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Geometria. — On the congruence of hypersurfaces. Nota® di
CHuAN-CHIH Hsiung, presentata®” dal Socio B. SEGRrE.

INTRODUCTION.—The purpose of this paper is to continue our former
work [1] to derive a new integral formula for a pair of immersed compact
hypersurfaces x (M), x* (M) in a Euclidean space under a volume-preser-
ving diffeomorphism. By using this integral formula further conditions are
found for x (M), x* (M) to have the same second fundamental form, and a
combination of this result with a former one of ours [1] thus gives a new
congruence theorem on immersed compact hypersurfaces in a Euclidean
space.

In order to simplify the presentation of our work, as in [1] we shall con-
sider tensor products of multivectors and exterior differential forms. Diffe-
rentiation of multivectors will be taken in the sense of equation (2.3), and
differentiation of exterior differential forms will be exterior differentiation;
multiplication of matrices will be by the usual row-by-column law. Through-
out this paper the range of all Latin indices is always from 1 to 7 inclusive.

1. LEMMASs.—Let V be a real vector space of dimension # (= 2), and
G and H two bilinear real-valued functions over VXV so that G and H
are completely determined by the values g,,= G (e; , ¢,) and %,,=H (e, , e,),
1 <7,k <n, where e1,:--e,, form a basis of the space V. Under a
change of basis '

(1.1) e, > e:-ezz‘fek,

the matrices |g,| and |/%;| are changed to T|g, [T and T|4, [T
respectively, where the repeated index 4 indicates the summation over its
range, T = | Zf}], and ‘T is the transpose of T. Consider the determinant

(1.2)  det (g + M) = det (g) + 7P (8,4, Ay) +- -4 W det (Ay) .
Since det (g,, + M,,) will be multiplied by (det T)? under the change (1.1)
of basis, the ratio of any two coefficients in the polynomial in A on the right

side of equation (1.2) is independent of the choice of the basis ¢;---e,. In
particular, if G is nonsingular, that is, if det (g,,) == o, the quotient

(1:3) Ho="P (g; , hip)ldet (g)

depends only on G and H. For example, if g, =398, (=1 for i = £;
= o for /5=4), then Hg= E_/z,-z./n.

(*) Supported in part by NSF grant GP-1567.
(**) Nella seduta del 14 novembre 1964.
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Since the construction of H¢ is linear in H, it can be generalized to
a bilinear function H over VxV with values in a vector space W, and Hg
is ‘then an element in W. H¢ can be called the contraction of H relative to
G, or, in the language of tensors, is a vector in W constructed from a cova-
riant tensor H of order two with values in W relative to a nonsingular
covariant tensor G of order two.

The following two lemmas will be needed in the proof of our main
theorem.

LEMMA 1.1.—Lezt V be a real vector space of dimension n (= 2), and G
and H symmetric positive definite bilinear real-valued functions over VXV
completely determined by the values g, = G (e;,e,) and h,=H (e, e,),

1 =7,k < n where e ,---,e, form a basis of the space V. Denote
(1.4) g=det(g,) , hi=det(h,).

Then

(1.5) He = (Ag)",

where the equality holds when and only when h,, = pg,, for a certain p.

This lemma is due to Girding [2].

LEMMA 1.2.—Let fy, -, f, be n mutually orthogonal unit vectors, and
Eivoo s uy Myt =1, -, n, linear differential forms at a point p of
a Riemannian manifold M of dimension n (= 2) imbedded in a Euclidean
space B of dimension n 4 m for m =1. Denote

#
f: 3 E.:ZHE;""an“,
(1.6) PAl
w=Ef , 7n=]|7, 1S/, k<n.

Then at the point p of the manifold M
(1.7) . nfwl—(n—1) flnfw—2=o0.

This lemma is due to Chern and Hsiung; for its proof see [1, p. 283].

