ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Bruno Pini

Sulle tracce di un certo spazio funzionale

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **37** (1964), n.1-2, p. 28–34. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1964_8_37_1-2_28_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Sulle tracce di un certo spazio funzionale. Nota (*) di Bruno Pini, presentata dal Socio G. Sansone.

Sia S lo spazio delle funzioni $\varphi(x)$ a decrescenza rapida su \mathbb{R}^n (spazio euclideo reale n-dimensionale); sia

$$\tilde{\varphi}(x) = \int_{\mathbb{R}^n} e^{i(x,y)} \varphi(y) dy.$$

Sia f(x) una funzione misurabile positiva tale che $f(x) \leq C (1 + |x|^2)^m$, $I/f(x) \leq C (1 + |x|^2)^m$ per una certa costante positiva C e un certo intero m; indichiamo con H_f lo spazio di Hilbert ottenuto per completamento di S rispetto alla norma

$$\|\varphi\|_f^2 = \int_{\mathbb{R}^n} f(x) |\tilde{\varphi}(x)|^2 dx$$
 (1).

Se $f(x) = (\mathbf{I} + |x|^2)^s$, \mathbf{H}_f si suole indicare con \mathbf{H}^s e questo spazio trova importanti applicazioni nello studio delle equazioni ellittiche. Se $f(x) = \sum_{k=1}^n (\mathbf{I} + x_k^2)^{s_k}$, il corrispondente spazio \mathbf{H}_f $(\mathbf{H}^{s_1, s_2, \dots, s_n})$ ha trovato applicazioni nello studio di certe equazioni ipoellittiche (quasi-ellittiche) (2). Nelle righe seguenti, posto

(I)
$$P(s, \sigma) = s^{2m} \sigma^{2m} + s^{2n} + \sigma^{2n}$$

con m ed n numeri naturali tali che m < n < 2m (s, $\sigma \in R$), consideriamo lo spazio H_f con $f = I + P(s, \sigma)$, per quel che riguarda le sue tracce su rette; denotereno tale spazio con $H_P(R^2)$.

Al polinomio (1) si può associare il polinomio differenziale

(2)
$$P(iD_x, iD_y) = D_x^{2m} D_y^{2m} + (-1)^n D_x^{2n} + (-1)^n D_y^{2n}$$

che è da ritenere il più semplice esempio di operatore ipoellittico non ellittico e non pseudoparabolico (quasi-ellittico) (3). Tale operatore rispetto agli

- (*) Pervenuta all'Accademia il 17 giugno 1964.
- (1) Per tali spazi, studiati da Deny, Malgrange, Hörmander, . . ., cfr. L. HÖRMANDER, Linear partial differential operators, Springer-Verlag, Berlin 1963.
- (2) Cfr. M. PAGNI, Sulle tracce di una certa classe di funzioni, «Atti Sem. Mat. Fis. Univ. Modena », XI (1962); M. PAGNI, Problemi al contorno per una certa classe di equazioni lineari alle derivate parziali, ibidem, in corso di stampa; B. PINI, Su un problema tipico relativo a una certa classe di equazioni ipoellittiche, in corso di stampa su «Atti Acc. Sci. Istituto di Bologna ».
- (3) Cfr. P. P. MOSOLOV, Sul primo problema generalizzato di valori al contorno per una certa classe di operatori differenziali, I, II, «Mat. Sbornik», 57 (1962) e 59 (1962) (in russo).

ellittici, ai parabolici, ai pseudoparabolici (quasi-ellittici) presenta la differenza sostanziale di possedere più di un sistema di rette caratteristiche reali. Dalle ovvie inclusioni $H^{2m}(R^2) \subset H_P(R^2) \subset H^n(R^2)$ segue $H^{2m-j-1/2}(R) \subset \mathbb{C}^{j}H_P \subset H^{n-j-1/2}(R)$; come avviene nel caso parabolico e pseudoparabolico le tracce su rette caratteristiche si differenziano da quelle su rette non caratteristiche.

