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Matematica. —■ Some differential problems related to spectral 
theory m  several operators. Nota (#) di R o b e r t  C a r r o l l  (**}, presen­
tata  dal Socio Straniero A. W e i n s t e i n .

1. W e will show th a t for a wide class of differential equations with ope­
ra tor coefficients a G reen’s operator can be constructed by spectral conside­
rations and consequently the C auchy problem  can be solved for suitable 
data. The results generalize some theorems of [1; 2] in certain respects and 
apply to a m uch w ider class of problems. Some of the results have been 
sketched in a lecture [4] at the Sém inaire de M athém atiques Supérieures, 
U niversité de M ontréal, été 1965, and will appear in detail in the m im eogra­
phed proceedings of this sem inar to be ready some tim e next year; additional 
details can be found in [1; 2; 3; 5] and with these as references we are also 
able to furnish in this note the dem onstrations of the other theorem s announc­
ed here whose proofs are not be found in [1 ; 4].

2. W e consider the differential operator

m —  1

(2 ■ i ) M («) =  «<">+ X  P/ (*, Ak , b,) «W
J= 0

where #  =  dJ ufdP, Py is a polynomial ,'in (Ay, bj) of degree pj in the Ak, 
the Ak (k =  .1 , • • •, N) are self-adjoint (densely defined) positive operators 
in a separable Hilbert space H ((A*u , u) >  ck \\ u \\2), the ak =  A T 1 and 

are commuting bounded operators in H, ak AsC A s ak and 
bt A s C A, b/f and t  -> u (t) takes values in H with o <  t  <C T < 0 0 . Let A 
be the Banach algebra generated by the ak } bl 9 and the identity e and 
Jet g a  C CNfL be the joint spectrum of the generators ak , b l , defined as the 
image of the carrier space <E>A under the map y :Oa -> CN+L where (p(x) = £ (9 )  
and y (9) =  (ax (9) , • • •, aN (9) , b\ (9) , • • •, b^ (9)). We recall that crA is com­
pact and homomorphic to Oa . The spectral variables corresponding to ak 
are denoted by zk and similarly bl ^  z\; we write \ k — 1 \zk (k =  1 , • • •, N) 
and note that ck <  \ k <  00 or o <  zk <  c j 1.

W e suppose th a t there is a compact set E C C N+L with <rA C S  or not 
and ^ > 0  real in S  (k — 1 , • • •, N), such th a t for any polynom ial p ( z , z') one 
has || p ( a ,  ^ ) | | <  c sup \ p ( z , z ' ) \  for (z,z ' )  e 3  (we w rite p(a ,  b) = V p  ([z, z f)). 
Such a set will be called a / - s p e c tra l  set and we will describe in various ways 
the construction (always possible) of such sets (as small as we can m ake 
them ) and the natu re of the constant c which intervenes; m oreover our

(*) Pervenuta all’Accademia il 6 settembre 1965.
■(**) Research supported by NSF grant GP 4575.
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/-s p e c tra l  sets will be m ade polynom ially convex (/-co n v ex ) for reasons 
to appear. A  set S  is /-c o n v e x  if for any there is a polynom ial /
such th a t /  (£) =  1 and | /  (t])| <C i for y) € a.  I t is-well known th a t <7 a is
/-c o n v e x  for exam ple (see [6] for Banach algebras, with suitable precautions 
concerning the false theorem  1 on p. 86, and [6; 7] for functional calculi). 

The spectral form of the G reen’s operators is obtained form ally as

(2-2) g  , X , z '}  =  exp [—  (/ — t) P (X , / ) ]

(2-3) P ( X , / ) =  0 Q . . .  _ T

\P 0 Pi •• P m_J
where Py =  Py (X , / )  is assumed independent of t. The case of tim e depend­
ent coefficients can be handled as well of course (cf. [8]) but we will not spell 
out the details since it will be routine after seeing the present cases. The 
characteristic roots of — P (X , z )  are the roots of

m  —  1

(2-4) Q ( C  X , '*') =  +  2  Py (X, , S,) V
J =0

and we set <J* (X , s') =  m ax Re Kk (X , s').
We denote by aA (b) the joint spectrum of the bt in CL, i.e. the image 

of ®A under the map a : ®A CL given by a (<p) =  (b\ (<p), • ■ • , bL (<p)); 
evidently aA (b) =  p rh aA where prh is the projection onto the space CL. 
M (u) will be called E hyperbolic if ^ (X , / )  <  r|X | +  c1 for /  bounded and 

