Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Knut Lage Sundet

On Cremonian reducibility of a linear system to a pencil of cubics

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 38 (1965), n.2, p. 171-177.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1965_8_38_2_171_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - On Cremonian reducibility of a linear system to a pencil of cubics. Nota di Knut Lage Sundet, presentata ${ }^{(*)}$ dal Socio B. Segre.
i. Introduction. - In my paper [I], the conditions for reducibility of algebraic curves of virtual genus $p=0$ and $p=1$ are treated. The last case, only when the virtual dimension d is ≥ 2. The reason for the lack of the cases $d \leq \mathrm{I}$ was that the questions of reducibility of a linear system to a pencil of cubics or to a Halphen-pencil by a plane Cremona transformation were not answered. The first question is dealt with here and the second one will be treated in a following paper.

In the mentioned paper [I], the cases occurring by successively applying a certain series of quadratic transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{s}$ on a system (φ) of order n, given by the base-points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{i}$ of virtual multiplicities $r_{1}, r_{2}, \cdots, r_{i}$, are sorted out when $p=0$ and $p=\mathrm{I}$. The q-transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{s}$ map successively (φ) into the systems $\left(\varphi_{1}\right),\left(\varphi_{2}\right), \ldots,\left(\varphi_{s}\right)$ where (φ_{s}) has the order n_{s} and is given by the assigned points $\mathrm{P}_{s, 1}, \mathrm{P}_{s, 2}, \cdots \mathrm{P}_{s, k}$, of virtual multiplicities $r_{s, 1}, r_{s, 2}, \cdots, r_{s, k}$. When the virtual genus is I and the virtual dimension is o , the only cases to be consider are the following ones:
A) Some of the base-points, $\mathrm{P}_{s, a}, \mathrm{P}_{s, b}, \mathrm{P}_{s, c}, \ldots$ say, are situated on a straight line and such that

$$
r_{s, a}+r_{s, b}+r_{s, c}+\cdots>n_{s}
$$

B) $\left(\varphi_{s}\right)$ has the order $3 r$ and is determined by 9 base-points of virtual multiplicities r.

When the case A) is reached, we only have for (φ) the possibilities I, II specified below.
I) The base-points are in a special position, such that an irreducible rational curve exists, of order m say, containing the P_{t} 's with certain multiplicities a_{t}, determined by some of the P_{t} 's and going through some of the others. the virtual number of intersections between this curve and the curves (φ) being too large (i,e., greater than $m n$). The integers m and a_{t} are not all equal to the corresponding integers n and r_{t} respectively ($t=\mathrm{I}, 2, \cdots, i$),
II) Integers $k_{\sigma, \tau}, \sigma=0,1,2, \cdots, s, \tau=\mathrm{I}, 2, \cdots, i$ exist, such that

$$
k_{s, 1}+k_{s, 2}>n_{s}>\mathrm{I}
$$

where $k_{0, \tau}=r_{\tau}, n_{0}=n$, and $k_{\sigma, 1}, k_{\sigma, 2}, \cdots, k_{\sigma, i}$ are the integers
$n_{\sigma-1}-k_{\sigma-1,1}-k_{\sigma-1,2}, n_{\sigma-1}-k_{\sigma-1,2}-k_{\sigma-1,3}, n_{\sigma-1}-k_{\sigma-1,3}-k_{\sigma-1,1}$
(*) Nella seduta del 13 febbraio 1965.
$k_{\sigma-1,4}, \cdots, k_{\sigma-1, i}$ arranged in non-increasing order, and

$$
n=2 n_{\sigma-1}-k_{\sigma-1,1}-k_{\sigma-1,2}-k_{\sigma-1,3}
$$

The assumption in both cases is that, when some base-points are adjacent to others, the sum of their virtual orders is equal to or less than the virtual orders of the latter. If I or II holds, the system (φ) is reducible or does not have the assigned multiplicities as effective ones.