1. Tracce di H, su rette caratteristiche. - L'equazione

(3)
$$(-1)^m s^{2m} \lambda^{2m} + s^{2n} + (-1)^n \lambda^{2n} = 0$$

ha tutte le radici nulle solo per s = 0 e O(s) per $s \to 0$; possiede 2 m radici del tipo $\alpha_j |s|^{(n-m)/m} + O(|s|^{(n-m)/m})$ per $|s| \to +\infty$, m delle quali con $\Re e \alpha_j < 0$ ed m con $\Re e \alpha_j > 0$; possiede 2 (n-m) radici del tipo $\beta_j |s|^{m/(n-m)} + O(|s|^{m/(n-m)})$ per $|s| \to +\infty$, n-m delle quali con $\Re e \beta_j > 0$ ed n-m con $\Re e \beta_j < 0$ (4). Indichiamo con $\lambda_1, \lambda_2, \dots, \lambda_m, \lambda_{m+1}, \dots, \lambda_n$ le radici per cui $\Re e \alpha_j < 0$ e $\Re e \beta_j < 0$.

Indichiamo con V(s) il determinante di Vandermonde di ordine n che ha $(\lambda_1^{j-1}, \cdots, \lambda_n^{j-1})$ come riga di posto j, e con V_j (s, y) il determinante ottenuto da V sostituendo la riga di posto j+1 con $(\exp(\lambda_1 y), \cdots, \exp(\lambda_n y))$.

(4)
$$u(x,y) = \sum_{j=0}^{n-1} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-isx} \, \tilde{\varphi}_j(s) \, (V_j(s,y)/V(s)) \, ds = \sum_{j=0}^{n-1} u_j(x,y)$$

è soluzione formale del problema $P(iD_x, iD_y)u = 0$ per y > 0, $D_y^j u|_{y=0} = 0$ $\varphi_i(x)$ per j = 0, $\varphi_i(x)$. Proviamo che:

Se
$$\varphi_{j}(x) \in S$$
, $0 \le j \le n-1$, allora $u(x, y) \in H_{P}(\mathbb{R}^{+2}_{y}) (\mathbb{R}^{+2}_{y} = \{(x, y); -\infty < x < +\infty, y \ge 0\})$, $\mathbb{D}^{j}_{y} u(x, 0) = \varphi_{j}(x) e$

$$\|u\|_{H_{\mathbf{p}}} \leq \operatorname{cost.}\left(\sum_{j=0}^{m-1} \|\varphi_{j}\|_{H^{n-(j+1/2)(n-m)/m}} + \sum_{j=m}^{n-1} \|\varphi_{j}\|_{H^{(n-j-1/2)m/(n-m)}}\right).$$

Prolungando u_j con lo zero per y < 0 si ha

$$\int\limits_{\mathbb{R}^{+2}_{y}} |\operatorname{D}_{x}^{h} \operatorname{D}_{y}^{k} u_{j}|^{2} dx dy = \frac{1}{4 \pi^{2}} \int\limits_{\mathbb{R}^{2}} |\widetilde{\operatorname{D}_{x}^{h} \operatorname{D}_{y}^{k} u_{j}}|^{2} ds d\sigma.$$

Indicando con $V_{jr}(s)$ il determinante ottenuto da V(s) sopprimendo la riga di posto j+1 e la colonna di posto r, si ha

$$|\widehat{D_x^h}\widehat{D_y^h}\widehat{u_j}|^2 = s^{2h} |\widehat{\varphi_j}(s)|^2 \sum_{r,t=1}^n \frac{(-1)^{r+t} V_{jr} \overline{V}_{jt} \lambda_r^k \overline{\lambda_t^k}}{|V|^2 (\lambda_r + i\sigma) (\overline{\lambda_t} - i\sigma)}$$

(4) Cfr. B. Pini, Sulla classe di Gevrey delle soluzioni di certe equazioni ipoellittiche, « Boll. U.M.I. », 18 (1963).

e quindi

$$\int\limits_{\mathbb{R}} |\widetilde{D_x^h} \widetilde{D_y^k} u_j|^2 d\sigma = -2 \pi s^{2h} |\widetilde{\varphi}_j|^2 \sum_{r,t=1}^n \frac{(-1)^{r+t} V_{jr} \overline{V}_{jt} \lambda_r^k \overline{\lambda_t^k}}{|V|^2 (\lambda_r + \overline{\lambda_t})}$$

