ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

BENEDETTO PETTINEO

Sull'invarianza dell'indice delle equazioni di seconda specie negli spazi di Hilbert

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **38** (1965), n.1, p. 45–52. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1965_8_38_1_45_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Sull'invarianza dell'indice delle equazioni di seconda specie negli spazi di Hilbert (*). Nota di Benedetto Pettineo, presentata (**) dal Socio M. Picone.

Sia S uno spazio lineare di Hilbert complesso, completo e separabile $^{(1)}$ e sia G(u) una trasformazione definita in S, quivi lineare e continua ed avente codominio G(S) contenuto in S. Si denoti con G^* la trasformazione aggiunta di G e si considerino le due equazioni (l'una aggiunta dell'altra)

$$(I) u - \lambda G(u) = f (f \in S),$$

$$(2) v - \bar{\lambda} G^*(v) = g (g \in S)$$

(con λ parametro complesso).

Sia Λ il piano della variabile complessa λ . Dirò che in un punto λ l'equazione (1) è di seconda specie quando si verificano le due circostanze seguenti:

- a) uno almeno degli autoinsiemi $U(\lambda)$ e $V(\overline{\lambda})$ rispettivamente della (1) e della (2) abbia dimensione finita;
- eta) per l'equazione (I) valga il teorema dell'alternativa nella classica formulazione: condizione necessaria e sufficiente affinché la (I) ammetta soluzione è che il termine noto f sia ortogonale all'autoinsieme $V(\bar{\lambda})$ della (2).

Dirò poi che la (1) è di seconda specie in un insieme $A \subset \Lambda$ quando essa è di seconda specie in ogni punto di A.

È ben noto intanto che il teorema dell'alternativa vale per l'equazione (I) quando (e solo quando) esso è pure valido per l'equazione aggiunta (2); pertanto, se in un insieme A la (I) è di seconda specie, allora nell'insieme Ā costituito dai coniugati dei numeri di A risulta di seconda specie la (2).

Si può definire un *indice* $J(\lambda)$ *dell'equazione* (I) in ogni punto λ in cui l'equazione è di seconda specie: precisamente, se $\nu(\lambda)$ e $\mu(\bar{\lambda})$ sono rispettivamente le dimensioni degli autoinsiemi $U(\lambda)$ e $V(\bar{\lambda})$, porrò

(3)
$$J(\lambda) = v(\lambda) - \mu(\bar{\lambda}),$$

convenendo di considerare l'ordinaria differenza quando $\nu(\lambda)$ e $\mu(\bar{\lambda})$ sono entrambi finiti, intendendo invece $J(\lambda) = +\infty$ ovvero $J(\lambda) = -\infty$ secondo che sia infinita la dimensione $\nu(\lambda)$ di $U(\lambda)$ ovvero la dimensione $\mu(\bar{\lambda})$ di $V(\bar{\lambda})$. Ovviamente l'indice dell'equazione (2) nel punto $\bar{\lambda}$ sarà $-J(\lambda)$.

In questa Nota dimostrerò il seguente teorema d'invarianza dell'indice:

^(*) Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca matematici del C.N.R. (**) Nella seduta del 9 gennaio 1965.

⁽¹⁾ Per la terminologia ed i richiami cfr.: G. FICHERA, Lezioni sulle trasformazioni lineari, Libreria Veschi, Roma 1962; F. RIESZ e B. Sz.-NAGY, Leçons d'Analyse fonctionnelle, Acad. des Sc. de Hongrie, Budapest 1955.

I) L'insieme A^0 dei punti di Λ in cui l'equazione (1) è di seconda specie è un insieme aperto e l'indice dell'equazione si mantiene costante in ogni campo (2) contenuto in A^0 .