On p. I8o of their work [2], F. Enriques and O. Chisini have considered algebraic curves of order zero. In the present paper, the set consisting of a point P and the points in the ist neighbourhood of P will be regarded as an algebraic curve of order zero. To the point P we shall assign the multiplicity -I and to the points in the ist neighourhood the multiplicities +I . Such a curve of zero order will be referred to as a " pointline ". If the point P is an f-point of a q-transformation, the "pointline" given by P is mapped, according to the usual formulae for the order and multiplicities of a transformed curve by a q-transformation, into an f-line of the inverse transformation; and vice-versa.

The virtual genus p and the virtual dimension d of a system (φ) of order n, having base-points of virtual multiplicities $r_{1}, r_{2}, \ldots, r_{i}$, are given by the classical formulae:

$$
\begin{aligned}
& p=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \Sigma r_{t}\left(r_{t}-1\right), \\
& d=\frac{1}{2} n(n+3)-\frac{1}{2} \Sigma r_{t}\left(r_{t}+1\right) .
\end{aligned}
$$

If we put the order and the multiplicities of the points in a " pointline" into the expression for p, we get $p=0$. The virtual dimension d goes to zero if a curve of order zero is given by a point of virtual multiplicity - I .

It is to be noted that if n, n_{1} and n_{2} are the orders of three curves and r_{t}, a_{t} and b_{t} their multiplicities at the points $\mathrm{P}_{t}(t=\mathrm{I}, 2, \cdots, i)$, the invariance of the relations:

$$
\begin{equation*}
r_{t}=a_{t}+b_{t} \quad \text { and } \quad n=n_{1}+n_{2} \tag{i}
\end{equation*}
$$

and of the difference:

$$
\begin{equation*}
r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{i} a_{i}-n n_{1} \tag{2}
\end{equation*}
$$

by q-transformations are true, even when "pointlines" are concerned.
Because of the properties of "pointlines" mentioned above, they will be counted among the rational curves. However, the special reservation concerning adjacent points made in the conditions quoted above is then not necessary.
2. Necessary conditions for a system to be transformable into a pencil of cubics by a plane Cremona transformation.-Let a system (φ) of order n be given (as in § I) by the base-points $P_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{i}$
of virtual multiplicities $r_{1}, r_{2}, \cdots, r_{i}$, making the virtual genus I and the virtual dimension zero. As pointed out in the Introduction, by successively using the quadratic transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{s}$, if the case I or II is not occurring, we reach a system $\left(\varphi_{s}\right)$ of order $3 r$ with 9 base-points of virtual multiplicities r. As a common factor of $n, r_{1}, r_{2}, \cdots, r_{i}$ is invariant by q-transformations, a system of cubics is reached only when $n, r_{1}, r_{2}, \cdots, r_{i}$ have no other factor but I in common. A system $\left(\varphi_{s}\right)$ of order 3 given by 9 simple basepoints $\mathrm{P}_{s, 1}, \mathrm{P}_{s, 2}, \cdots, \mathrm{P}_{s, 9}$ is then to be considered.

If the given system is of order higher than 3 , it exists at least one f-point $\mathrm{P}_{s, 10}$ of the inverse Cremona transformation composed of $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{s}$ which has virtual multiplicity zero and is not one among the new basepoints of virtual multiplicity zero introduced by a possible applied series of transformations, of the type prescibed by o. Chisini in the case of cuspidal branches, or of other auxiliary q-transformations applied to avoid some one with adjacent f-points. As (φ_{s}) is a pencil of cubics, it contains a curve, C_{s} say, passing through that point. The f-points of $\left(\varphi_{s}\right)$ may be such that C_{s} degenerates into a cubic with a node or into a straight line and a conic, where the conic also may degenerate. The curve C_{s} and a " pointline " at $\mathrm{P}_{s, 10}$ form together a curve having the assigned multiplicity at that point. The possible f-points of virtual multiplicities zero in the ist neighbourhood of $\mathrm{P}_{s, 10}$ have now got the multiplicities I. "Pointlines " at these points, in addition to the former curves, give the multiplicities zero at these points also. So we may continue. The point $\mathrm{P}_{s, 10}$ may be in the neighbourhood of two adjacent points $\mathrm{P}_{s, 8}$ and $\mathrm{P}_{s, 9}$ of virtual multiplicities I . C_{s} get then a node at $\mathrm{P}_{s, 8}$. By adding a "pointline" at $\mathrm{P}_{s, 8}$, we get the multiplcity I at this point but the multiplicities 2 and I at $\mathrm{P}_{s, 9}$ and $\mathrm{P}_{s, 10}$. "Pointlines" at $\mathrm{P}_{s, 9}$ and $\mathrm{P}_{s, 8}$ give the assigned multiplicities at these point.

