ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Elio Cannillo, Giuseppe Giuseppetti

La struttura cristallina del $Cu(py)_2SO_4 \cdot 2 H_2O$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **36** (1964), n.6, p. 878–885. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1964_8_36_6_878_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Cristallografia.** — La struttura cristallina del $Cu(py)_2SO_4 \cdot 2H_2O^{(*)}$. Nota di Elio Cannillo e Giuseppe Giuseppetti, presentata ^(**) dal Socio G. Carobbi.

I cristalli di $Cu(py)_2SO_4 \cdot 2 H_2O$ sono stati ottenuti per lenta evaporazione di una soluzione acquosa di solfato di rame e piridina. La loro composizione chimica è stata stabilita determinando il rame per via elettrolitica e lo ione solfato per via ponderale come solfato di bario, mentre l'azoto è stato determinato per analisi elementare. Percentuali calcolate per $Cu(py)_2$ $SO_4 \cdot 2 H_2O$: Cu 17,96 %, SO_4^{--} 27,14 %, N 7,91 %; trovate: 17,73 %, 27,50 %, 7,66 %.

La determinazione delle proprietà morfologiche ha messo in evidenza la simmetria della classe bipiramidale rombica. Alle forme semplici riscontrate sono stati attribuiti i simboli:

 $\{100\}$ $\{010\}$ $\{110\}$ $\{021\}$.

Il pinacoide $\{010\}$ ed il prisma $\{110\}$ sono le forme più sviluppate, mentre il prisma $\{021\}$ è quella a minor sviluppo; non sempre compare il pinacoide $\{100\}$. Si notano una sfaldatura secondo il pinacoide $\{100\}$ ed un'altra secondo il prisma $\{110\}$. I cristalli sono birifrangenti biassici, otticamente positivi. L'asse α dell'indicatrice ottica coincide con l'asse cristallografico y, l'asse β con z e l'asse γ con x. Gli indici di rifrazione sono stati determinati per la radiazione del sodio col metodo della linea di Becke, usando come liquido rifrangente monobromonaftalina diluita con essenza di lavanda. L'angolo degli assi ottici è stato ottenuto per calcolo dagli indici di rifrazione. I risultati sono i seguenti:

$$\label{eq:alpha} \begin{split} \alpha = 1,477 \pm 0,002 \qquad \beta = 1,501 \pm 0,002 \qquad \gamma = 1,545 \pm 0,002 \\ 2 \ V = 72^o \ 54'. \end{split}$$

Il pleocroismo osservato è: α grigio-verde, β incoloro, γ azzurro.

Il cristallo scelto per le determinazioni roentgenografiche, oggetto del presente lavoro, misura $2,10 \times 0,32 \times 0,19$ mm. Per la determinazione delle costanti reticolari è stato eseguito un fotogramma del cristallo oscillante intorno alla direzione di allungamento, ricavando c_0 . Successivamente il cristallo è stato portato con la stessa orientazione alla camera di Buerger e sono stati ricavati gli altri due periodi. Infine questi parametri sono stati misurati più accuratamente mediante l'indicizzazione di un diffrattogramma e l'applicazione del metodo dei minimi quadrati alla consueta relazione che lega

(*) Lavoro eseguito nell'Istituto di Mineralogia e Petrografia dell'Università di Pavia. Centro di Cristallografia del C.N.R., sezione di Pavia.

(**) Nella seduta del 10 giugno 1964.

le distanze interplanari alle costanti reticolari e agli indici di ogni riflesso. I risultati sono i seguenti:

$$a_{\rm o} = 15,43 \pm 0,06 \text{ Å}$$
 $b_{\rm o} = 14,34 \pm 0,05 \text{ Å}$ $c_{\rm o} = 6,85 \pm 0,03 \text{ Å}.$

La densità roentgenografica per quattro molecole nella cella elementare è di 1,54, in accordo con quella di 1,52, trovata col picnometro.

Il gruppo spaziale, determinato dalle regole di selezione h k o solo con h + k = 2 n, h o l solo con l = 2 n, o k l solo con k = 2 n, è il Pbcn.

Sono stati ripresi fotogrammi di Weissenberg secondo [001] dal livello zero al quarto e fotogrammi di Buerger equatoriali secondo gli altri due assi.

Fig. 1. – Proiezione Patterson sul piano normale a [001].

Le intensità sono state valutate con un microdensitometro; non è stata apportata loro alcuna correzione per l'assorbimento. I fattori atomici di diffusione sono stati calcolati secondo la formula di Forsyth e Wells [1], valendosi delle costanti pubblicate da F. H. Moore [2]. Tutti i calcoli sono stati eseguiti su un elaboratore Olivetti Elea 6001.

Per la determinazione della struttura sono state calcolate le proiezioni di Patterson secondo le tre direzioni. Poiché nella cella elementare sono presenti quattro atomi di rame e quattro atomi di zolfo, questi dovranno occupare due serie di posizioni equivalenti a molteplicità quattro. Dall'esame della Patterson secondo [100], che porta ad escludere le serie di posizioni equivalenti a molteplicità quattro su centri di simmetria, si deduce che queste posizioni sono del tipo:

$$0, y, 1/4$$
; $0, \overline{y}, 3/4$; $1/2, 1/2 + y, 1/4$; $1/2, 1/2 - y, 3/4$.