(X , s’) <  r2 for real X* >  ck and z  e aA (b) (| X | == (2 | X,-]2)1/2) ; M (u) will 
be called E parabolic if (X , .s') < — c ] X |A +  for real ^  ck and 
z'e aA (b) where o <  k  <  max pkKm-t) (o <  k  <  m  — i). In order to com­
plete the dejfinition of g  later we shall have to consider also the sets 
V/ =  {(z ,z ')  e 3  , Sj =  0}, 1 <  j  <  N. Finally we define C (E) to be the 
uniform closure of the polynomials on E and M (S) to be the bounded Baire<s> ■* '
functions obtained^ from  C (E) by tak ing  iterated pointwise bounded sequential 
limits (i. e. f n e C (S ), |/„ , | <  c, and f n (£) - > / ( £ )  for each £ e E  implies 
/ e M ( E )  and repetitions give all M (E)). • The continuous m aps § xy ’. f -+ 

( f )  x  >y)h : C (E) - ^ C  define by H ahn-B anach a fam ily of m easures v ■

on E w ith (T ( f )  x , y )n = j f d v XJI and, using the Lebesgue bounded convergence

theorem , one: can extend V as a homomorphism (algebraic) to M (E) with 
values in £ (H) (£ (H) denotes bounded operators). W e use the same symbol 
r  : P (S) -> A , r  : C (3) -> A, and P : M (E) -* £ (H).

F irst consider the parabolic case and define g  by (2.2) for t  >  x w ith 
g ( T , T , X , z ' )  defined as 1 on E — ( j Vy and zero on u V y . U sing the 
inequality

(2.5) \g\  <  c (I +  ( t ^ x ) m  | X | y (— w exp (— a  (t —  t )  fX I h
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where p  >  m ax pj one shows that g  eM  (E) (i.e. the elements of g  belong 
to M (H)). The crucial fact is that a function holomorphic in a neighbourhood 
of the polynomially convex E belongs to C (E) (see [9]) and here one consi-

s =  (s i  > • • • j sn),

Defining £w (H)

ders functions ge ( t , t  , X , s') =  exp — ( t— t) P  ̂

for  ̂ >  t  which tend to g  pointwise boundedly as s -> o.
\ Z  -f  s

as £ (H) with the weak operator topology and H =  H m we obtain (see [4]).
T h eo r em  i .—Let M (u) be E parabolic with E a p-convex p-spectral set 

fo r  A as indicated. Then there exists a weak Green's operator G (t,r )  =  Tg

with  (* ,t) G (t, t) e C« (£«, (H)) fo r  t > x  , t -> G (t , t) as well as t  -*■ G ( t , t)

belong to C (2W (H)) fo r  t  y> t , and  G/ -)- PG =  o form ally with  G (t , t) =  I.
In  the general hyperbolic case g  will usually not be bounded (see however 

[1; 2; 4] and rem ark  2) and we can treat this as a special case of a E -correct 
problem  where M (u) E -correct m eans (j (X , z ’) <  £ for Ak >  ck real and 
z ' e a A (b). Then one has an estim ate | ^ |  <  a  (1 +  |X])/(OT~ 1) and the index 
of correctness is defined as the sm allest num ber y. such th a t for hk >  ck 
real, z  e <jA (b), and o <  t  <  T <  T  < 0 0 , there holds | g  | <  (1 +  | X |)^ ,
L et J >  fA and define 3t ( t , t  , X , z') =  |||X|||— ( t , f  , X , z )  where |||X||| =  
=  (S X p 2 (thus HI X I)) =  IX ] in E). Then consider the functions =  
3i ( t , T , i/z +  e , z') , s =  (sj , • • • , sn), where one chooses a branch of 
HIi/-s' +  s l i p  so as to deal w ith <3CE holomorphic in a neighborhood of E. Then 

eC  fe), Sis is continuous in (/, t  , X , z )  for X< oo ,\ Sie \ <  c for (z y z f) € E, 
and Sie Si as g o where Si is defined as Si =  ||| X for t  >  t  , X <  oo
and dC =  o for t  Z> t and (z , z ') 6 u V y . Hence qTC eM  (H) and one defines

