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Meccanica. — Upon the paradoxal character of the solutions of
Kelvin—Somigliana and Kolossoff—-Muskhelishvili in the plane e/astmly
Nota di Liviu SoLomon, presentata  dal Socio B. Finzi.

1. It is well-known (see A. I. Lurye [1], chap. 2, § 1) that the funda-
mental solution of Lamé’s equations (for isotropic and homogeneous bodies)
can be obtained, by introducing in the representation of Grodskii

(1) i =DB— W—grad(x B + B.,)

) AB=—LX | A, =ZF
@ m

(where X is the vector-radius of an arbitrary point; # — the displacement
vector; F — the body force; p — the constant of Coulomb; v — the constant
of Poisson), the fundamental solution of Laplace’s equation.

In the case of the plane strain state, one has to take

<3) §=Aln% , B,=o0 , 92=x2—|—y’,'

where @ is an arbitrary and wndeterminable constant, introduced in order
to render the solution independent upon the choice of the unit of lenght.
This solution corresponds to the action of an uné# concentrated force, if

@) A — .

Considering for simplicity the case of an unit force applied in the origin
along the axis Ox (which does not affect the generality) we get from (1) the
components of the plane tensor of Kelvin-Somigliana

x2

1 a _
() vn= T (1) [(3 —4v)In—=+ F] » U =

! £
mu (1—v) p?

or still in polar coordinates z = pex:

‘ ©) Uir = sin ) cos ..

I 2 a
8w (1—v) {COS ”(3“4“)1“?} e =

The same expressions are appearing if we utilize the solution of Kolossoff-
Muskhelishvili for a concentrated unit force directed along Ox (see N. I. Mu-
skhelishvili [2], § 57). Namely, one gets

@) @(Z)Z—ml[—+l)ln2 , Y@= zn(n—l—l)

(*) Nella seduta del 10 giugno 1964.
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with » = 3 -—— 4V, so that the plane complex displacement will be

27,
16 T (I —V) ¢

1
16 7Tp (1— V)
which leads—after separation of the real and imaginary parts—exactly to
the components from (5) or (6), but for a constant term.

2. The above solution obviously contredicts the mechanical facts.” The
component z,, of the displacement along the direction of the acting force
tends to infinity both for p— o (which is logical), and for p —co (which is
absurd); and the component z,, does not depend upon the distance p (which
is also inacceptable).

For this reason, one admits usually in the theory of the plane problem—
if it is necessary to suppose the displacements as being bounded at the infi-
nity—that the forces acting upon any bounded boundary component, have
a vanishing resultant force (see [2], § 36).

Tn order to examine the behaviour of the displacements (6), let us con-
sider the curve

©) F(x,y;a)zcos“x—i—(3~4v)1n_§=o

along which one has v;; = 0. One sees easily that the curves F (x , ¥ ;2)=0
and F (x,y;a) = Const. are homothetic with the curve F (x,y;1) =0,
so that it remains to examine only this last one. For it, one has

(10) p = exp [cos® x/(3—4 V)]

which is the equation of a closed curve, having Ox, Oy as axes of symmetry.

Thus, the solution of Kelvin-Somigliana renders evident a closed curve,
on which »,, = 0; in its interior one has z,; >0, and in its exterior, v;; << O.
The modification of the constant @ changes the dimensions of this ¢ tube ”’
of equal displacements—but does not modify its character.

All, this is absurd—and is obviously due to the fact that the function
In ¢z possesses fwo singular points (0 and oo), while the function 1/R in the
three-dimensional case is regular at the infinity.

It can be also noted that in the plane case, we have at our disposal
two functions which can lead to solutions of the type of Kelvin-Somigliana:

Relnz=1Ing, and Imlnz =y = arc tg{:—. Setting in (1)
(11) B,=o , B.=Ay , B,=o0

one obtains a second solution of Kelvin’s-Somigliana’s type

I

, 1 ., b - o -
(12) Vu = oy SITK L e = [(3—4V) x— sin ¥ cos x] ,
where in the case of the unit force

(13) A= 20

e (1—2v)
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This is also inacceptable, since it leads .to multi-valued components
of the displacement and, more than, does not depend upon .

No other possibility to construct plane solutions of this type is existing.

The paradoxal character of the above results shows that it is not allowed
to use the solutions 7z displacements of the plane problem, if it has been
made use of the components of the tensor of Kelvin-Somigliana in an entire
(non-differential) form, as it is for ex. the case in the construction of the
‘particular solutions corresponding to non-vanishing body-forces (see [2], the
end of § 57). In the contrary, all the calculations referring to the stresses
are valid, since the derivatives of In z are regular at the infinity.