L'insieme A^0 è dunque aperto ma, in generale, non connesso; esso, in ogni caso, è costituito da un numero finito o da una infinità numerabile di campi A^0_n (a due a due senza punti in comune) in ciascuno dei quali, come si è detto, l'indice si mantiene costante ⁽³⁾. D'altra parte tra i campi A^0_n ce n'è uno che contiene il punto $\lambda=0$; in tale campo si ha costantemente $J(\lambda)=0$, perché per $\lambda=0$ risulta ovviamente $\nu(0)=\mu(0)=0$. Pertanto, come caso particolare del teorema I:

II) Se l'insieme A^0 è connesso, se in particolare A^0 coincide con l'intero piano Λ (cioè la (1) è sempre di seconda specie), allora l'indice dell'equazione è costantemente nullo ⁽⁴⁾.

E come caso ancora più particolare, quando si ha costantemente $\mu(\overline{\lambda}) = 0$: III) Se, comunque si assuma λ , l'equazione (1) ammette soluzione per ogni $f \in S$, allora la soluzione è sempre unica.

Dimostro il teorema I. Sia λ_0 un punto di A^0 e si abbia senz'altro

(4)
$$0 \leq \mu \left(\bar{\lambda}_0 \right) \leq \nu \left(\lambda_0 \right) \leq +\infty \quad , \quad \mu \left(\bar{\lambda}_0 \right) < +\infty \ .$$

L'equazione (5)

$$(5) u - \lambda_0 G(u) = f$$

ammette soluzione quando e solo quando f è ortogonale all'autoinsieme V $(\bar{\lambda}_0)$ dell'equazione aggiunta

(6)
$$v - \overline{\lambda}_0 G^*(v) = g;$$

tra le soluzioni della (5) ve n'è una (ed una sola), che denoto con u', ortogonale all'autoinsieme $U(\lambda_0)$ della medesima. Ed allora denotando con S_0 e Σ_0 le varietà degli elementi di S ortogonali rispettivamente a $U(\lambda_0)$ ed a $V(\bar{\lambda}_0)$ e denotando con R(f) la trasformazione che ad ogni $f \in \Sigma_0$ fa corrispondere

- (2) Campo è un insieme aperto e connesso.
- (3) Ogni campo A_n^0 nasce con una tecnica di prolungamento analoga a quella della teoria delle funzioni analitiche secondo Weierstrass; e in sostanza farò proprio vedere che se $\lambda_0 \in A^0$, esiste un cerchio (contorno escluso) col centro in λ_0 tutto contenuto in A^0 e nel quale $J(\lambda)$ si mantiene costante.
- (4) Appaiono così ben chiare le vere origini di una nota circostanza della teoria fredholmiana: precisamente, quando G è completamente continua, che per ogni λ le dimensioni ν (λ) e $\mu(\bar{\lambda})$ degli autoinsiemi U (λ) e V ($\bar{\lambda}$) coincidono.
- (5) Se fosse ν (λ_0) $< \mu$ (λ_0), prenderei le mosse dalla (6) (che è pure di seconda specie), anziché dalla (5).

la soluzione $u' \in S_0$ della (5), si riconosce subito che R (f) è lineare e continua (in Σ_0). Si denotino con P (u), Q (u) e Q'(u) le proiezioni di u rispettivamente sulle varietà $U(\lambda_0)$, S_0 e Σ_0 ; si osservi quindi che i prodotti

$$T_1 = R Q' \quad , \quad T = T_1 G$$

sono trasformazioni definite in S e quivi lineari e continue. Si denoti con M il modulo della trasformazione T e, per ogni numero complesso λ tale che si abbia

$$|\lambda - \lambda_0| < \frac{1}{2M},$$

si ponga

(9)
$$u = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n T^n (u_0 + T_1(f)), \quad \text{dove } u_0 \in U(\lambda_0), f \in S$$

(e dove, naturalmente, $T^0 = I$, $T^n = T^{n-1}T$). Orbene, se

$$(10) \qquad (\lambda - \lambda_0) G(u) + f \in \Sigma_0,$$

allora la (9) fornisce una soluzione dell'equazione (1).

