ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Gabriello Illuminati, Paolo Linda, Gianlorenzo Marino

Effetti cinetici di alcuni sostituenti in posizione 8 sulla metossideclorurazione della 2-clorochinolina

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **38** (1965), n.3, p. 389–393. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1965_8_38_3_389_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Chimica. — Effetti cinetici di alcuni sostituenti in posizione 8 sulla metossideclorurazione della 2-clorochinolina (*). Nota di Gabriello Illuminati, Paolo Linda e Gianlorenzo Marino, presentata (**) dal Corrisp. L. Panizzi.

La reattività delle 2– o 4–alogenochinoline può essere soggetta a diversi effetti da parte dei sostituenti dell'anello benzenoide. Tali effetti sono essenzialmente elettronici se i sostituenti occupano le posizioni 6 e 7 [1, 2, 3], ma possono essere elettronici e sterici insieme per i sostituenti in posizione 5 o 8. Un caso evidente di effetto sterico primario è stato da noi recentemente dimostrato nella metossideclorurazione della 4–cloro–5–nitrochinolina [4], nella quale il gruppo nitro si trova in posizione *peri* rispetto al centro di reazione.

Se un sostituente si trova in posizione 8, cioè *peri* rispetto al gruppo attivante *aza*, ci si può attendere qualche effetto di impedimento sterico con la sfera di solvatazione del gruppo *aza*, specialmente se si tiene conto del fatto che con certi solventi (solventi ossidrilici, ecc.) vi sono interazioni specifiche rilevanti (legami idrogeno).

Allo scopo di accertare l'esistenza e l'entità di tali effetti, è stato intrapreso uno studio cinetico sulla metossideclorurazione di alcune 2-clorochinoline-8-sostituite. Il presente lavoro riporta i dati relativi ai tre sostituenti cloro, metile e nitro.

RISULTATI E DISCUSSIONE.

Le costanti cinetiche del secondo ordine determinate a tre temperature ed i parametri di attivazione sono riassunti in Tabella I. Sono anche riportati i dati relativi alla 2-cloro-6-metilchinolina.

Allo scopo di confrontare l'intensità degli effetti trasmessi dalla posizione 8 con quella degli effetti trasmessi dalle altre posizioni precedentemente studiate, in Tabella II sono riportate le velocità relative k/k_0 calcolate a 75,2° per 18 clorochinoline con i sostituenti CH₃, Cl e NO₂.

Da un primo esame di questi dati risulta che gli effetti sulla reattività dei tre sostituenti sono, da un punto di vista qualitativo, gli stessi per le varie

^(*) Lavoro eseguito con il contributo del C.N.R. per ricerche sui Meccanismi delle Reazioni Chimiche presso gli Istituti di Chimica delle Università di Roma (G.I.) e di Trieste (P. L. e G.M.). La presente Nota è la parte XX della serie: Sostituzioni Nucleofile Eteroaromatiche.

^(**) Nella seduta del 13 marzo 1965.

posizioni considerate e cioè deattivanti per il metile, attivanti per il cloro e il gruppo nitro. È tuttavia interessante osservare che per ciascuno dei sostituenti presi in esame la reattività più bassa è registrata quando la posizione occupata è la 8, con la sola eccezione del 4-cloro-5-nitro derivato in cui, come si è detto, un forte effetto sterico primario è in giuoco [4]. In particolare, se si confrontano tra loro le posizioni 6 (anfi) e 8 (cata), che sono le uniche posizioni eteronucleari di tipo para rispetto a un centro reattivo in posizione 2,

Fig. 1.

si trova che l'isomero con il sostituente in posizione 8 è meno reattivo di quello con il sostituente in posizione 6. Questo particolare ordine di reattività $k_6 > k_8$ non può essere spiegato sulla base della maggiore vicinanza al centro di reazione del sostituente in posizione 8 rispetto a quello in posizione 6 (con conseguente maggiore intensità degli effetti induttivi e di campo) in quanto esso si ritrova in tutti i casi esaminati che comprendono sostituenti aventi caratteri polari opposti tra loro.

Tabella I.

Dati cinetici per la metossideclorurazione di alcuni derivati della 2-clorochinolina.

Sostituente	$k_2 \times 10^4$, $(l \times moli^{-1} \times sec^{-1})$							$\mathrm{E}_{\mathrm{att}}$	$-\Delta S^{\pm}$
	30,00	40,00	50,00	60,00	75,2°	86,50	99,5°	(Kcal/mole)	(u.e.)
6–CH ₃					0,695	2,00	6,67	24,3	10,2
8-CH ₃					0,239	0,835	2,39	24,7	10,9
8–Cl				3,18	11,69	33,99		21,2	13,3
8-NO ₂	4,52	9,79	28,46		$(200,5)^{(a)}$			17,9	17,1

(a) Calcolato.

È probabile invece che un impedimento sterico alla solvatazione, esercitato dal sostituente in posizione *peri* rispetto al gruppo *aza* riduca la stabilizzazione dello stato di transizione (fig. 1). Un tale effetto è anche indicato dal fatto che il rapporto k_6/k_8 , cioè 1,18 (Cl), 2,92 (CH₃) e 8,98 (NO₂), aumenta nello stesso ordine dei raggi efficaci dei sostituenti.

TABELLA II.

Velocità relative di metossideclorurazione di alcune clorochinoline con i sostituenti metile, cloro e nitro.