It is thus seen that, if $\left(\varphi_{s}\right)$ is a pencil of cubics, the f-points of the inverse of the applied Cremona transformation have to be in such a special position that they impose a superaboundance of linear conditions on a curve C_{s} of order 3 determined by them; moreover, C_{s} and some "pointlines" form together a curve having the assigned multiplicities at the f-points. The points P_{t} are consequently also in such a special position that-taken with appropriate multiplicities-they form a superabundant base, making namely the virtual dimension negative, of a certain curve C. The curve obtained by adding C with possible suitable rational curves and "pointlines" satisfies the conditions for (φ).

The order of C is less than the order of (φ) because at least one of the "pointlines", which together with C_{s} form a curve of $\left(\varphi_{s}\right)$, does not contain an f-point. Let the inverse of the applied q-transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{s}$, mapping (φ) into (φ_{s}), be denoted by $\mathrm{T}_{1}^{\prime}, \mathrm{T}_{2}^{\prime}, \cdots, \mathrm{T}_{s}^{\prime}$ respectively, and the one that maps the mentioned " pointline " into a straight line by T_{t}^{\prime}. It is then seen that the line corresponding by T_{t}^{\prime} to the mentioned "pointline" does not contain other f-points that those of T_{t} making the complete number of intersections with the corresponding system $\left(\varphi_{t-1}\right)$. This line or one of its transfor-
med lines cannot be used as f-line again, because that implies an f-point of virtual multiplicity zero by one of the $\mathrm{T}_{q}(q=\mathrm{I}, 2, \cdots)$. The impossibility of this follows from the reservation concerning C_{s}. As the order of (φ) is the sum of the orders of C and of the transformed curves of the mentioned "pointlines ", it follows that the order of C is less than the order of (φ).

As C_{s} may degenerate, C may degenerate into rational curves, rational curves and " pointlines", or "pointlines". Hence:

A system (φ) of order n, virtual dimension 0 , virtual genus 1 , given by the assigned points $\mathrm{P}_{t}(t=1,2, \cdots, i)$ of virtual multiplicities r_{t}, and not satisfying I and $I I$, is an irreducible system transformable into a pencil of cubics only if the integers n and r_{t} are relatively prime and the points P_{t} are in such a special position that-taken with appropriate multiplicities-they form a superabundant base, making the virtual dimension negative, of a reducible or irreducible curve C of order lower than n. By adding C with certain rational curves (and "pointlines"), we obtain a curve having multiplicity r_{t} at each point P_{t}.
3. Necessary and sufficient conditions for a system to be transFORMABLE INTO A PENCIL OF CUBICS.-As in the Introduction, the given system is now denoted by (φ) and the system reached by the series of q-transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}, \cdots, \mathrm{~T}_{s}$ by $\left(\varphi_{s}\right)$. If (φ) does not satisfy I or II, the basepoints of $\left(\varphi_{s}\right)$ are denoted by $\mathrm{P}_{s, 1}, \mathrm{P}_{s, 2}, \cdots, \mathrm{P}_{s, 9} . \mathrm{C}_{s}$ is the special curve in $\left(\varphi_{s}\right)$ mentioned in the precedent Section.