Intanto la (9) fornisce effettivamente un elemento u di S. Infatti, poiché M è il modulo di T, si ha, al variare di w (in S),

(II)
$$\|T^n(w)\| \leq M^n \|w\|$$
 $(n = 0, 1, 2, \cdots),$

e perciò, tenuta presente la (8),

$$\left\| \sum_{n=r+1}^{r+m} (\lambda - \lambda_0)^n \operatorname{T}^n(w) \right\| \leq \sum_{n=r+1}^{r+m} |\lambda - \lambda_0|^n \|\operatorname{T}^n(w)\| \leq \sum_{n=r+1}^{r+m} \frac{\|w\|}{2^n} \leq \frac{\|w\|}{2^r}$$

(sicché la serie (9) converge).

Dalla (9) segue poi senz'altro

$$(12) u - (\lambda - \lambda_0) T(u) = u_0 + T_1(f),$$

cioè, in forza delle (7),

$$(13) u - u_0 = RQ'((\lambda - \lambda_0) G(u) + f)$$

e per la (10)

$$(14) u - u_0 = R ((\lambda - \lambda_0) G (u) + f).$$

Allora, per la definizione di R, l'elemento $u-u_0$ è soluzione dell'equazione

$$(15) u' - \lambda_0 G(u') = (\lambda - \lambda_0) G(u) + f$$

e poiché, tenuta presente la (9), u₀ è autosoluzione, si avrà

$$(16) u - \lambda_0 G(u) = (\lambda - \lambda_0) G(u) + f,$$

sicché u è proprio soluzione della (1).

Viceversa, se u è soluzione della (1), cioè della (16), vale necessariamente la (10); inoltre, posto

(17)
$$u_0 = P(u)$$
, $u' = u - u_0$,

dalla (16) segue senz'altro la (15), dalla quale, per la definizione di R, si deduce la (14). Da questa, in forza della (10), segue la (13), vale a dire la (12); da quest'ultima, infine, ricordando le (8) e (11), si trae la (9).

Così è provato che tutte le soluzioni della (1) sono date dalla (9), a condizione che valga la (10).

Ciò posto, siano (quando esistono)

$$\{u_k\}(h=1,\cdots,\nu(\lambda_0))$$
 e $\{v_k\}(k=1,\cdots,\mu(\bar{\lambda}_0))$

due sistemi ortonormali e completi di autosoluzioni rispettivamente della (5) e della (6). La (9) diviene

(18)
$$u = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n \operatorname{T}^n \left(\sum_{k=1}^{\nu (\lambda_0)} \tau_k u_k + \operatorname{T}_1(f) \right),$$

dove i numeri complessi τ_{h} sono arbitrari ma tali che, quando $\nu\left(\lambda_{0}\right)=+\infty,$ si abbia

$$\sum_{k} |\tau_{k}|^{2} < + \infty.$$

La condizione (10) diviene

$$(20) \left((\lambda - \lambda_0) \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n \operatorname{GT}^n \left(\sum_{k=1}^{\nu(\lambda_0)} \tau_k \, u_k + \operatorname{T}_1(f) \right) + f, \, v_k \right) = 0 \quad (k = 1, \dots, \mu(\overline{\lambda_0})),$$

od anche (denotando con T^* e T_1^* , le trasformazioni aggiunte di T e di T_1)

(21)
$$\sum_{k=1}^{\nu(\lambda_0)} \tau_k (u_k, w_k) + (f, v_k^0) = 0 \qquad (k = 1, \dots, \mu(\bar{\lambda}_0)),$$

dove

(22)
$$w_{k} = (\bar{\lambda} - \bar{\lambda}_{0}) \sum_{n=0}^{\infty} (\bar{\lambda} - \bar{\lambda}_{0})^{n} T^{*n} G^{*}(v_{k}) (k=1, \dots, \mu(\bar{\lambda}_{0}))$$

e

(23)
$$v_k^0 = v_k + T_1^*(w_k) \qquad (k = 1, \dots, \mu(\bar{\lambda}_0)).$$

È opportuno notare che T° e T*° hanno lo stesso modulo, cosicché, se M_1 è un numero maggiore del modulo di G, tenute presenti le (11) e le $\|v_k\|=1$, risulta, non appena vale la (8),