Risulta V (s) = O (|s|^{mn-n/2}) per |s| $\rightarrow + \infty$. V_{jl} (s) è il prodotto del determinante di Vandermonde di $\lambda_{\rm I}$, \cdots , λ_{l-1} , λ_{l+1} , \cdots , λ_n per la somma dei prodotti di queste λ prese a $n-{\rm I}-j$ a $n-{\rm I}-j$; perciò, per $|s| \rightarrow + \infty$, $V_{jl}(s)/{\rm V}(s)$ è O($|s|^{\gamma(j)}$) con $\gamma(j) = -j(n-m)/m$ se $j \leq m-{\rm I}$, $l \leq m$; $\gamma(j) = -jm/(n-m)+n$ ($m-{\rm I}$) (2m-n)/m (n-m) se $j > m-{\rm I}$, $l \leq m$; $\gamma(j) = -j(n-m)/m-n$ (2m-n)/(n-m) se $j \leq m$, l > m; $\gamma(j) = -jm/(n-m)$ se j > m, l > m.

Con calcoli banali si riconosce che affinché $D_x^h D_y^k u_j \in L^2(\mathbb{R}_y^{+2})$ per h=n, k=0; h=0, k=n e per h=k=m, occorre e basta che sia $|\tilde{\varphi}_j|^2 \cdot (1+|s|)^{2n-(2j+1)(n-m)/m} \in L(\mathbb{R})$ per $0 \le j \le m-1$, $|\tilde{\varphi}_j|^2 (1+|s|)^{(2n-2j-1)m/(n-m)} \in L(\mathbb{R})$ per $m \le j \le n-1$, e si ha $||u_j||_{H_p} \le \cos t$. $||\varphi_j||_{H^n-(j+1/2)(n-m)/m}$ se $0 \le j \le m-1$, $||u_j||_{H_p} \le \cos t$. $||\varphi_j||_{H^n-(j-1/2)m/(n-m)}$ se $m \le j \le n-1$.

Dimostriamo ora che:

Se $F(x, y) \in S$, allora

$$\sum_{j=0}^{m-1} \| D_{y}^{j} F(x, 0) \|_{H^{n-(j+1/2)(n-m)/m}} + \sum_{j=m}^{n-1} \| D_{y}^{j} F(x, 0) \|_{H^{(n-j-1/2)m/(n-m)}} \le$$

$$\leq \cot \| F \|_{H_{D}}.$$

Da questa e dalla precedente proposizione segue che:

L'applicazione $F(x,y) \rightarrow (F(x,o), D_y F(x,o), \cdots, D_y^{n-1} F(x,o))$ di $S(R^2)$ in $S(R) \times \cdots \times S(R)$ si prolunga in un omomorfismo di $H_P(R^2)$ su $H^{n-(n-m)/2m}(R) \times \cdots \times H^{m/2(n-m)}(R)$.

Si osservi che se m = n/2 allora $H_P(\mathbb{R}^2) \equiv H^n(\mathbb{R}^2)$ e si ritrova un noto teorema di tracce relativo ad $H^n(\mathbb{R}^2)$. Si osservi anche che 4m-2j-1> > (2n-2j-1)m/(n-m)>2n-2j-1 per $n-1\geq j\geq m$ e 4m-2j-1>2n-(2j+1)(n-m)/m>2n-2j-1 per $0\leq j\leq m$.

Ovviamente è equivalente a $||F||_{H_P}$ la norma

$$\left(\int_{\mathbb{R}^2} P(I + |s|, \sigma) |\tilde{F}|^2 ds d\sigma\right)^{1/2}.$$