From the assumption that $\left(\varphi_{s}\right)$ is a pencil of cubics, it follows that e.g. $\mathrm{P}_{s, 1}$ and $\mathrm{P}_{s, 2}$ are corresponding points in the g_{2}^{1} cut out on C_{s} by a system (Π_{s}) of order 3 passing through $\mathrm{P}_{s, u}(u=3,4, \cdots, 9)$ and a point Q_{s} fixed in a generic manner. Let $\left(\varphi_{t}\right)$ and $\left(\Pi_{t}\right)$ be the transformed systems of $\left(\varphi_{s}\right)$ and $\left(\Pi_{s}\right)$ by the series $\mathrm{T}_{s}^{\prime}, \mathrm{T}_{s-1}^{\prime}, \cdots, \mathrm{T}_{t-1}^{\prime}$, where no member has used $\mathrm{P}_{s, 1}, \mathrm{P}_{s, 2}$ or any of their transformed points as f-points. $\mathrm{T}_{s}^{\prime}, \mathrm{T}_{s-1}^{\prime}, \cdots$ are the inverse of the transformations $\mathrm{T}_{s}, \mathrm{~T}_{s-1}, \cdots$ mentioned in the Introduction. The basepoints of $\left(\varphi_{t}\right)$ are denoted by $\mathrm{P}_{t, q}(q=\mathrm{I}, 2, \cdots)$ and $\mathrm{Q}_{t}, \mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$ are the transformed points of $\mathrm{Q}_{s}, \mathrm{P}_{s, 1}$ and $\mathrm{P}_{s, 2}$ respecitively. Suppose that $\mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$ are distinct and both f-points by T_{t}^{\prime}. Let the order of the transformed system (φ_{t-1}) of (φ_{t}) be n_{t-1} and the f-points of T_{t} be $\mathrm{P}_{t-1,1}, \mathrm{P}_{t-1,2}$ and $\mathrm{P}_{t-1,3}$. The lines $\mathrm{P}_{t-1,1} \mathrm{P}_{t-1,2}$ and $\mathrm{P}_{t-1,2} \mathrm{P}_{t-1,3}$, corresponding to $\mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$, intersect the transformed curve C_{t-1} of $\mathrm{C}_{\dot{s}}$ in the points $\mathrm{A}_{t-1,1}$ and $\mathrm{A}_{t-1,2}$. These two points have to be corresponding points in the g_{2}^{1} cut out on C_{t-1} by the corresponding system $\left(\Pi_{t-1}\right)$ of $\left(\Pi_{t}\right)$. Because, let us suppose the contrary; a curve in $\left(\Pi_{t-1}\right)$ will then pass through $\mathrm{A}_{t-1,1}$ and not through $\mathrm{A}_{t-1,2}$. That curve contains $\mathrm{P}_{t-1,1} \mathrm{P}_{t-1,2}$. The other part of the curve is then mapped into a curve in $\left(\Pi_{t}\right)$ going through $\mathrm{P}_{t, 1}$, but not through $\mathrm{P}_{t, 2}$.

It is seen that the order of $\left(\Pi_{t-1}\right)$ is $n_{t-1}+2$ and the multiplicity of the base-points $\mathrm{P}_{t-1,1}, \mathrm{P}_{t-1,2}$ and $\mathrm{P}_{t-1,3}$ are $r_{t-1,1}+\mathrm{I}, r_{t-1,2}+2$ and $r_{t-1,3}+\mathrm{I}$ respectively, where $r_{t-1,1}, r_{t-1,2}$ and $r_{t-1,3}$ are the multiplicities of $\left(\varphi_{t-1}\right)$ at those points. If now $\mathrm{A}_{t-1,1}, \mathrm{~A}_{t-1,2}$ or any of their transformed points are not used as f-points, $\mathrm{P}_{t-1,1} \mathrm{P}_{t-1,2}, \mathrm{P}_{t-1,2} \mathrm{P}_{t-1,3}$ or any of their transfor-
med lines are not f-lines or they do not pass through any f-points of $\mathrm{T}_{t-1}^{\prime}$, $\mathrm{T}_{t-2}^{\prime}, \ldots ; \mathrm{T}_{1}^{\prime}$, we may conclude:

If the system (φ) given by the base-points $\mathrm{P}_{t}(t=\mathrm{I}, 2, \cdots, i)$ of virtual multiplicities r_{t} is transformable into a pencil of cubics, there exist two irreducible rational curves R_{1} and R_{2}, of orders n_{1} and n_{2}, having P_{t} as basepoints of multiplicities a_{t} and b_{t} respectively, intersecting C in two points A_{1} and A_{2} different from P_{t} which are corresponding points in the g_{2}^{1} cut out on C by a system of order $n+n_{1}+n_{2}$ having the P_{t} 's as base-points of multiplicities $r_{t}+a_{t}+b_{t}$ and passing through an arbitrary point. C is here the curve mentioned in the precedent Section.

The same procedure may be applied-with slight modifications-when the points $\mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$ are adjacent or are not f-points in the same q-transformation. The conclusion is the same also in this case, except for the irreducibility in the adjacent case.

Consider now the general case. The mentioned systems (φ_{t}) and (Π_{t}) differ from each other in that the simple points $\mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$ do not belong to the base of $\left(\Pi_{t}\right)$. As systems having a simple base-point are uninteresting, $\mathrm{P}_{t, 1}$ and $\mathrm{P}_{t, 2}$ or one of their transformed points are assumed to be f-points by one of the $\mathrm{T}_{u}^{\prime}(u=t, t-\mathrm{I}, \cdots, \mathrm{I})$. To examine the transformed system (Π) of $\left(\Pi_{t}\right)$ by T_{u}^{\prime}, consider the "pointline" at $\mathrm{P}_{t, v}(v=\mathrm{I}, 2)$. They correspond to two rational curves R_{1} and R_{2}, of orders n_{1} and n_{2} say, completely determined by having $\mathrm{P}_{t}(t=\mathrm{I}, 2, \cdots, i)$ as base-points of virtual multiplicities a_{t} and b_{t}, making the number of virtual intersections with (φ) $n n_{v}-\mathrm{I}(v=1,2)$ and $\Sigma a_{t} b_{t}=n_{1} n_{2}$. From the way the integers n_{1}, a_{t} and n_{2}, b_{t} are obtained, the case II in the Introduction cannot occur. The sum of the orders of $\left(\varphi_{t}\right)$ and the "pointlines" and the sum of their virtual multiplicities at all the f-points $\mathrm{P}_{t, q}(q=\mathrm{I}, 2, \ldots)$ are those of $\left(\Pi_{t}\right)$. This is then also the case with the transformed systems. The order of (Π) is then $n+n_{1}+n_{2}$ and the virtual multiplicities at P_{t} are $r_{t}+a_{t}+b_{i}$. In addition, (Π) has the transformed point Q of Q_{s} as simple base-point.

The " pointlines" $\mathrm{P}_{t, v}(v=\mathrm{I}, 2)$ may have the f-points $\mathrm{P}_{t, v, 1}, \mathrm{P}_{t, v, 2}, \ldots$ in their Ist neighbourhood. These points have now got the actual multiplicity r. "Pointlines" at, these points give the effective multiplicity equal to the virtual ones and the "pointlines" $\mathrm{P}_{t, v}(v=\mathrm{I}, 2)$ " degenerate" into the 'pointlines " $\mathrm{P}_{t, v}, \mathrm{P}_{t, v, 1}, \mathrm{P}_{t, v, 2}, \ldots$. The corresponding (virtual rational), curves will then also degenerate. If there are f-points in the neighbourhood of $\mathrm{P}_{t, v, q}(q=\mathrm{I}, 2, \cdots)$, we may continue to add " pontlines " $\mathrm{P}_{t, v, i, s}(s=\mathrm{r}, 2, \cdots)$. It is seen that the "pointlines" given by $\mathrm{P}_{t, v}$ contains a point $\mathrm{A}_{t, v}$ different from the f-points and situated on the transformed curve C_{t} of C_{s}.

