Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Jerzy Herzsberg

 Extension of the Notion «Comportamento

 Extension of the Notion «Comportamento Associato»

 Associato»}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 39 (1965), n.1-2, p. 41-44.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1965_8_39_1-2_41_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - Extension of the Notion «Comportamento Assoclato». Nota ${ }^{(*)}$ di Jerzy Herszberg, presentata dal Socio B. Segre.
I. The notion of associated behaviour (comportamento associato) was introduced first by B. Segre in his paper on resolution of singularities [3]. Some further results were given by the same author in [4] and related topics were also considered in [5] and [r].

Let V be an algebraic primal in S_{d}. For simplicity we take non-homogeneous coordinates x_{1}, \cdots, x_{d} and the equation of V is then given by $f(x)=0$, where $f(x)$ is a polynomial in x_{1}, \cdots, x_{d}.

We write

$$
g(x) \sim\{f(x)\}_{r}
$$

if there exists an identity of the form

$$
g(x)=a(x) f(x)+\sum_{s \leq r} b_{s}(x) \omega^{(s)} f(x),
$$

where $a(x), b_{s}(x)$ are polynomials in x_{1}, \cdots, x_{d}, and $\omega^{(s)}$ denotes some differential operator of the form $\frac{\partial s}{\partial x_{1}^{\lambda_{1}} \cdots \partial x_{d}^{\lambda_{d}}}$ with $\lambda_{1}+\cdots+\lambda_{d}=s$.

The primal W of S_{d} whose equation is $g(x)=0$ is said to have associated bahaviour at o of index r with V . If the multiplicity of V at o is $m(\dot{m}>r)$ and if the multiplicity of W at o is precisely $m-r$, then the behaviour is said to be regular.

The primal W which has associated behaviour with V plays a fundamental role in connection with Segre's methods of resolution of singularities, as pointed out by the author in [3]. However, one of the conditions that a subvariety may be a base of a dilatation is that the subvariety is non-singular. If V has a subvariety C such that each poit of C is $s-$ ple on V and no point of V is s_{1}-ple, where $s_{1}>s$, then it is possible that C itself has singularities. Thus, we have to perform preliminary dilatations on C , in order to resolve the singularities of V. Here, however, C is not a primal and it appears that it is essential to extend the notion of associated behaviour to varieties situated in a space of arbitrary dimension.

In this paper we estend the definition of associated behaviour and show that such associated primals exist and have properties similar to those shown by B. Segre in [4].
2. Let V be an irreducible algebraic variety of dimension d situated in a projective space of dimension n over the complex number field K , where $n \geq d+\mathrm{I}$. For simplicity we take non-homogeneous coordinates x_{1}, \cdots, x_{n}.
(*) Pervenuta all'Accademia il 14 luglio 1965.

Then the variety V is given by a prime ideal \mathfrak{p} in the polynomial ring $\mathrm{K}\left[x_{1}, \cdots, x_{n}\right]$. Suppose C is a subvariety of V such that
i) C is not at infinity,
ii) C itself has no multiple points.
iii) each point of C is s-ple on V, where $s>\mathrm{I}$,
iv) no point of V has multiplicity s_{1}, where $\mathrm{s}_{1}>s$.

If, in general, $\mathrm{F}=\mathrm{F}_{\alpha}+\mathrm{F}_{\alpha+1}+\cdots+\mathrm{F}_{\beta}$, where $\mathrm{F}_{\alpha} \neq \mathrm{o}$ and F_{i} is a form of degree i, then we say that the order of F is α and F_{α} is called the subform of F . We write $\mathrm{o}(\mathrm{F})=\alpha$.

Let the basis of the ideal \mathfrak{p} be f_{1}, \ldots, f_{m}. Suppose C passes through the origin o and suppose further that $\mathrm{o}\left(f_{i}\right)=\mathrm{I}$ for $i=\mathrm{I}, 2, \ldots, \rho$ and $\mathrm{o}\left(f_{i}\right)>\mathrm{I}$ for $i>\rho$. Let Φ_{i} be the subform of f_{i}. If $\Phi_{1}, \ldots, \Phi_{\mathrm{e}}$ are linearly dependent, then we may replace $f_{1}, \cdots, f_{\mathrm{Q}}$ by suitable linear combinations of them which have the following properties:
i) $\mathrm{o}\left(f_{i}\right)=\mathrm{I}$ for $i=\mathrm{I}, 2, \cdots, r$, where $r<\rho$,
ii) $\mathrm{o}\left(f_{i}\right)>\mathrm{I}$ for $i=r+\mathrm{I}, \cdots, \rho$,
iii) $\Phi_{1}, \cdots, \Phi_{r}$ are linearly independent.