2. . HYPERSURFACES IN EUCLIDEAN SPACE.—Let M be a C2-Rieman-
nian manifold of dimension 7 (= 2), and consider an immersion x: M —E"™!,
that is, a C?~mapping = of M into a Euclidean space E"™' of dimension
n + 1, such that the induced linear mapping x, on the tangent spaces of M
is univalent everywhere. Then x (p), p €M, is a vector in E**! and will be
called 'the position vector of the hypersurface x(M). Lete,,---, e, be mu-
tually orthogonal unit vectors in the tangent space of M at a point p so that
they form a frame. Since the mapping x, is univalent, we identify e; with
x,(e,). Leto!...w" be the coframe dual to ¢ ---e, so that the volume
element of M is

(2.1) dV = oA -+ A"
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Let e,;1 be the unit normal vector of x (M) at x (), and introduce the

matrices
|

€
(2:2) o=t o, e=| -
en
Then we have the matrix equations
(2.3) dx = we , de= Qe fe, .,
where
Wit
(2.4) Q=Jof| , 6= . |, 1<i,k<n,
R

o}, w7+l being linear differential forms in the bundle induced over M from

the principal bundle of E"*'. Exterior differentiation of equations (2.3) gives
(2.5) do=0AQ , opAb=o0,

(2.6) dO= Q24+ 070 , do=QA0,

where Q is defined by

(2.7) fz:’l‘*’};+1,"',®:+1”,

(2.8) de,i1 = Qe .

It is well-known that the matrix Q gives the connection form of the in-
duced Riemannian metric by x, and that the second fundamental form II(p)
of the hypersurface x (M) at the point x (p) is the negative of the scalar
product (dx ,de,;i,.l) of the two vectors dx and de,,; in the Euclidean space
E"*Y. From equations (2.2), (2.3), (2.7), (2.8) it follows immediately that

(2‘9) (dx ’ den+1> =E w? ("):;_I.l )

where the multiplication of linear differential forms is commutative in the

ordinary sense. In the explicit form the second equation of (2.5) can be
written as

(2.10) wiAertl= 0,
which enables us to put

(2.11) wrtl= 4w,
where 4,; is symmetric in z, 7, that is,
(2.12) bij=1b;.

Since ;(e,. yer11) = 0,1=7 = n, by exterior differentiation and equations
(2.3), (2.4), (2.7), (2.8) we can easily have

(2.13) o= —aftt
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Substituting equations (2.11), (2.13) in equation (2.9) we thus reduce the
second fundamental form of the hypersurface x (M) at the point x(p) to the
form

(2.14) IT = 4;; o o’

On the other hand, using equations (2.3), (2.11), (2.14) we obtain the
second differential of x in the ordinary sense:

(2.15) dlx = (do' + ot wi)e, + 11 e ..
from which it follows that

(2.16) (ens1,d%x) = 1I.

Bu putting

(2.17) (x, €nt1) = Yui1,

we have the one-rowed matrix
(2.18) Yur1 70 = | ¥ui1 b,; 07].

Let x!(p) be the orthogonal projection of the position vector x() onto the
direction along the normal vector ¢,.; of x (M) at the point x(p). Then we
have ‘

(2.19) XL = Yui1€nt1,
and therefore the following quadratic differential form:

(2.20) Q= (xt,d?x) = y,,.1 1L

3. INTEGRAL FORMULAS.—Consider two immersions x,x* of a C2—Rie-
mannian manifold M of dimension 7 (= 2) into a Euclidean space E**! and
a diffeomorphism f as given by the commutative diagram

M-X % (M) C E**!
AN lf
XN\

N x*(M) C E"L

Then § 2 can be applied to the hypersurface x (M), and for the corresponding
quantities and equations for the hypersurface x*(M) we shall use the same
symbols and numbers with a star respectively. Suppose that £ is volume-pre-
serving, that is, by definition it maps the volume element of one immersed
‘hypersurface into that of the other. As a consequence of this definition f
exists only if M is oriented, and f is then orientation-preserving. Now over
the abstract manifold M there are two induced Riemannian metrics with the
same volume element, namely, (dx(p), dx (p)) and

(dx*(p) , dx* () = (d (fox) (p), d (fox) (8)) -
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Thus the notion of frames e, - - - e, having measure 1 and an orientation cohe-
rent with that of M has a sense in both metrics.” At a point p€M any such
frame can be obtained from a fixed one by a linear transformation of deter-
minant 1. The condition for the frames e ---e, to be of measure 1 is

(3.1) (et N - Ne,, et N+ Ne,)=1.
Differentiating equation (3.1) and using the second equation of (2.3) we can
‘easily obtain

(3.2) T‘rQsE’m:ﬁ:o.