Poniamo $|\sigma| = (1 + |s|)^{\alpha}$ con $\alpha \ge 0$. È $\max(2n/\alpha, 2m(1 + \alpha)/\alpha, 2n) = 2n/\alpha$ se $0 < \alpha < (n-m)/m, = 2m(1+\alpha)/\alpha$ se $(n-m)/m \le \alpha \le m/(n-m), = 2n$ se $\alpha > m/(n-m)$. Consequentemente

$$\sigma^{2j}$$
 < cost. (P (I + | s | , σ)) $^{\delta(j)}$

con $\delta(j) = \alpha j/n$ per $0 \le \alpha \le (n-m)/m$, $\delta(j) = \alpha j/(1+\alpha)m$ se $(n-m)/m \le \alpha \le m/(n-m)$, $\delta(j) = j/n$ se $\alpha \ge m/(n-m)$; $\delta(j) = 0$ per $|\sigma| \le 1$. Perciò

$$\int_{\mathbb{R}^2} (\mathbf{I} + \mathbf{P}(s, \sigma))^{\mathbf{I} - \delta(j)} |\widetilde{\mathbf{D}_y^j \mathbf{F}}|^2 ds d\sigma < \text{cost.} ||\mathbf{F}||_{\mathbf{H}_{\mathbf{P}}}^2.$$

Poniamo ora $\theta(j)=(2\;n-2\;j-1)\;m/(n-m)$ se $j\geq m$, $\theta(j)=2n-(2\;j+1)\;(n-m)/m$ se j< m . Si ha

$$(1 + |s|)^{\theta(j)} \left| \int_{\mathbb{R}} e^{isx} D_{y}^{j} F(x, 0) dx \right|^{2} = \frac{1}{4\pi^{2}} \left| \int_{\mathbb{R}} (1 + |s|)^{\theta(j)/2} \widetilde{D_{y}^{j}} F(s, \sigma) d\sigma \right|^{2} \le$$

$$\le \frac{1}{4\pi^{2}} \int_{\mathbb{R}} (1 + P(s, \sigma))^{1 - \delta(j)} |\widetilde{D_{y}^{j}} F|^{2} d\sigma \cdot \int_{\mathbb{R}} \frac{(1 + |s|)^{\theta(j)}}{(1 + P(s, \sigma))^{1 - \delta(j)}} d\sigma.$$

Basterà provare che l'ultimo integrale scritto è limitato al variare di s. Spezziamo R negl'intervalli $|\sigma| \leq I$, $I \leq |\sigma| \leq (I+|s|)^{(n-m)/m}$, $(I+|s|)^{(n-m)/m} \leq |\sigma| \leq (I+|s|)^{m/(n-m)}$, $|\sigma| \geq (I+|s|)^{m/(n-m)}$. Sostituiamo il denominatore con $(P(I+|s|,\sigma))^{I-\delta(I)}$.

Sia $m \le j \le n - 1$. Allora

$$\int_{|\sigma| \le 1} \frac{(1+|s|)^{(2n-2j-1)m/(n-m)}}{P(1+|s|,\sigma)} d\sigma < \frac{1}{(1+|s|)^{2n-1-(2n-2j-1)m/(n-m)}} .$$

$$\cdot \int_{|t| \le 1/(1+|s|)} \frac{dt}{1+t^{2n}},$$

avendo posto $\sigma = (I + |s|)t$; per $j \ge m$ è $2n - I - (2n - 2j - I) m/(n - m) \ge 2(n - m) + (2m - n)/(n - m)$.

$$\int_{|\sigma| \geq (1+|s|)^{m/(n-m)}} \frac{(1+|s|)^{(2n-2j-1)m/(n-m)}}{(P(1+|s|,\sigma))^{1-j/n}} d\sigma < \int_{|t| \geq 1} \frac{dt}{(t^{2m}+t^{2n})^{1-j/n}} < + \infty,$$

avendo posto $\sigma = t (1 + |s|)^{m/(n-m)}$ (perché 2(n-j) > 1).

$$\int_{|\mathbf{1}| \leq |\sigma| \leq (\mathbf{1}+|s|)^{(n-m)/m}} \frac{(\mathbf{1}+|s|)^{(2n-2j-1)m/(n-m)}}{(P(\mathbf{1}+|s|,\sigma))^{\mathbf{1}-j(n-m)/mn}} d\sigma <$$

$$<\frac{1}{(1+|s|)^{n(2m-n)/(n-m)}}\int_{0\leq |t|\leq 1}\frac{dt}{(1+t^{2m})^{1-j(n-m)/mn}},$$