K ( t , t) =  VSi e £ (H). To check continuity note th a t if  (tn , t„) -> ( t , t) 
then Si (in , r„ , X , z )  -> Si ( t , t , X , z r) pointwise boundedly in E  and hence 
by bounded convergence K (tn , t*) -> K ( t , t )  in the weak operator topo­
logy (note th a t | | |X| | |~J = o  on u V y when checking continuity at (T » T))- 
N ext observe th a t \dSi/dt\ == | — VSi  | <  c |X |^ | Si\ and we take p  =  2v even 
now for convenience. Define an operator Q =  V ( |||X |||~ 2) =  T ([S  ip f ] -1 ) 
which evidently m akes sense (consider ||| ijz +  s |||~ 2 to conclude th a t |||X ||| 2e

€M  (ii)). Then i f x =  and AK .=  K (t - f  At , t )  —  K ( t , t )  we have, 
using the Fubini-Tonelli theorems

(AK* , *)H =  (AKn vy , z )  =  Adt|||X |||~2v

t+te

p a | | | x r ^ v ^ .
I I I  I I I  y Z I t

(T (P ll|X |||—9  K (y) ,x) y , z~) dy\
t

(2.6)
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Setting *  =  [S 1/**]-! we note that T (y z \g r v) T (g) x  =  o implies x  =  o 
and hence y  =  T (g) x  =  t lx  =  o implies x  =  o, i.e. i l  is 1 —  1. We can 
now state (cf. again [1; 4]).

THEOREM 2 .— Let  M iu) be S correct with index [j., .r >  [/, p  — 2 v 
even, and  S  a p-convex p-spectral set fo r  A  as indicated. Then (t, t ) - >

*-> K ( t , t )  6 C° (2W (H;)) with t  ->  K ( /  , t )  (and  t  — K ( t , t ) )  belonging to

C (£«, (D (ii v) , H)) (D (£i v) has the graph topology).
Remark I .—Evidently to solve a homogeneous Cauchy problem one

considers initial data x  of the form x  =  SQvy  where S is defined as F ( |||X ||P )  

with the same choice of branch as before. Then w  =  K ( t , t) Ovy  satisfies
w'-\- P (A , b)w  — o formally with w  (t) =  x.

Remark 2 .—Theorem 3 of [1] can be generalized considerably by using 
spectral sets E instead of uniform algebras (see [4] for details). This is a case 
where g  is bounded on E and it requires a much more delicate argument to 
show g  £ M (E) (see I 1; 4])-

3. We give here two theorems about spectral sets which are proved in 
detail in [4]. The first idea is to construct a  of the form E =  -k [o , c j 1] X J 
where JCC is a suitable com pact/-convex  set in CL containing <ta (^) such 
that | | / ( z  , b)\\ <  c sup \p  (z , z')\ f o r z ' e ]  (z fixed). We give two ways 
of finding such J, each with certain merits, one way based on the Weil inte­
gral [10] and the other on the Arens functional calculus [7]. Then one can 
shows that a  is /-co n v ex  and use the spectral theorem for self-adjoint ope­
rators to obtain the desired estimates.

T h eo rem  3 .— There exist p-spectral p-conv^x sets E fo r  A  with > 0  
in E (i =  1 , • • •, N) and ga C E.

An improvement of this in one direction (with a loss of knowledge in 
another) can be obtained by recalling that if 2 | | ^ | | 2 < i  then there is a 
Hilbert s>pace H D H  and permutable unitary operators U,- (i =  1 , • • •, L) with 
7zbf = p r n U n/  J % >  o, where b =  p r  U means bx =  PU* for P : H H  the 
orthogonal projection (see [n ]) . Then if J is the joint spectrum in CL of 
the U,- considered as generators (with the identity) of a Banach algebra 
B in £ (H), i.e. J =  ctb , it follows that the desired domination occurs with 
c =  1. One can then prove (since we can suppose 2 | | £ | | 2 < 1  without loss 
of generality).

T h eo rem  4.—p-spectral p-convex sets E fo r  A  can be fo und  such that 
IlP (a y,&)■ || <  sup I p  (z , d )  I fo r  (z , z f) 6 E with z{ >  0 in E (i =1 ,• • •, N).

One expects sets E of some kind to exist; the point of the theorems is to 
describe small ones, to find E with sf. >  o, and to estimate the constants.
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