For an (m X n)-matrix @ = |a;;| and an (z X p)-matrix b = | b,,|,
whose elements are vectors in the space E”*, we shall use the notation (a, b)
to denote the matrix of real numbers given by

(3-3) (a, b) = sz@,,, b,) H .

In order to derive a new integral formula for two compact hypersurfaces
x(M), x*(M) under a volume-preserving diffeomorphism f, we have to con-
struct some exterior differential forms globally defined over the manifold M.
For this purpose we introduce the following matrices:

(3.4) G=(e,’e) ="G=|gu],
(3.5 A=Jop, - o,]= oG,
(3.6) v = Be , v*¥= %,
(3.7 V=G 9=ly. ol
(3-8) r = Ye,

(3:9) W=ro*l=de \-c-Ne,.

Since ¢ is an exterior differential form of degree #» —1 globally defined over M,
for a compact manifold M Stokes’s theorem gives

510 [ar=o.
M
Making use of equations (3.7), (2.3), (3.4), (3.5), (2.17) we obtain
(3.11) dY = (dx ,%e) + (x ,d%e) = A+ Y *'Q + v,41%0,
from which and equation (3.8) it follows that
(3.12) dr=TA+ Y (Q+ Q) + yuu10] e + Y0 1.

By equations (3.6), (2.3) and the second equation of (2.6)* a similar calcula-
tion gives

(3.13) dv* = — 0% Q¥ + Q)e —*0* O e, .
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Using equations (3.11), (3.12) and noting that
(3.14) d (0*1) = (n— 1) (dv*) 0¥,

from equation (3.9) we have

(3.15) d¥=[A+Y(Q+ Q)+ yu11'0] ev** 1 —(n—1) r6* (‘Q*+ Q) ev*—24

+ Ybe, 1 v*" 1 — (. — 1) r 0% Be, | v*"—2.

Since 4 (e; \---Ae,) contains no term in e A---A e, in consequence of
equation (3.2), equating the terms in e;A---Ae, on both sides of equa-
tion (3.15) we thus obtain

(3.16) (@) ey - Ney= (A + i1 0) ev*»—1 L
+ Y [(*Q + Q) ev* — (n— 1) e 0% (*Q* + Q) e] v*"2.

By putting f=e,§ =0%, n=Q and % =’Q* respectively in Lemma 1.2 of
of § 1 we can reduce equation (3:16) to

G17) @ en - ne,=[A+ 9,400 + Y ((Q—10%] ev*r L,

Thus the integral formula (3.10) implies that for a pair of compact immersed
hypersurfaces x(M), x*(M) in the space E"™' under a volume-preserving
diffeomorphism f, the integral, over the manifold M, of the coefficient of
e \---Ae, on the right side of equation (3.17) is zero.

4. THEOREMS.—Let M and M* be two #—dimensional (#» = 2) C2-Rie-
mannian manifolds with fundamental tensors G and G* respectively, and
f:M — M* a C>mapping. Then on M there are two connections: the
Levi-Civita connection defined by its Riemannian metric and the connection
induced by the mapping f from the Levi-Civita connection of M*. The diffe-
rence of these two connections is a tensor field A of contravariant order 1
and covariant order 2, and the construction in § 1 gives a vector field Ag.
f is called an isomeiry, if G*=G, and an almost isometry relative to G if
Ag= 0. It is obvious that an isometry is also an almost isometry, since
in this case A = o.

THEOREM 4.1.—Let M be a C*-Riemannian manifold of dimension
n(=2), x, 5% : M —>E"" two immersed compact hypersurfaces, in a Euclidean
space E* ! of dimension n + 1, with fundamental tensors G ,G* and posttive
definite second fundamental forms 11, 11%, whose coefficient tensors being deno-
ted by B, B*, respectively, and f:x(M)-—>x* (M) a volume-preserving diffe-
omorphism. Then 11 =I11%, if

(4.1) det B = det B¥,
(4.2) Gpx = Gs,

and f is an almost isometry relative to B¥, that is,
(4-3) Apx = 0.