3. The paradoxal character of the solution of Kelvin-Somigliana in the
plane can be understood, taking into account that the problem of plane
strain is in fact a three-dimensional one, with complete monotony of the
data along the axis Oz. ' :

Let us consider the three-dimensional infinite space, loaded along Oz
by a system of constant loadings directed along Ox. We note with X the point
of observation, and with & the point of source. If the loadings ¢ (§) 7, have
the resultant force 7, (unit vector of Ox) on any interval of unit length on
Og, it follows ¢ ({) = const. = 1.

The solution of Kelvin-Somigliana in the three-dimensional space for
a concentrated force 7, is

(14) 011(7;g>=£(>€—1~;———|——%> , ﬂlg(,—c;azc%’
v, (738 = ZEZY

where

(15) R=\w+5+E—0 , = qfgmmy

Multiplying in (14) with &€ and integrating from & to ¢, we obtain the
'displacements of the three-dimensional space submitted to a «line » of load-
ings distributed along Oz, and having the resultant force (¢, —&,)7,.

We consider the change of variable

(16) Z=z—¢ , dZ=—d¢
and note with V,; the integrals of the components from (14).
After certain elementary calculations, we obtain

(Rt 4+ Z:1) (Re—7Z2) .

a2

Va=z2c[S 4+ G—4h |+ cG—an

5 I I
— lmmrzy + R =25]

a7 | . [
Vlz——-ch—{‘— cxy |

I 1
R: (R: +Zy) + Rz(Rz—Z2)}

I I
Vemer|g — g
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where it has been noted
(18)  Zi=:—% , R=lrty+z =Yet+z , R=lptz
G=1,2).

It is visible now, that the first terms from V,, and V,, coincide with v,,,
respectively with z,, for the plane case from (5).

4. It would be desirable to obtain from (17) the solution of the plane
strain problem, by taking Z,,—7Z,—>0c0. In fact, it is visible that the last
terms from Vi;, V.., together with V,;, tend in this case to zero. On the con-
trary, the second term from V,, tends now to infinity. This shows the
reason for which the function v,; from (5) tends to infinity with p, in con-
tradiction with the mechanical sense of the problem; things are happening
so, only because in the solution of the plane problem—which had to have
been obtained from (17)—one has ¢z advance neglected the terms depending
upon z, and therefore the second term from V,,, which tends also to oo,
has been overlooked.

Let us group together in (17) the terms in cos? 1, cos % sin ¥, and the
logarithmic ones. After elementary calculations, we obtain

|

;Vu(x,y,z)=2cs 1— ! L
| ( V Z; (V z ZI)

i A ? I+p” I+92+ P

) cos® Y 4

I
B /[ 2 g,
2VI+ (“/1-{— 92 —_ 0
3—4v : Z_f Zs \ V Z; Zz)}a
T [ln<l/l+p2+p)+]n< T+ =%/

(19) ¢ \

I

Z
92

Veo(x,y,8)=2c|1—

V Z (V Z zl>—
2
I+p“ I+92+ P
- ! cos ¥, sin %
V Z: (V z z2>
1 J—

? + p® I+9“ P

Vax,y,2)=c LI ! cos .

T V z
/1 1
|1+ +

(where the yariable z appears through Z, , Z,).
The coefficient of cos?y and the logarithmic term from V., are both

positive for any values of ¢, %, Z; , Z.—so that we have everywhere V,, > o,
as it was to be expected.
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Further, the limits of the expressions (19) for any finite Z, , Z, are zero.
Therefore, this solution gives displacements which keep a constant sign
along the direction of the loading, and tend to zero at the infinity.

On the contrary, for p finite, we get from (19)

. YAY . .
(20) lim V,=3—4v)cln=2 500 lim V,,=2¢siny cosy,
Zy, —Z,—>00 3 Zy,—Zy,—>o
lim V,=o0
Zyy,—Zy—>00
which is also easily understandable: if Z,, —Z,— oo, the resultant force

applied along Oz upon the elastic space tends also to oo, so that it is to
be expected, that the displacements cannot remain finite.

In the practice, one cannot meet neither the case Z,, — Z,—> 0o, nor
the case p — co. But the values of the displacements can #ever be searched
in the form (5) or (8)—which have no mechanical meaning—but only start-
ing from (19) and evaluating in which measure these formulae, established
for the infinite space loaded along Oz, remain admissible for the considered
problem.

This remains valid also in connection with the above said at the end
of § 2. Further, this must permit to clear up certain difficulties appearing
in the plane contact problem, in the plane problem of stress-concentration
etc.—all these connected in a certain measure with the behaviour of the
displacements at the infinity.
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