ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

EUGENE ALFRED MAIER

On Asymmetric diophantine approximation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **37** (1964), n.5, p. 237–241. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1964_8_37_5_237_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



NOTE PRESENTATE DA SOCI

Aritmetica. — On Asymmetric diophantine approximation. Nota di Eugene Alfred Maier, presentata (*) dal Socio B. Segre.

1. It is the purpose of this paper to prove the following generalization of theorems of Segre [5] and Müller [2].

THEOREM.—Let θ be irrational with continued-fraction expansion $\langle a_0, a_1, a_2, \dots \rangle$, let t be a non-negative real number and m a positive integer.

If $a_{2j+1} \ge m$ for infinitely many j, then there exist infinitely many rational numbers h|k with k > 0 such that

(I)
$$-\frac{1}{\sqrt{m^2+4t} k^2} < \frac{h}{k} - \theta < \frac{t}{\sqrt{m^2+4t} k^2} .$$

If t = 0 or if t is the reciprocal of an integer, this result becomes false if $\sqrt{m^2 + 4t}$ is replaced by a larger constant.

If $a_{2j} \ge m$ for infinitely many, j, the statement holds with $h|k - \theta$ replaced by $\theta - h|k$.

2. The proof of the theorem is based upon elementary properties of continued fractions and the following lemma.

Lemma.—If x and y are integers and α and β are positive real numbers such that

$$\frac{1}{\alpha x^2} + \frac{1}{\beta y^2} \le \frac{1}{xy},$$

then

$$(3) \frac{1}{2}\beta - \gamma \le x/y \le \frac{1}{2}\beta + \gamma$$

where $\gamma = \sqrt{\beta^2/4 - \beta/\alpha}$. Furthermore the inequality is strict if one of β and γ is rational and the other is irrational.

Proof.—From (2) we have

$$\frac{\beta}{\alpha} + \left(\frac{x}{y}\right)^2 \leq \beta \frac{x}{y}.$$

Completing the square on x/y, we obtain

$$\left[\frac{x}{y} - \frac{\beta}{2}\right]^2 \le \frac{\beta^2}{4} - \frac{\beta}{\alpha} = \gamma^2$$

and (3) follows. If one of β and γ is irrational and the other rational, the $\frac{1}{2}\beta - \gamma$ is irrational and equality cannot hold since x/y is rational.

(*) Nella seduta del 14 novembre 1964.

3. To prove the first part of the theorem, we shall show that for each j such that $a_{2j+1} \ge m$, at least one of the convergents h_{2j-1}/k_{2j-1} , h_{2j}/k_{2j} , h_{2j+1}/k_{2j+1} of θ satisfies (I). For suppose none of these three convergents satisfies (I). Then, since

$$\frac{h_{2j}}{k_{2j}} < \theta < \frac{h_{2j+1}}{k_{2j+1}} < \frac{h_{2j-1}}{k_{2j-1}},$$

we have

$$(4) \qquad \frac{h_{2j-1}}{k_{2j-1}} - \theta \ge \frac{t}{\sqrt{m^2 + 4t \ k_{2j-1}^2}} , \qquad \frac{h_{2j+1}}{k_{2j+1}} - \theta \ge \frac{t}{\sqrt{m^2 + 4t \ k_{2j+1}^2}},$$

$$\theta - \frac{h_{2j}}{k_{2j}} \ge \frac{1}{\sqrt{m^2 + 4t \ k_{2j}^2}}.$$

Using these inequalities along with elementary properties of the convergents, we obtain

$$(5) \qquad \frac{\mathbf{I}}{k_{2j}\,k_{2j+1}} = \left(\frac{k_{2j+1}}{k_{2j+1}} - \theta\right) + \left(\theta - \frac{k_{2j}}{k_{2j}}\right) \geq \frac{\mathbf{I}}{\sqrt{m^2 + 4t}}\,k_{2j}^2 + \frac{t}{\sqrt{m^2 + 4t}\,k_{2j+1}^2}$$
 and

$$(6) \quad \frac{\frac{1}{k_{2j}k_{2j-1}}}{=} \left(\frac{h_{2j-1}}{k_{2j-1}} - \theta\right) + \left(\theta - \frac{h_{2j}}{k_{2j}}\right) \ge \frac{t}{\sqrt{m^2 + 4t} \ k_{2j-1}^2} + \frac{1}{\sqrt{m^2 + 4t} \ k_{2j}^2}$$

From (5) and the lemma with $\alpha = \sqrt{m^2 + 4t}$ and $\beta = \sqrt{m^2 + 4t}/t$, we have

(7)
$$\frac{k_{2j}}{k_{2j+1}} \ge \frac{\sqrt{m^2 + 4t}}{2t} - \sqrt{\frac{m^2 + 4t}{4t^2} - \frac{1}{t}} = \frac{\sqrt{m^2 + 4t} - m}{2t} .$$