Now, a curve in $\left(\Pi_{t}\right)$ going through $\mathrm{P}_{t, 1}$ also goes through $\mathrm{P}_{t, 2}$. This curve and the mentioned " pointlines " $\mathrm{P}_{t, v}(v=\mathrm{I}, 2)$ form a curve having the effective multiplicities at all the f-points equal to those of the general curve in $\left(\Pi_{t}\right)$ and passing through $\mathrm{A}_{t, v}$. Hence, the corresponding curve, which then is a member of (Π), passes through the points $A_{1}, \mathrm{~A}_{2}$ of intersections of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C .

On the other hand, let R_{1} and R_{2} be two curves of orders n_{1} and n_{2}, completely determined by the base-points P_{t} of virtual multiplicities a_{t} and b_{t} making the virtual genus zero, having $n n_{v}-\mathrm{I}(v=\mathrm{I}, 2)$ as virtual number of intersections with (φ), not satisfying condition II and such that $\Sigma a_{t} b_{t}=n_{1} n_{2}$. Let further A_{1} and A_{2} be two points on the curve C, mentioned in the precedent Section, different from P_{t} and situated on both R_{1} and R_{2}. If the curve of the system (Π) of order $n+n_{1}+n_{2}$, having the P_{t} 's as base-points of virtual multiplicities $r_{t}+a_{t}+b_{t}$, not satisfying I and II, going through a point Q not situated on C and passing through A_{1}, also passes through A_{2}, the system (φ) is transformable into a pencil of cubics. This may be verified in the following manner.

As the system (Π) has virtual dimension I and virtual genus I , so (Π) must be irreducible if I and II do not occur. Therefore (Π) may be transformed into a system (Π_{s}) of cubics by a Cremona transformation. If $n_{s}, n_{s, 1}$, and $n_{s, 2}$ are the orders of the transformed curves of (φ), R_{1} and R_{2}, we have

$$
3=n_{s}+n_{s, 1}+n_{s, 2} .
$$

From the impossibility of $n_{s, 1}$ and $n_{s, 2}$ to be negative when II is not occurring and $n_{s} \geq 3$, we get $n_{s}=3$; hence $n_{s, 1}=n_{s, 2}=0$. The system (φ_{s}) is then given by 9 simple base-points, $\mathrm{P}_{s, 1}, \mathrm{P}_{s, 2}, \cdots, \mathrm{P}_{s, 9}$, and the curves corresponding to R_{1} and R_{2} by two "pointlines ". As the sum of the virtual multiplicties of the base-points of $(\varphi), \mathrm{R}_{1}$ and R_{2} are equal to the multiplicities of (Π), the " pointlines" have to be given, for instance, by $\mathrm{P}_{s, 1}$ and $\mathrm{P}_{s, 2}$. $\left(\Pi_{s}\right)$ is then defined by $\mathrm{P}_{s, 3}, \mathrm{P}_{s, 4}, \cdots, \mathrm{P}_{s, 9}$ and Q_{s}, where the latter is the transformed point of Q . The points $\mathrm{A}_{v}(v=\mathrm{I}, 2)$ are transformed into the points $\mathrm{A}_{s, v}$ and, as A_{v} is situated on R_{v}, they have to be in the neighbourhoods of $\mathrm{P}_{s, v}$. Now (Π_{s}) contains a curve which, together with "pointlines" passes through $\mathrm{A}_{s, v}$. The part of order different from zero must therefore contain $\mathrm{P}_{s, v}$. As it was pointed out in the former Section, the points P_{t} have to be in a special position on a certain curve C . By adding C with suitable rational curves and "pointlines" we obtain a curve having the effective multiplicities at the points P_{t} equal to the virtual ones prescribed to (φ). This composed curve is then transformed by the mentioned Cremona transformation into a curve of order 3, where the part of non-zero order satisfies the conditions imposed by the simple points $\mathrm{P}_{s, u}(u=\mathrm{I}, 2, \cdots, 9)$. As C does not pass through Q, there are then two different curves satisfying these conditions. Hence, the $\mathrm{P}_{s, u}$'s are the base-points of a pencil of cubics.

