$.

An improvement of this in one direction (with a loss of knowledge in another) can be obtained by recalling that if $\Sigma\left\|b_{l}\right\|^{2} \leq \mathrm{I}$ then there is a Hilbert space $\check{H} \supset \mathrm{H}$ and permutable unitary operators $\mathrm{U}_{i}(i=1, \cdots, \mathrm{~L})$ with $\pi b_{i}^{n_{i}}=\operatorname{pr} \pi \mathrm{U}_{i}^{n_{i}}, n_{i} \geq \mathrm{o}$, where $b=\operatorname{pr} \mathrm{U}$ means $b x=\mathrm{PU} x$ for $\mathrm{P}: \stackrel{\mathrm{H}}{\mathrm{H}} \mathrm{H}$ the orthogonal projection (see [II]). Then if J is the joint spectrum in \mathbf{C}^{L} of the U_{i} considered as generators (with the identity) of a Banach algebra B in $\mathfrak{L}(\tilde{H})$, i.e. $J=\sigma_{B}$, it follows that the desired domination occurs with $c=\mathrm{I}$. One can then prove (since we can suppose $\Sigma\|b\|^{2} \leq \mathrm{I}$ without loss of generality).

Theorem 4.-p-spectral p-convex sets Ξ for A can be found such that $\|p(a, b)\| \leq \sup \left|p\left(z, z^{\prime}\right)\right|$ for $\left(z, z^{\prime}\right) \in \Xi$ with $z_{i} \geq 0$ in $\Xi(i=1, \cdots, \mathrm{~N})$.

One expects sets Ξ of some kind to exist; the point of the theorems is to describe small ones, to find Ξ with $z_{i} \geq 0$, and to estimate the constants.

References.

[1] R. Carroll, On the spectral determination of the Green's operator, to appear.
[2] R. Carroll, Sur la définition spectrale d'un opérateur de Green, "Comptes Rendus Acad. Sci. Paris», 257, 1663-1665 (1963).
[3] R. Carroll, Problems in linked operators. II., to appear in «Math. Annalen».
[4] R. Carroll, Quelques problèmes différentiels abstraits, Séminaire de Math. Sup., Université de Montréal, été 1965.
[5] R. Carroll, Problèmes d'opérateurs reliés, «Comptes Rendus Acad. Sci. Paris», 259, 1687-1689 (1964).
[6] I. Gelfand, D. Raikov, G. Šilov, Communtative normed rings, Moscow 1960.
[7] R. Arens, The analytic functional calculus in communtative algebras, «Pacific Jour. of Math.», II, 405-429 (1961).
[8] I. Gelfand, G. Šilov, Certain questions in the theory of differential equations, Moscow 1958.
[9] R. Gunning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs 1965.
[io] B. FUks, Introduction to the theory of analytic functions of several complex variables, Moscow 1962; Special topics in the theory of analytic functions of several complex variables, Moscow 1963.
[II] S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, «Acta Sci. Math. Szeged», 22, 106-III (196i).

[^0]: (*) Pervenuta all'Accademia il 6 settembre 1965.