Sostituente	Posizione del cloro reattivo	Posizione del sostituente	k/k_0 (a)	Rif.
		<u> </u>	1	
<u> </u>	2	4	0,395	[5]
	2	6	0,310	questo lavoro
СН3	2	7	0,509	[3]
CH3	2	8	0,107	questo lavoro
	4	2	0,314	[5]
	4	6	0,387	[1]
	2	4	17,75	[5]
	2	6	6,21	[3]
# 	2	7	10,63	[3]
C1	2	8	5,39	questo lavoro
	4		30,20	[5]
	4	6	6,80	[1]
	4	7	8,68	[1]
	2	6	807	[3]
	2	8	90,31	questo lavoro
NO_2 $\left\langle \right.$	4	5	7,25	[4]
1	4	6	428	[1]
	4	7	104	[2]

⁽a) Velocità relative riferite alle rispettive clorochinoline non sostituite, calcolate a 75,2°.

L'elevato valore del rapporto k_6/k_8 per il gruppo NO₂ potrebbe essere anche in parte dovuto ad una parziale inibizione sterica alla risonanza del gruppo (nello stato fondamentale della molecola) esercitata dal paio elettronico solitario dell'azoto *peri*. È stato infatti dimostrato che, almeno nel caso della piperidina [6, 7], la coppia elettronica solitaria dell'azoto solvatata dall'alcool metilico, ha requisiti sterici nettamente superiori a quelli dell'idrogeno, per il quale una interazione sterica con il gruppo nitro in *peri* è stata accertata [8].

Per una più approfondita ricerca sulla natura degli effetti qui descritti è in corso l'estensione di questo studio ad altri substrati e ad altre reazioni.

PARTE SPERIMENTALE.

Clorochinoline. – Le chinoline 2-cloro-6-metile [9], p.f. 112-113°, 2-cloro-8-metile [9], p.f. 57-58° e 2-cloro-8-nitro [10], p.f. 141-143°, sono state preparate con i metodi della letteratura e purificate per cromatografia su colonna di allumina o per distillazione in corrente di vapore e successiva cristallizzazione da alcool etilico o etere di petrolio fino a temperatura costante di fusione.

Per la preparazione della 2, 8-diclorochinolina, non ancora descritta, 9,7 g (0,059 moli) di 8-clorochinolina [11] sono stati mescolati con 26,8 g (0,21 moli) di solfato dimetilico. La miscela è stata riscaldata per quattro ore a 150° e, dopo raffreddamento, versata in un eccesso di acqua. Dopo ripetute estrazioni con porzioni di 70 ml di etere, lo strato acquoso, contenente il sale di 8-cloro-N-metilchinolinio, è stato trattato con una soluzione contenente in 350 ml di acqua 55 g (0,16 moli) di ferricianuro potassico e 8,2 g di idrossido di potassio. La miscela risultante è stata riscaldata per un'ora a 60-70° e quindi, dopo raffreddamento, dibattuta con circa 200 ml di etere. Dallo strato etereo sono stati ricavati 5,2 g di 8-cloro-N-metilchinolone (resa 45,3%) che, senza ulteriore purificazione, sono stati riscaldati per 5 ore a 120-130° con 10 g di pentacloruro di fosforo. Per versamento in acqua si sono separati g 4,1 di 2,8-diclorochinolina (resa 76,8%) che è stata poi purificata per distillazione in corrente di vapore e successiva cristallizzazione da etanolo 95%, p.f. 101-103°.

Analisi:

```
trovato : C 54,31% , H 2,63% , N 7,37% calcolato per C9H5NCl2 : C 54,58% , H 2,54% , N 7,07%.
```

Misure cinetiche. – Le purificazioni del solvente e del reagente e il procedimento cinetico usato sono stati descritti in un precedente lavoro [1].

RIFERIMENTI BIBLIOGRAFICI.

- [1] G. ILLUMINATI e G. MARINO, « J. Am. Chem. Soc. », 80, 1421 (1958).
- [2] G. Bressan, A. Ciana, G. Illuminati e G. Marino, «Ricerca Sci.», 33, II-A, 533 (1963).
- [3] G. ILLUMINATI, P. LINDA, G. MARINO e E. ZINATO, «Ricerca Sci.», 33, II-A, 535 (1963).
- [4] G. ILLUMINATI e G. MARINO, « Rend. Acc. Naz. Lincei », ser. VIII, 34, 407 (1963).
- [5] M. L. BELLI, G. ILLUMINATI e G. MARINO, «Tetrahedron», 19, 345 (1963).
- [6] R. J. BISHOP, L. E. SUTTON, D. DINCEN, R. A. V. JONES e A. R. KATRITZKY, « Proc. Chem. Soc. », 257 (1964).
- [7] K. Brown, A. R. KATRITZKY e A. J. WARING, « Proc. Chem. Soc. », 257 (1964).
- [8] G. ILLUMINATI, G. MARINO e O. PIOVESANA, «Ricerca Sci.», 34, II-A, 437 (1964).
- [9] E. SPATH, «Monat. Chem.», 40, 122 (1919).
- [10] A. S. DEIRET e R. E. LUTZ, « J. Am. Chem. Soc. », 68, 1325 (1946).
- [11] E. FOURNEAU, F. TREFOUEL e A. WANCOLLE, «Bull. Soc. Chim. France», 47, 738 (1930).