$$\|w_k\| \leq 2 \operatorname{M}_1 |\lambda - \lambda_0|.$$

Per conseguenza, se M_1 è pure maggiore del modulo di T_1^* ,

(25)
$$\|T_1^*(w_k)\| \leq 2 M_1^2 |\lambda - \lambda_0|.$$

Ed allora, dato che il sistema $\{v_k\}$ è ortonormale, si può trovare un numero $\varepsilon > 0$ tale che, per ogni λ che verifichi la condizione

$$(26) |\lambda - \lambda_0| < \varepsilon,$$

gli elementi v_k^0 definiti dalle (23) siano linearmente indipendenti. Infatti, se le c_k sono costanti complesse, considerato che il sistema $\{v_k\}$ è ortonormale e tenute presenti le (25) e (26), si ha

$$\begin{split} &\left\| \sum_{k=1}^{\mu(\bar{\lambda}_0)} c_k \, v_k^0 \, \right\|^2 = \sum_{k=1}^{\mu(\bar{\lambda}_0)} \mid c_k \mid^2 + \sum_{k,r=1}^{\mu(\bar{\lambda}_0)} c_k \, \bar{c}_r \, \{ (v_k \, , \, \mathrm{T}_1^* \, (w_r)) + (\mathrm{T}_1^* \, (w_k) \, , \, v_r) \, + \\ & + (\mathrm{T}_1^* \, (w_k) \, , \, \mathrm{T}_1^* \, (w_r)) \} \geq \sum_{k=1}^{\mu(\bar{\lambda}_0)} \mid c_k \mid^2 - 4 \sum_{k,r=1}^{\mu(\bar{\lambda}_0)} \mid c_k \mid \mid c_r \mid (\mathrm{M}_1^2 + \mathrm{M}_1^4 \, \varepsilon) \, \varepsilon \geq \\ & \geq \sum_{k=1}^{\mu(\bar{\lambda}_0)} \mid c_k \mid^2 - 2 \, (\mathrm{M}_1^2 + \mathrm{M}_1^4 \, \varepsilon) \, \varepsilon \sum_{k,r=1}^{\mu(\bar{\lambda}_0)} (\mid c_k \mid^2 + \mid c_r \mid^2) = \\ & = \{ \, \mathrm{I} \, - 4 \, \mu \, (\bar{\lambda}_0) \, (\mathrm{M}_1^2 + \mathrm{M}_1^4 \, \varepsilon) \, \varepsilon \} \sum_{k=1}^{\mu(\bar{\lambda}_0)} \mid c_k \mid^2 \, . \end{split}$$

Tenuto conto che μ $(\bar{\lambda}_0)$ è finito, si scelga allora ϵ in maniera che si abbia

8 μ
$$(\bar{\lambda}_0)$$
 $(M_1^2 + M_1^4 ε) ε < 1$;

dopo di che, se

$$\sum_{k=1}^{\mu(\overline{\lambda}_0)} |c_k|^2 > 0,$$

si avrà pure

$$\left\|\sum_{k=1}^{\mu(\overline{\lambda}_0)} c_k v_k^0\right\| > 0.$$

Naturalmente dovrà sempre essere

$$\epsilon < \frac{I}{2\,M} \,,$$

in maniera che la (26) assicuri automaticamente la validità della (8).

Adesso, fissato a piacere un numero λ che verifichi la (26), si consideri la matrice

(28)
$$\{(u_k, w_k)\} \qquad \begin{pmatrix} h = 1, \dots, \nu(\lambda_0) \\ k = 1, \dots, \mu(\overline{\lambda_0}) \end{pmatrix}$$

avente $\mu(\overline{\lambda_0})$ righe (in numero finito) e $\nu(\lambda_0)$ colonne (in numero finito o no). Poiché $\mu(\overline{\lambda_0})$ è finito, tra i determinanti minori non nulli (se ne esistono) che

4. - RENDICONTI 1965, Vol. XXXVIII, fasc. 1.

si possono estrarre dalla matrice ce n'è qualcuno d'ordine massimo (caratteristica della matrice); per fissare le idee, sia non nullo il determinante

$$\begin{vmatrix} (u_1, w_1), \cdots, (u_p, w_1) \\ \vdots & \vdots \\ (u_1, w_p), \cdots, (u_p, w_p) \end{vmatrix} \neq 0$$

(mentre sia nullo ogni minore d'ordine maggiore di p).