avendo posto $\sigma = t (1 + |s|)^{(n-m)/m}$, poiché $\delta(j) = \alpha j/n \le j (n-m)/mn$ (ed è 2m-2j(n-m)/n > 1). Posto infine $\sigma = (1+|s|)^{\alpha}$ si ha

$$\int_{(\mathfrak{t}+|s|)^{(n-m)/m} \leq |\sigma| \leq (\mathfrak{t}+|s|)^{m/(n-m)}} \frac{(\mathfrak{t}+|s|)^{(2n-2j-1)m/(n-m)}}{(P(\mathfrak{t}+|s|,\sigma))^{\mathfrak{t}-\alpha j/m(\mathfrak{t}+\alpha)}} d\sigma =$$

$$=2\int_{(n-m)/m}^{m/(n-m)}\frac{(1+|s|)^{(2n-2j-1)m/(n-m)}\lg(1+|s|)(1+|s|)^{\alpha}}{(1+|s|)^{2m+2m\alpha-2\alpha j}}d\alpha<\frac{2}{2j+1-2m}.$$

Allo stesso modo si tratta il caso di j < m.

2. TRACCE DI H, SU RETTE NON CARATTERISTICHE. – Poniamo $\xi = \alpha x + \beta y$, $\eta = \gamma x + \delta y$ con α , β , γ , δ numeri reali diversi da zero tali che $\alpha \delta - \beta \gamma = 1$; perciò $\eta = 0$ e $\xi = 0$ non sono rette caratteristiche. Proviamo che: Se $F(\xi, \eta) \in S$, allora per $0 \le j \le n-1$ riesce

$$\| D_{\eta}^{j} F(\xi, o) \|_{H^{n-j-(n-m)/2}} \leq \cos t. \| F \|_{H_{\mathbf{P}}}.$$

Con scelte opportune di α , β , γ , δ si può far sì che D_{η} sia la derivata normale a $\eta=o.$

Si osservi che $2n-2j-(n-m)/m \le 2n-(2j+1)(n-m)/m$ per $0 \le j < m$ (il segno di eguaglianza sussistendo solo per j=0) e 2n-2j-(n-m)/m < (2n-2j-1)m/(n-m) per $m \le j \le n-1$. Se m=n/2 si ricade nel noto teorema di tracce relativo ad $H^n(\mathbb{R}^2)$.

Posto F (ξ , η) = Φ (x, y), $\alpha s + \gamma \sigma = s'$, $\beta s + \delta \sigma = \sigma'$, poiché \tilde{F} (s, σ) = $\tilde{\Phi}$ (s', σ'), si ha

$$\int\limits_{\mathbb{R}^2} (\mathbf{I} + \mathbf{P}(\alpha s + \gamma \sigma, \beta s + \delta \sigma)) |\tilde{\mathbf{F}}(s, \sigma)|^2 ds d\sigma = \int\limits_{\mathbb{R}^2} (\mathbf{I} + \mathbf{P}(s', \sigma')) |\tilde{\Phi}(s', \sigma')|^2 ds' d\sigma'.$$

Supponiano

$$\sigma^{2j} < \text{cost.} \ (\mathbf{I} + \mathbf{P} (\alpha s + \gamma \sigma, \beta s + \delta \sigma))^{\omega(j,\sigma)}.$$

Allora

$$\begin{aligned} &(\mathbf{I} + |s|)^{2n-2j-(n-m)/m} \left| \int\limits_{\mathbf{R}} e^{is\xi} \, \mathrm{D}_{\eta}^{j} \, \mathrm{F} \left(\xi \,, \, \mathrm{O} \right) d\xi \, \right|^{2} = \\ &= \frac{\mathrm{I}}{4\pi^{2}} \left| \int\limits_{\mathbf{R}} (\mathbf{I} + |s|)^{n-j-(n-m)/2m} \, \widetilde{\mathrm{D}}_{\eta}^{j} \, \mathrm{F} \left(s \,, \, \mathrm{\sigma} \right) d\sigma \, \right|^{2} \leq \\ &\leq \frac{\mathrm{I}}{4\pi^{2}} \int\limits_{\mathbf{R}} (\mathbf{I} + \mathrm{P} \left(\alpha s + \gamma \sigma \,, \, \beta s + \delta \sigma \right)) \, |\, \widetilde{\mathbf{F}} \left(s \,, \, \sigma \right) \, |^{2} \, d\sigma \cdot \\ &\cdot \int\limits_{\mathbf{R}} \frac{(\mathbf{I} + |s|)^{2n-2j-(n-m)/m}}{(\mathbf{I} + \mathrm{P} \left(\alpha s + \gamma \sigma \,, \, \beta s + \delta \sigma \right))^{1-\omega}} \, d\sigma \,. \end{aligned}$$

L'affermazione sarà provata non appena si sia dimostrata la limitatezza dell'ultimo integrale scritto al variare di s.