19. — RENDICONTI 1964, Vol. XXXVII, fasc. s.
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Proof.—In order to prove this theorem we have to find 4¢, which
is the coefficient of e; A --- A e, on the right side of equation (3.17). For
this purpose we observe that each term on the right side of equation (3.17)
is of the same type as the form mewv*”—!, where

(4'4) Tr=”7‘c1,-'~,ﬂ7n”

is a one-rowed matrix of linear differential forms. By using equations (2.2),
(2.4)%, (3.6) we have

(4-5) mev* "1 = (Z =, e,-) <; wy "+ ej)n_l =

*n+1 *n+1
= (B T N0 /\‘--/\wz‘: JerA--Ae,,
where €;,...; is equal to +1 or —I according as 7,---,4, form an even
or odd permutation of 1,--.,7%, and is equal to zero otherwise, and the
summation is extended over all 7;,- -, 7, from I to 7. Assuming
(4.6) T = fyp 07,
(47) szij: Z.,]‘=I,"~,7’l,

and using equations (2.11)¥, (2.1), (1.2), (1.3), (2.14)* and elementary proper-
ties of determinants, from equation (4.5) we can easily obtain

(4-8) nev**~1 = | Hpx(det B¥) (e, A - - - Ne,) dV.

By putting #=A and ©=y,,1%0 in equation (4.8), and recalling 0, =g;; &
and equation (2.14), we therefore have

(4.9 Aev*=1 = 2| Gpx(det B¥) (e; A - - - Ne,)dV,

(4.10) Ynt1'0ev**~1 =nly, ; Bpx(det B¥) (e, A - - - Ne,) dV.
Since w = w*, from the first ‘equations of (2. 5), (2.5)* we have

(4.11) OA(Q— Q¥ =0,

so that we can write

(4-12) ' of —oft=d ol

Equations (4.11), (4.12) imply

(4-13) e’ Aol =o,

which gives the symmetry of afj in the subscripts 7, 7, that is,

(4:14) k= at. .

2 z

From ;the properties of the forms Q, Q¥ and the definition of the tensor A
it follows that the components of A are af;. For each fixed £ denote

(4.15) Ak=af,., i, =1, ;.
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On the other hand, a use of equations (3.5), (3.5)%, (3.7), (4.12) yields
readily the matrix

(4.16) Y (tQ — W)=y, afj v Ve aﬁ]- “’j” .
By putting H = y,A% in equation (4.8) we obtain
(417) Y (1Q — Q%) ev*"1 = ! y, Ahx (det B¥) (e - - - Ne,)dV,

since Agx = 0 due to condition (4-3). Thus equations (4.17), (4.6), (4.7)
reduce equation (3.17) to

(4.18) 4y = 1! (Gpx+ Yus1 Bex) (det B¥) 4V,

Hence for a pair of compact immersed submanifolds x (M), x*(M) under a
volume-preserving diffeomorphism f with Apx = o the integral formula
(3.10) becomes

(4.19) /(GB* + Yut1 Bpx) (det B¥) dV = 0.
M

In particular, when the two hypersurfaces x (M), x*(M) are identical, by
definition Bpx =1 and the formula (4.19) is reduced to

(4.20) / G - s1) (det BY AV = o

Subtracting equation (4.20) from equation (4.19) and noticing condition
(4.1) we obtain

(4.21) f [(Gax — GB) 4 Yus1 (Bex — 1)] (det B) dV = o.

Since by the assumption of the theorem the compact hypersurface x (M)
has positive definite second fundamental form II, we can choose the common
origin of the position vectors x (p) for all points p€M in the Euclidean space
E"*! to be in % (M) so that y,,; >0. Moreover, by Lemma 1.1 of § 1 we have

(4.22) Bgxr—1=0,

where the equality holds when and only when, for a certain p, B = pB¥,
from which it follows that IT = II* due to condition (4.1). Thus by condi-
tion (4.2) the integrand on the left side of equation (4.21) is nonnegative,
and the validity of equation (4.21) gives immediately that the equality in
(4.22) holds. Hence the theorem is proved.

By combining Theorem 4.1 and a former one of ours [1] and noticing
equation (2.20) we are readily led to
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THEOREM 4.2.—Under the same assumptions as those in Theorem 4.1,

the diffeomorphism f is a rigid motion, if the following further conditions are
satisfied:

(4.23) Bex = Bg,
and f is an almost isometry relative to G*, that is,

(4-24) Agxr=o0.
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