Now V is of dimension d. Hence $r \leq d$. We assert that $r<d$. For suppose that $r=d$. Then $\Phi_{1}, \cdots, \Phi_{d}$ can be taken as the uniformising parameters of V at o and thus o is a simple point of V . This is a contradiction to our hypothesis and thus the assertion is proved. Of course, it is possible that $r=\mathrm{o}$, i. e. $\mathrm{o}\left(f_{i}\right)>\mathrm{I}$ for all i.

We now proceed in the same way as above and arrange the basis of \mathfrak{p} so that the following properties are satisfied:
i) $\mathrm{o}\left(f_{i}\right)=n_{i+1}$ for $j=r_{i}+1, \cdots, r_{i+1}$ and $i=\mathrm{o}, \mathrm{I}, \cdots, \mathrm{M}-\mathrm{I}, r_{0}=0, r=r_{1}$,
ii) $\Phi_{j}\left(j=r_{i}+\mathrm{I}, \cdots, r_{i+1}\right)$ are linearly independent for $i=\mathrm{o}, \mathrm{r}, \cdots, \mathrm{M}-\mathrm{I}$ and $r_{\mathrm{M}}=m$,
iii) $\mathrm{I} \leq n_{1}<n_{2}<\cdots<n_{M}$.

Let \mathfrak{a}_{0} be the ideal formed by the subforms Φ_{i}. Then \mathfrak{a}_{0} is a homogeneous ideal and represents a cone K_{0} which determines the multiplicity of V at o (cf. [2]). Thus K_{0} is of order s when all its components are counted with the proper multiplicity.

We assumed that each point of C is of multiplicity s on V . Thus, if P is a general pont of C , we may transform the origin to P and obtain a homogeneous ideal in the same way as we obtained \mathfrak{a}_{0}. Hence, with each point of C we may associate a homogeneous ideal and we denote it by $\mathfrak{a}_{0}[\mathrm{P}]$. The cone $\mathrm{K}_{0}[\mathrm{P}]$ represented by it is also of order s. Suppose that the basis of the ideal \mathfrak{a}_{0} is given by the forms $\Phi_{i}, i=i_{1}, i_{2}, \cdots, i_{\mu}$ and $i_{1}<i_{2}<\cdots<i_{\mu} \leq \mathrm{M}$. Since each point of C has multiplicity s, it follows that f_{i}, has has the same multiplicity at each point of C for $i=i_{1}, i_{2}, \cdots, i_{\mu}$.

Let k be an integer such that $r_{i}+\mathrm{I} \leq k \leq r_{i+1}$ and $k=i_{j}$ for some $j, \mathrm{I} \leq j \leq \mu$. Put

$$
g_{k}(x)=a_{k}(x) f_{k}(x)+\sum_{1 \leq r \leq m_{k}} b_{r}^{(k)}(x) \omega^{(r)} f_{k}(x)
$$

where m_{k} is an integer, $m_{k} \leq n_{k+1}-\mathrm{I}$ and $a_{k}(x), b_{r}^{(k)}(x)$ are polynomials in $x_{1}, \cdots, \dot{x}_{n}$.

Suppose o $\left[g_{k}(x)\right]=n_{k+1}-m_{k}$. Suppose further that we choose the polynomials $g_{k}(x)$ and the integers m_{k} so that $\lambda=n_{i+1}-m_{i}$ for $i=i_{1}, i_{2}, \cdots, i_{\mu}$ and $\mathrm{I} \leq \lambda \leq n$, where $n=\min _{1 \leq i \leq \mathrm{M}}\left(n_{i}\right)$.

Let

$$
\begin{equation*}
g(x)=\sum_{i=1}^{\mathrm{M}} \Phi_{i}(x) g_{i}(x) \tag{I}
\end{equation*}
$$

where $\Phi_{i}(x) \in \mathrm{K}[x]$.
We now give a definition.
Definition. A primal W represented by the equation (i) is said to have associated behaviour with V along C of order λ.