Ovviamente si può sostituire 1+|s| con |s| e supporre |s|>1. Posto $\sigma=st$ si ha

$$I + P(\alpha s + \gamma \sigma, \beta s + \delta \sigma) = I + \sigma^{4m} (\alpha/t + \gamma)^{2m} (\beta/t + \delta)^{2m} + \sigma^{2n} (\alpha/t + \gamma)^{2n} + \sigma^{2n} (\beta/t + \delta)^{2n}.$$

Fissato ε positivo abbastanza piccolo (seguiranno precisazioni) indichiamo con $I_{\rm r}$ l'intervallo $|\alpha/t+\gamma|\leq \varepsilon$, con $I_{\rm r}$ l'intervallo $|\beta/t+\delta|\leq \varepsilon$ e con $I_{\rm r}$ la parte residua dell'asse t. In $I_{\rm r}$ si ha $|\alpha s+\gamma \sigma|>\varepsilon |\sigma|$, $|\beta s+\delta \sigma|>\varepsilon |\sigma|$ onde

(5)
$$\sigma^{2j} < \text{cost. } (I + P(\alpha s + \gamma \sigma, \beta s + \delta \sigma))^{j/2m}.$$

Poniamoci ora in I_r . In I_s si ragiona in modo analogo. Anzitutto se $|\sigma| \leq 2$, poiché $|\alpha s + \gamma \sigma| \leq \varepsilon |\sigma|$, risulta |s| limitata; inoltre sussiste ancora la (5). Supponiamo $|\sigma| > 2$. Posto $\alpha/t + \gamma = \tau$ si ha

$$I + P(\alpha s + \gamma \sigma, \beta s + \delta \sigma) = I + \sigma^{4m} \tau^{2m} ((I + \beta \tau)/\alpha)^{2m} + \sigma^{2n} \tau^{2n} + \sigma^{2n} ((I + \beta \tau)/\alpha)^{2n} \sim I + \sigma^{4m} \tau^{2m} + \sigma^{2n}$$

se si prende $\varepsilon < I/|\beta|$. Poniamo $|\tau| = \varepsilon |\sigma|^{-\lambda}$, $0 \le \lambda$. Poiché

(6)
$$I + |\sigma|^{4m-2m\lambda} \varepsilon^{2m} + \sigma^{2n} > \text{cost.} \begin{cases} |\sigma|^{4m-2m\lambda} & \text{per } \lambda < (2m-n)/m \\ \sigma^{2n} & \text{per } \lambda \ge (2m-n)/m \end{cases}$$

si deve assumere

(7)
$$\omega = \begin{cases} j/(2m-m\lambda) & \text{per } \lambda < (2m-n)/m \\ j/n & \text{per } \lambda \ge (2m-n)/m. \end{cases}$$

Studiamo ora l'integrale

$$\int_{\mathbb{R}} \frac{|s|^{2n-2j-(n-m)/m}}{(1+P(\alpha s+\gamma \sigma,\beta s+\delta \sigma))^{1-\omega}} d\sigma.$$