A questo punto, anche se ν (λ_0) è infinito, non c'è che da seguire il classico procedimento algebrico di risoluzione di un sistema (finito) di equazioni lineari: si scrivano le (21) nel seguente modo

(30)
$$\sum_{k=1}^{p} (u_k, w_k) \tau_k = -x_k \qquad (k = 1, \dots, p),$$

(30)
$$\sum_{h=1}^{p} (u_h, w_k) \tau_h = -x_k \qquad (k = 1, \dots, p),$$

$$\sum_{h=1}^{p} (u_h, w_{p+r}) \tau_h = -x_{p+r} \quad (r = 1, \dots, \mu(\hat{\lambda}_0) - p),$$

dove

(32)
$$x_k = (f, v_k^0) + \sum_{h=h+1}^{v(\lambda_0)} (u_h, w_k) \tau_h (k=1, \dots, \mu(\bar{\lambda}_0)),$$

e si osservi che per la compatibilità del sistema (di p+1 equazioni nelle p incognite τ_1, \dots, τ_p costituito dalle p equazioni (30) e dall'equazione (31) di posto $r(r = 1, \dots, \mu(\lambda_0) - p)$ occorre e basta che si abbia

(33)
$$\begin{vmatrix} (u_{1}, w_{1}) & , \cdots & (u_{p}, w_{1}) & , -x_{1} \\ \vdots & & \vdots & \vdots \\ (u_{1}, w_{p}) & , \cdots & (u_{p}, w_{p}) & , -x_{p} \\ (u_{1}, w_{p+r}) & , \cdots & (u_{p}, w_{p+r}) & -x_{p+r} \end{vmatrix} = 0 \qquad (r = 1, \cdots, \mu(\overline{\lambda}_{0}) - p).$$

Ma ogni minore d'ordine p + 1 estratto dalla matrice (28) è nullo:

(34)
$$\begin{vmatrix} (u_{1}, w_{1}), \cdots, & (u_{p}, w_{1}), & (u_{p+s}, w_{1}) \\ \vdots & & \vdots & & \vdots \\ (u_{1}, w_{p}), \cdots, & (u_{p}, w_{p}), & (u_{p+s}, w_{p}) \\ (u_{1}, w_{p+r}), \cdots, & (u_{p}, w_{p+r}), & (u_{p+s}, w_{p+r}) \end{vmatrix} = 0;$$

pertanto, ricordando le (32), le (33) divengono (anche nel caso ν (λ_0) = $+\infty$)

$$(35) \begin{vmatrix} (u_{1}, w_{1}), \dots, (u_{p}, w_{1}), \dots (f, v_{1}^{0}) \\ \vdots & \vdots & \vdots \\ (u_{1}, w_{p}), \dots, (u_{p}, w_{p}), \dots (f, v_{p}^{0}) \\ (u_{1}, w_{p+r}), \dots, (u_{p}, w_{p+r}), \dots (f, v_{p+r}^{0}) \end{vmatrix} = 0 \quad (r = 1, \dots, \mu(\lambda_{0}) - p).$$

Queste, dunque, sono le condizioni di compatibilità delle (21). Per di più alle $\tau_{p+1}, \dots, \tau_{v(\lambda_0)}$ si possono attribuire valori arbitrari, purché venga rispettata la (19), mentre le τ_1, \dots, τ_p si determinano risolvendo il sistema (30). La soluzione generale (18) della (1) è dunque ν (λ_0) — p volte indeterminata; e, in sostanza, se ν (λ_0) — p > 0, facendo