From (6) and the lemma with $\alpha = \sqrt{m^2 + 4t}/t$ and $\beta = \sqrt{m^2 + 4t}$, we have

(8)
$$\frac{k_{2j-1}}{k_{2j}} \ge \frac{\sqrt{m^2+4t}}{2} - \sqrt{\frac{m^2+4t}{4} - t} = \frac{\sqrt{m^2+4t} - m}{2} .$$

Multiplying (5) by $k_{2j}k_{2j+1}$, using (7) and (8), and the equality $k_{2j+1}=a_{2j+1}k_{2j}+k_{2j-1}$, we obtain

$$1 \geq \frac{k_{2j+1}}{k_{2j}} \cdot \frac{1}{\sqrt{m^2 + 4t}} + \frac{k_{2j}}{k_{2j+1}} \cdot \frac{t}{\sqrt{m^2 + 4t}} =$$

$$\left(a_{2j+1} + \frac{k_{2j-1}}{k_{2j}}\right) \frac{1}{\sqrt{m^2 + 4t}} + \frac{k_{2j+1}}{k_{2j}} \cdot \frac{t}{\sqrt{m^2 + 4t}} \geq$$

$$\left(m + \frac{\sqrt{m^2 + 4t} - m}{2}\right) \cdot \frac{1}{\sqrt{m^2 + 4t}} + \frac{\sqrt{m^2 + 4t} - m}{2t} \left(\frac{t}{\sqrt{m^2 + 4t}}\right) = 1.$$

If $\sqrt{m^2+4t}$ is rational, then the last inequality in (4) is strict since θ is irrational. Hence (5) is strict and thus the first inequality in (9) is strict, which yields the contradiction 1 > 1. If $\sqrt{m^2+4t}$ is irrational, then with

 $\alpha = \sqrt{m^2 + 4t}$ and $\beta = \sqrt{m^2 + 4t}/t$, we have $\gamma = m/2t$ which is rational. Thus, by the lemma, (7) is strict and therefore the second inequality in (9) is strict. This again yields the contradiction I > I.

To show the constant $\sqrt{m^2 + 4t}$ cannot be increased if t = 0 or if t is the reciprocal of an integer, let u be a non-negative real number such that for every irrational θ with $a_{2j+1} \ge m$ for infinitely many j, there exist infinitely many rationals h/k with k > 0 for which

$$-\frac{1}{uk^2} < \frac{h}{k} - \theta < \frac{t}{uk^2}.$$

We shall show that $u \leq \sqrt{m^2 + 4t}$.

Under the above assumption, for $\theta = \langle mn, m, mn, m, m, m, \ldots \rangle = (mn + \sqrt{m^2 n^2 + 4 n})/2$, there exist infinitely many h/k with k > 0 such that (10) holds. The denominators of these fractions increase without bound; for if k < M for all k, we have

$$|h| \le |h - k\theta| + |k\theta| < I/u + M |\theta|$$

and the numerators are also bounded, contradicting the existence of infinitely many h/k.

If, for the given value of θ , there exist infinitely many $h/k > \theta$ satisfying (10), then letting $\overline{\theta}$ denote the conjugate of θ , we have $h/k - \overline{\theta} = h/k - \theta + \sqrt{m^2n^2 + 4n} > 0$. Thus $h^2 - mnhk - nk^2 = k^2(h/k - \theta)(h/k - \overline{\theta}) > 0$. However $h^2 - mnhk - nk^2$ is an integer and is therefore greater than or equal to one. Hence

$$\frac{1}{k^2 (h/k - \bar{\theta})} \le \frac{h^2 - mnhk - nk^2}{k^2 (h/k - \bar{\theta})} = \frac{h}{k} - \theta < \frac{t}{uk^2}$$

whence it follows that $u < t(h/k - \overline{\theta})$. Taking limits as $k \to \infty$, we have $u \le t \ (\theta - \overline{\theta}) = tn \sqrt{m^2 + 4/n}$. Since t = 0 is impossible in the case under consideration, t is the reciprocal of an integer. Setting n = 1/t, we have $u \le \sqrt{m^2 + 4t}$.

The other possibility is that, for the given value of θ , there exist infinitely many $h/k < \theta$ satisfying (10). If u < 1, then $u < \sqrt{m^2 + 4t}$ for all m and t and hence we need only consider values of $u \ge 1$. In this case h/k is either a convergent or secondary convergent to θ and since $h/k < \theta$, we have one of the following three possibilities for infinitely many j:

(i)
$$\frac{h}{k} = \frac{h_j}{k_j}, j \text{ even,}$$

(ii)
$$\frac{h}{k} = \frac{h_j + h_{j-1}}{k_j + k_{j+1}}$$
, j odd, (iii) $\frac{h}{k} = \frac{h_j - h_{j-1}}{k_j - k_{j-1}}$, j even.