In conclusion, we may state the following theorem.
A system (φ) of order n, virtual dimension zero, virtual genus I , given by the assigned points $\mathrm{P}_{t}(t=1,2, \cdots, i)$ of virtual multiplicities r_{t} and not satisfying I and $I I$ is an irreducible system transformable into a pencil of cubics only if the integers n and r_{t} are relatively prime and the points P_{t} are in such a special position that-taken with appropriate multiplicities-they form a superabundant base, making the virtual dimension negative, of a reducible or
irreducible curve C of order lower than n. C together with certain rational curves (and "pointlines") gives a curve having each point P_{t} as a point of multiplicity r_{t}.

There exist then two curves R_{1} and R_{2}, completely determined by having the points P_{t} as base.points of virtual multiplicities a_{t} and b_{t}, having the orders n_{1} and n_{2}, the virtual genus zero, not satisfying $I I$, possessing $n n_{v}-1(v=1,2)$ as their virtual number of intersections with (φ) and such that $\Sigma a_{t} b_{t}=n_{1} n_{2}$. Also there exists then a system (Π) of order $n+n_{1}+n_{2}$, having P_{t} and a point Q not situated on C as base-points of virtual multiplicities $r_{t}+a_{t}+b_{t}$ and I , and not satisfying I and $I I$. (φ) is then transformable into a pencil of cubics if, and only if, the pair of points of intersections of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C belongs to the g_{2}^{1} cut out by (Π) on C , or on a component of C .

REMARK.-In order to determine the curves $\mathrm{R}_{1}, \mathrm{R}_{2}$ and the system (Π), we may consider the systems (φ^{\prime}), ($\left.\Pi^{\prime}\right), \mathrm{R}_{1}^{\prime}$ and R_{2}^{\prime}, of orders $n, n+n_{1}+n_{2}, n_{1}$ and n_{2}, given by distinct an arbitrarily chosen base-points $\mathrm{P}_{t}^{\prime}(t=1,2, \ldots, i)$, of the same virtual multiplicities as P_{t} by (φ), (Π), R_{1} and R_{2} respectively. The system (Π^{\prime}) has the virtual dimension 2 and the virtual genus I, and is thus transformable by a series of q-transformations, which always have the three base-points of highest orders as f-points, into a system of cubics having 7 simple base-points. If the orders of the transformed systems of (φ^{\prime}), R_{1}^{\prime}, and R_{2}^{\prime} are $n_{s}, n_{s, 1}$ and $n_{s, 2}$, we have:

$$
3=n_{s}+n_{s, 1}+n_{s, 2}
$$

As it was seen before that $n_{s}=3$ and $n_{s, 1}=n_{s, 2}=0, \mathrm{R}_{1}$ and R_{2} are then given by two distinct among the 9 simple base-points of the transformed system of (φ^{\prime}). The rational curves corresponding to those points have the numeric properties required from R_{1} and $R_{2} . R_{1}$ and R_{2} are then the curves obtained by altering the base from the points P_{t}^{\prime} to the points P_{t} by two of them, in such a way to make the system (II) not satisfying I and II.

I want to express my gratitude to Professor B. Segre for advice concerning this paper.

References.

[1] K. L. Sundet, On the Existence of Systems of Plane, Rational and Elliftic Algebraic Curves, given by a Group of Points. A Numerical Criterion, «Rendiconti di Matematica », 22, 469-488 (1963).
[2] F. Enriques-O. Chisini, Teoria geometrica delle equazioni e delle funzioni algebriche, vol. III, Nicola Zanichelli, Bologna 1915.