We remark that here $\mathrm{I} \leq \lambda \leq n$ and n is possibly less than $s-\mathrm{I}$. Indeed, if C is a curve of order 9 in S_{3} with a quadruple point at P, given by the intersection of two cubic surfaces, each having a double pount at P, but otherwise general, then $s=4$, but the only choice for λ is $\lambda=\mathrm{I}$.

Furthermore, $g_{i}(x)=a_{i}(x) f_{i}(x)$ for $i=\mathrm{I}, 2, \cdots, r$, and we also remark that the polynomials $g_{i}(x)$ are so chosen that the corresponding primals have regular associated behaviour. We restrict our definition to this case only.

We now perform a dilatation with C as the base. We obtain a variety V_{1} corresponding to V situated in an affine space A_{N}. Let C_{1} be a subvariety of V_{1}, corresponding to C of V. Suppose C_{1} is also s-ple on V_{1} and C_{1} is not at infinity. If P_{1} is any point of C_{1} we form a homogeneous ideal $a_{1}\left[\mathrm{P}_{1}\right]$, as before. Since the multiplicity of V_{1} at P_{1} is s, hence $\mathrm{K}_{1}\left[\mathrm{P}_{1}\right]$ is of order s and thus $\mathfrak{a}_{1}\left[\mathrm{P}_{1}\right]_{+}$repesents a cone of order s.

Now \mathfrak{a}_{0} is given by $\Phi_{i}, i=i_{1}, i_{2}, \cdots, i_{\mu}$, where $\mathrm{I} \leq \mu \leq m$. Let the proper transform of f_{i} be $f_{i}^{(1)}$ and let $\Phi_{i}^{(1)}$ be the subform of $f_{i}^{(1)}$ for $i=1,2, \cdots, m$. Here $\Phi_{i}^{(1)}$ is not necessarily the proper transform of Φ_{i}. Then the polynomials $\Phi_{i}^{(1)}$, where $i=i_{1}, i_{2}, \cdots, i_{\mu}$ certainly occur among the basis of the ideal $\mathfrak{a}_{1}[\mathrm{P}]$. Since the multiplicity of V_{1} at P_{1} is s, the cone $\mathrm{K}_{1}\left[\mathrm{P}_{1}\right]$ is of degree s and thus the multiplicities of $f_{i}, i=i_{1}, \cdots, i_{\mu}$, are not diminished.

But $f_{i}=\mathrm{o}$ represents a primal W_{i} and C is s_{i}-ple on it, say. Thus, after the transformation, C_{1}, is also s_{i}-ple on V_{1}. Hence, by the result of B. Segre [4] the transform $\mathrm{W}_{i}^{(1)}$ of W_{i} has regular associated behaviour with V_{1} along C_{1}.

We thus state
Theorem I.-Let V be a variety and let W have associated behaviour with V along C . Suppose C is s-ple on V and suppose we apply a dilatation with C as the base. If $\mathrm{V}_{1}, \mathrm{~W}_{1}$ are the transforms of V, W respectively and if C_{1} correponding to C , is s-ple on V_{1}, then W_{1} has associated behaviour with V_{1} along C_{1}.

We may now apply a sequence of dilatations and repeating the argument we obtain

Theorem II.-With the notation of Theorem I, suppose we apply a sequence of dilatations which takes $\mathrm{V}, \mathrm{W}, \mathrm{C}$ into $\mathrm{V}_{i}, \mathrm{~W}_{i}, \mathrm{C}_{i}$, respectively. If C_{i} is s-ple on V_{i}, then W_{i} has associated behaviour with V_{i} along C_{i}.

References.

[I] J. Herszberg, On a Result of Beniamino Segre, «Rend. di Mat. Roma », V, 19, 168-173 (1960).
[2] D. G. Northcott, On the local cone of a point on an algebraic variety, "J. London Math. Soc.», 29, 326-333 (1954).
[3] B. Segre, Sullo scioglimento delle singolarità delle varietà algebriche, "Ann. di Mat.», 33, (4) 5-48 (1952).
[4] B. Segre, Dilatazioni e comportamenti associati nel campo analistico, «Rend. Circ. Mat. di Palermo », I, (2), I-7 (1952).
[5] J. G. Semple and D. Kirby, Local Dilatation, «J. London Math. Soc.», 30, 417-422 (1955).

Sunto. - Si dà un'estensione della nozione di «comportamento associato» dovuta a B. Segre [4], e si stabilisce che anche per essa sussiste una proprietà d'invarianza di fronte alle dilatazioni.