If $\theta = \langle a_0, a_1, a_2, \ldots \rangle$, let $\alpha_j = \langle a_{j+1}, a_{j+2}, a_{j+3}, \ldots \rangle$ and let $\beta_j = \langle a_j, a_{j-1}, \ldots, a_1 \rangle$. For the value of θ under consideration, if j is

even, $\alpha_j = m + 1/\theta$ and $\beta_j \to \theta$ as $j \to \infty$ whereas, if j is odd, $\alpha_j = \theta$ and $\beta_j \to m + 1/\theta$ as $j \to \infty$. Now if (i),

$$\left|\frac{1}{u} > k_j^2 \right| \theta - \left|\frac{h_j}{k_j}\right| = \frac{1}{\alpha_j + 1/\beta_j}$$
, j even.

Taking limits as $j \to \infty$ we have

$$\frac{1}{u} \ge \frac{1}{m+2/\theta} = \frac{1}{\sqrt{m^2+4/n}} .$$

If (ii),

$$\frac{1}{u} > (k_j + k_{j-1})^2 \left| \theta - \frac{h_j + h_{j-1}}{k_j + k_{j-1}} \right| = \frac{(\alpha_j - 1)(\beta_j + 1)}{\alpha_j \beta_j + 1}, j \text{ odd,}$$

and taking limits

$$\frac{1}{u} \ge \frac{(\theta - 1)\left(m + \frac{1}{\theta} + 1\right)}{\theta\left(m + \frac{1}{\theta}\right) + 1} = \frac{\left(1 - \frac{1}{\theta}\right)\left(m + \frac{1}{\theta} + 1\right)}{m + 2/\theta} =$$

$$= \frac{m + 1 - \frac{1}{n}}{m + 2/\theta} > \frac{1}{m + 2/\theta} = \frac{1}{\sqrt{m^2 + 4/n}}.$$

If (iii),

$$\frac{1}{u} > (k_j - k_{j-1})^2 \left| \theta - \frac{h_j - h_{j-1}}{k_j - k_{j-1}} \right| = \frac{(\alpha_j + 1)(\beta_j - 1)}{\alpha_j \beta_j - 1}, j \text{ even,}$$

and again it follows that $I/u \ge I/\sqrt{m^2 + 4/n}$. Thus $u \le \sqrt{m^2 + 4/n}$ for all n. If t is the reciprocal of an integer, setting n = I/t we have $u \le \sqrt{m^2 + 4/t}$. If t = 0, the result follows by taking limits as $n \to \infty$.

4. By setting m = 1 in the theorem we obtain Segre's theorem on asymmetric approximation:

Corollary I (Segre [5]).—Let θ be irrational and let t be a non-negative real number. Then there exist infinitely many rational numbers h|k with k > 0 such that

$$-\frac{\mathrm{I}}{\sqrt{\mathrm{I}+4t}\,k^2} < \frac{h}{k} - \theta < \frac{\mathrm{I}}{\sqrt{\mathrm{I}+4t}\,k^2} \cdot$$

If t = 0 or if t is the reciprocal of an integer, this result becomes false if $\sqrt{1+4t}$ is replaced by a larger constant. The statement also holds with $h|k-\theta$ replaced by $\theta - h/k$.

Setting t = 1, we obtain a theorem of Muller:

Corollary 2 (Muller [2]).—Let θ be irrational with continued-fraction expansion $\langle a_0, a_1, a_2, \ldots \rangle$. If $a_j > m$ for infinitely many j, then there exist infinitely many rational numbers h|k such that

$$\left|\theta-\frac{h}{k}\right|<\frac{1}{\sqrt{m^2+4}\,k^2}$$

This result becomes false if $\sqrt{m^2 + 4}$ is replaced by a larger costant. Finally, setting t = m = 1, we obtain Hurwitz's Theorem:

Corollary 3 (Hurwitz [1]).—If θ is irrational, then there exist infinitely many rational numbers h/k such that

$$\left|\theta - \frac{k}{h}\right| < \frac{1}{\sqrt{5} k^2} .$$

This result becomes false if $\sqrt{5}$ is replaced by a larger constant.

REFERENCES.

- [I] A. HURWITZ, Über die angenäherte Darstallung der Irrationalzahlen durch rational Bruche,
 «Math. Annalen », 39, 279–284 (1891).
- [2] M. MÜLLER, Über die Approximation reeller Zahlen durch die Näherungsbruche ihres regelmässigen Kettenbruches, «Arch. Math. », 6, 253–258 (1955).
- [3] I. NIVEN and H. S. ZUCKERMAN, An Introduction to the Theory of Numbers, John Wiley and Sons, New York 1960.
- [4] R. ROBINSON, The approximation of irrational numbers by fractions with odd or even terms, « Duke M. J. », 7, 354-359 (1940).
- [5] B. Segre, Lattice points in infinite domains and asymmetric Diophantine Approximations, «Duke J. Math.», 12, 337–365 (1945).