ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FROIM MARCUS

Sur les réseaux à invariant absolu constant ou fonction d'une seule variable

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **38** (1965), n.4, p. 486–487. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1965_8_38_4_486_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Sur les réseaux à invariant absolu constant ou fonction d'une seule variable. Nota di Froim Marcus, presentata (*) dal Socio B. Segre.

Dans la deuxième partie du beau Mémoire que B. Segre a dédié à R. Garnier, il démontre incidemment le théorème suivant [1].

Si une suite de Laplace est telle que trois invariants h consécutifs sont diffeents de zero, et ont des rapports constants, chaque paire d'invariants h a un rapport constant et la suite peut être réduite à une autre – d'une des espèces tantôt indiquées – dont tous les réseaux ou bien sont invariants constants ou bient sont de type d'Euler généralisé.

De l'équation (log h_1)_{uv} = γh_1 où $\gamma = 2 - \alpha - \beta$, $\alpha = \frac{h}{h_1}$, $\frac{h_2}{h_1} = \beta$, α , β , constantes et $\alpha \neq \beta$, B. Segre obtient pour les invariants relatifs h_i de la suite l'expression

(1)
$$h_i = \gamma_i (u+v)^{-2}$$
 $(i=1,2,3,\cdots)$

avec
$$\gamma_i = \gamma_1 \left(\left(\mathbf{I} - i \right) \alpha \right) - i^2 + i \text{ et } \gamma_1 = \frac{2}{\gamma} \cdot$$

Le but de cette Note est de remarquer que de pareilles suites ont fait déjà l'objet de quelques Notes antérieures et que l'on a démontré aussi un théorème un peu plus général que le théorème de ci—haut, mais ayant une forme un peu différente de celui—ci.

Dans une Note de 1935, Tzitzéica [2] s'est occupé des réseaux (x) pour lesquels on a h: k=m= const. $\neq 1$, réseaux qu'il a appelé réseaux à invariant absolu constant. Parmi cette classe de réseaux il a considéré le cas particulier quand $\frac{h}{k}=m$ et $\frac{h_1}{k_1}=m_1$, c'est-à-dire que les réseaux (x) et (x_1) transformés de Laplace l'un de l'autre sont tous les deux à invariant absolu constant en affirmant qu'il est aisé de démontrer que dans ce cas tous les reseaux de la suite de Laplace de (x) sont à invariant absolu constant, qui n'est pas le même d'un reseau à l'autre.

Pour qu'il soit ainsi, Tzitzéica montre qu'il faut et il suffit que l'on ait

$$(\log h)_{uv} = \left(2 - \frac{1}{m} - m_1\right)h, \qquad h = mk$$

et il ya deux cas à considérer selon que l'on a $2 - \frac{1}{m} - m_1 \neq 0$ ou = 0. Dans la premier cas l'équation de Laplace du réseau (x) se ramène à l'équation $E(\beta, \beta')$ étudiée par Darboux; dans le second cas on peut amener l'équation de Laplace à avoir les invariants h et k constants.

(*) Nella seduta del 10 aprile 1965.

Dans [3] nous avons démontré, sans intégrer l'équation (2), que les invariants absolus h_n/k_n et h_{-n}/k_{-n} de la suite de Laplace (x) se calculent, dès que l'on a donnés m et m_1 , avec les formules

(3)
$$\frac{k_n}{h_n} = \frac{\varphi(n, m, m_1)}{\varphi(n-1, m, m_1)} \quad ; \quad \frac{h_{-n}}{k_{-n}} = \frac{\psi(n-1, M, M_1)}{\psi(n, M, M_1)},$$

οù

(4)
$$\begin{cases} \varphi(n, m, m_1) = n(n+1)mm_1 - 2(n-1)(n+1)m + n(n-1), \\ \psi(n, M, M_1) = n(n+1)MM_1 - 2(n-1)(n+1)M + n(n-1), \\ M = \frac{1}{m} ; M_1 = 3 - 3m + mm_1. \end{cases}$$

Puis, dans [4], nous avons démontré que le résultat précédent de Tzitzéica est un cas particulier du théorème suivant:

Si les reseux (x) et (x_1) transformés de Laplace l'un de l'autre sont tous les deux à invariant absolu fonction de u ou de v, tous les réseaux de la suite de Laplace de (x) sont respectivement à invariant absolu fonction de u ou de v, qui n'est pas le même d'un réseau à l'autre.

Si $\frac{h}{k}h = \Phi$ et $\frac{h_1}{k_1} = \Phi_1$, avec Φ et Φ_1 fonctions de la seule variable u, ou de la seule variable v, alors les invariants absolus h_n/k_n et h_{-n}/k_{-n} de la suite de Laplace se calculent avec des formules semblables à (3) et (4).

Il est aisé de voir que si et seulement si $2 - \frac{1}{\Phi} - \Phi_1 \neq 0$, on peut amener l'équation de Laplace d'un tel réseau à une forme canonique, que G. Vrănceanu [5] appelle équation de Poisson généralisée.

Pour plus de détails en ce qui concerne l'équation de Poisson généralisée, nous renvoyons au 2ème volume des «Leçons de géométrie» de G. Vrănceanu.

BIBLIOGRAPHIE.

- [1] B. SEGRE, Sur les invariants projectifs absolus attachés aux éléments curvilignes et aux réseaux, « Journal de Mathématiques pures et appliquées », T. 40, pp. 135-154 (p. 152) (1961).
- [2] G. TZITZÉICA, Sur certains réseaux, «C. R. Acad. Sci. Paris », T. 200, pp. 191-192 (1935).
- [3] F. MARCUS, Sur les réseaux avec les invariants absolus constants, « Bulletin Mathématique de la Soc. Roumaine de Sciences », T. 46 (1-2), pp. 135-140 (1944).
- [4] F. MARCUS, Sur quelques résultats de M. H. Ionas et G. Tzitzéica, Ibidem, T. 47 (1–12), pp. 29–34 (1945–1946).
- [5] G. VRANCEANU, Sur l'équivalence des équations de Laplace, Ibidem, T. 46 (1-2), pp. 155-180 (1944).

SUNTO. — Si rilevano alcuni risultati sulle reti ad invariante assoluto costante, ed in modo speciale un teorema che contiene come caso particolare un risultato di Tzitzéica ritrovato incidentalmente e sotto forma leggermente diversa da B. Segre.