Se $|\alpha s + \gamma \sigma| > \varepsilon |\sigma|$, $|\beta s + \delta \sigma| > \varepsilon |\sigma|$, si ha $\omega = j/2 m$; posto $\sigma = st$ si ha

$$\int_{\substack{|\alpha s + \gamma \sigma| > \varepsilon |\sigma| \\ |\beta s + \delta \sigma| > \varepsilon |\sigma|}} \frac{|s|^{2n-2j-(n-m)/m}}{(1 + P(\alpha s + \gamma \sigma, \beta s + \delta \sigma))^{1-j/2m}} d\sigma < \cot \int_{\substack{|t| \le \varepsilon' \\ s^{4m-2j}}} \frac{|s|^{2n-2j+(2m-n)/m}}{s^{4m-2j}} dt + \cot \int_{\substack{|t| \le \varepsilon' \\ (1 + P(s \varepsilon t, s \varepsilon t))^{1-j/2m}}} dt,$$

avendo scelto $\varepsilon'(<\varepsilon)$ in modo che sia $0<\varepsilon'<|\alpha/\gamma|$, $\varepsilon'<|\beta/\delta|$. Il primo integrale è limitato perché 4m>2n+(2m-n)/m; il secondo si maggiora con

$$\cos t. \int_{s_{1}}^{+\infty} \frac{|s|^{2n-2j+(2m-n)/m}}{s^{4m-2j}t^{4m-2j}} dt < +\infty.$$

Poniamoci ora in I1. Consideriamo

$$\int_{\substack{|\alpha s + \gamma \sigma| \leq \varepsilon |\sigma| \\ |\sigma| > 2}} \frac{|s|^{2n - 2j - (n - m)/m}}{(I + P(\alpha s + \gamma \sigma, \beta s + \delta \sigma))^{1 - \omega}} d\sigma.$$

Poniamo $\sigma = st$ e $\gamma + \alpha/t = \tau$. Da $|\sigma| > 2$ segue |t| > 2/|s| e quindi $|(\tau - \gamma)/\alpha| < |s|/2$, condizione questa certamente soddisfatta se |s| è convenientemente grande perché $|\tau| \le \varepsilon$. Per stabilire la (6) abbiamo posto $|\tau| = \varepsilon |\sigma|^{-\lambda}$; allora $|\tau| = \varepsilon |(\tau - \gamma)/\alpha s|^{\lambda}$.

Per fissare le idee supponiamo $I > \gamma > 0$. Scegliamo ε in modo che, oltre a soddisfare le condizioni già richieste, sia tale che $\varepsilon < \gamma$, $\gamma + \varepsilon < 1$.

Spezziamo l'intervallo $|\tau| \le \epsilon$ negl'intervalli $0 \le \tau \le \epsilon$, $-\epsilon \le \tau \le 0$ e corrispondentemente spezziamo l'integrale scritto. L'integrale relativo a $0 \le \tau \le \epsilon$ si maggiora con

$$\cos t. \int_{-\infty}^{\varepsilon} \frac{|s|^{2n-2j+(2m-n)/m}}{(1+s^{4m}(\tau/(\gamma-\tau))^{2m}+s^{2n})^{1-\omega}} d\tau.$$

Per $\lambda < M$, con M costante positiva fissata a piacere, si può sostituire $\gamma - \tau$ con $(\gamma - \tau)^{\lambda}$; poiché $d\tau \sim (\lg |s|/|s|^{\lambda}) d\lambda$, l'integrale si maggiora con

$$cost. \int_{0}^{M} \frac{|s|^{2n-2j+(2m-n)/m}}{(1+|s|^{4m-2m\lambda}+s^{2n})^{1-\omega}} \frac{\lg|s|}{|s|^{\lambda}} d\lambda + \\
+ cost. \int_{M}^{+\infty} |s|^{2n-2j+(2m-n)/m} \frac{\lg|s|}{|s|^{\lambda}} d\lambda.$$

Scegliendo M > 2 n + (2 m - n)/m, il secondo integrale è limitato. Tenendo infine presenti le (6) e (7), il primo integrale si maggiora con

$$\cos t. \int_{0}^{(2m-n)/m} \frac{|s|^{2n-2j+(2m-n)/m}}{|s|^{(4m-2m\lambda)(1-j/(2m-m\lambda))}} \frac{\lg |s|}{|s|^{\lambda}} d\lambda + \\
+ \cos t. \int_{(2m-n)/m}^{M} \frac{|s|^{2n-2j+(2m-n)/m}}{|s|^{2n(1-j/n)}} \frac{\lg |s|}{|s|^{\lambda}} d\lambda < + \infty.$$

Analogo ragionamento per $-\varepsilon \le \tau \le 0$.