(36)
$$\tau_{p+s} = 1$$
, $\tau_{p+1} = \cdots = \tau_{p+s-1} = \tau_{p+s+1} = \cdots = 0$ $(s=1, \dots, \nu(\lambda_0) - p)$

e considerando la corrispondente soluzione $\tau_1^{(s)}, \dots, \tau_d^{(s)}$ del sistema

(30_s)
$$\sum_{k=1}^{p} (u_k, w_k) \tau_k^{(s)} = -(u_{p+s}, w_k) \qquad (k = 1, \dots, p),$$

la (18) fornisce le seguenti autosoluzioni della (1)

(37)
$$u^{(s)} = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n \operatorname{T}^n \left(\sum_{k=1}^{p} \tau_k^{(s)} u_k + u_{p+s} \right) \quad (s = 1, \dots, \nu(\lambda_0) - p).$$

Queste, com'è facile riconoscere, sono linearmente indipendenti. Basta osservare infatti che sono linearmente indipendenti gli elementi

(38)
$$\sum_{h=1}^{p} \tau_{h}^{(s)} u_{h} + u_{p+s} \qquad (s = 1, \dots, \nu(\lambda_{0}) - p)$$

(in quanto $u_1, \dots, u_{\nu(\lambda_0)}$ sono ortonormali) ed inoltre, come già si è visto, che dalla relazione

$$u = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n T^n (w)$$

segue senz'altro $u - (\lambda - \lambda_0) T(u) = w$.

Considerate ora le (35) ed imponendo all'ultima riga del determinante di essere combinazione lineare delle prime p, si ottengono condizioni (equivalenti alle (35) stesse) del seguente tipo

(39)
$$\left(f, v_{p+r}^{0} - \sum_{k=1}^{p} c_{kr} v_{k}^{0} \right) = 0 (r = 1, \dots, \mu(\bar{\lambda}_{0}) - p),$$

dove le c_{kr} sono opportune costanti complesse. Gli elementi

(40)
$$v_{p+r}^{0} - \sum_{k=1}^{p} c_{kr} v_{k}^{0} \qquad (r = 1, \dots, \mu(\bar{\lambda}_{0}) - p)$$

risultano linearmente indipendenti perché erano tali i $\mu(\bar{\lambda}_0)$ elementi v_k^0 dati dalle (23).

Allora, data la forma (39) delle condizioni di compatibilità dell'equazione (1), risulta valido (per tale equazione) il teorema dell'alternativa; anzi gli elementi (40) formano un sistema completo di autosoluzioni dell'equazione aggiunta (2).

Per di più si è visto che le dimensioni ν (λ) e μ ($\overline{\lambda}$) degli autoinsiemi U (λ) e V ($\overline{\lambda}$) delle (I) e (2) sono rispettivamente

(41)
$$v(\lambda) = v(\lambda_0) - p \quad e \quad \mu(\bar{\lambda}) = \mu(\lambda_0) - p.$$

L'indice $J(\lambda)$ della (1) è allora

$$(\nu (\lambda_0) - p) - (\mu (\bar{\lambda}_0) - p)$$

e quindi

(42)
$$J(\lambda) = J(\lambda_0) = v(\lambda_0) - \mu(\overline{\lambda}_0)$$

costantemente per ogni λ che verifichi la (26), cioè nel cerchio C (ϵ) (contorno escluso) col centro in λ_0 ed il raggio ϵ .

Si consideri allora la classe dei vari cerchi C (ϵ) (tutti privati del contorno e col centro in λ_0) in ciascuno dei quali vale la (42) e si prenda in esame l'insieme $\{\epsilon\}$ dei relativi raggi. Se tale insieme è limitato, il suo estremo superiore ϵ_0 è senz'altro il massimo; in caso contrario, invece, C (ϵ_0) è l'intero piano Λ . Dopo di che, con la nota tecnica del prolungamento, si perviene ad un campo A_n^0 , contenente C (ϵ_0), in ogni punto del quale la (I) è di seconda specie e l'indice J (λ) si mantiene costante; se il campo A_n^0 ha una frontiera, in nessun punto di questa la (I) è di seconda specie.