Le distanze fra gli atomi di rame, per esempio, daranno perciò luogo sulla proiezione secondo [001] (fig. 1) a una serie di massimi Patterson del tipo:

 $0, \pm 2y$; I/2, I/2; $I/2, I/2 \pm 2y$.

Ammettendo che questi massimi siano quelli più elevati, contrassegnati in figura con le lettere A e B, le coordinate x e y del rame risultano essere o e 0,200 ed equivalenti. Ammettendo poi che, per gli sfavorevoli rapporti dei numeri atomici, su questa Patterson siano visibili solo i massimi dovuti a distanze fra il rame e gli altri atomi, ma non i massimi dovuti a distanze degli altri atomi fra di loro, dai massimi contrassegnati con C, e dal massimo all'origine allungato secondo v, si deducono per lo zolfo le coordinate x = 0 e y = 0,133 ed equivalenti.

Le coordinate z di queste prime due serie di atomi sono fissate dal gruppo spaziale, né ha importanza se si attribuisce una z di 1/4 al rame che

Fig. 2. - Proiezione della densità elettronica sul piano normale a [001].

La prima curva di livello rappresenta una densità elettronica di $4 e \cdot A^{-2}$; ogni altra curva rappresenta un incremento di $2 e \cdot A^{-2}$.

sta a 0 e 0,200 e una z di 3/4 allo zolfo che sta a 0 e 0,133 o viceversa, perché questo equivale solo ad uno spostamento dell'origine.

Con le coordinate del rame e dello zolfo è stato eseguito un calcolo di fattori di struttura e, attribuendo i segni così ottenuti agli F osservati, è stata eseguita una proiezione di Fourier secondo [001]; da questa Fourier si sono ottenute le coordinate x e y per tutti gli atomi. Queste coordinate confermano l'ipotesi prima fatta che tutti i massimi Patterson siano da attribuirsi a distanze dal rame, e precisamente il massimo D alle distanze Cu—N e Cu—O e il massimo E alla distanza Cu—O. La proiezione finale della densità elettronica sul piano normale a [001] è riportata in fig. 2.

Per quanto riguarda invece le coordinate z non è stato purtroppo possibile ricavarle dalle proiezioni Patterson secondo gli altri due assi, che, data la brevità del periodo della cella lungo c, non presentano massimi ben definiti, fatta eccezione per quelli dovuti alle distanze Cu-Cu e Cu-S. D'altra parte le proiezioni Fourier secondo questi due assi, calcolate attribuendo agli F osservati, prima i segni determinati dalle coordinate del rame e dello zolfo, e successivamente anche degli ossigeni, a causa del basso numero di riflessi che è stato possibile registrare e dell'elevato numero di sovrapposizioni che si verificano, non sono neanch'esse abbastanza definite per permettere l'attribuzione delle coordinate z a tutti gli atomi, ma solo agli ossigeni. Non ha avuto miglior successo il tentativo effettuato di attribuire la coordinata z agli atomi più leggeri, ricavandola dal rapporto delle componenti immaginaria e reale nei punti della proiezione generalizzata – effettuata con i riflessi del tipo h k I e calcolata dalle posizioni del rame, dello zolfo e degli ossigeni – le cui coordinate x e y corrispondono a posizioni di atomi.

	· · · · · · · · · · · · · · · · · · ·		
	x/a _o	y/b _o	z/c _o
Cu	0,000	0,199	0,250
δ	0,500	0,365	0,250
O(1)	0,528	0,306	0,091
D ₍₂₎	0,57I	0,425	0,331
O ₍₃₎	0,907	0,101	0,197
N	0,907	0,293	0,196
$C(\mathbf{r})$	0,910	0,351	0,041
C(2)	0,835	0,406	0,000
C ₍₃₎	0,763	0,400	0,127
C ₍₄₎	0,765	0,352	0,288
C ₍₅₎	0,834	0,294	0,308
	1.		

Coordinate finali in frazioni dei lati della cella elementare.

TABELLA I.

A questo punto è allora stata eseguita una serie di proiezioni parziali della densità elettronica da -1/8 a 1/8, da o a 1/4 e da 1/4 a 1/2 lungo [001] utilizzando tutti i riflessi $h \ k \ l$, con l da o a 4 e con i segni del rame, dello zolfo e degli ossigeni. Su queste proiezioni si sono finalmente ricavate le coordinate z approssimate anche per gli atomi di azoto e di carbonio. Il fattore di discordanza fra valori osservati e calcolati dei fattori di struttura era a questo punto del 25 %.

Dopo un raffinamento preliminare delle coordinate $x \in y$ di tutti gli atomi, mediante delle sintesi di Fourier delle differenze, si è proceduto a un raffinamento tridimensionale con tutti i riflessi h k l (l da zero a quattro) col metodo dei minimi quadrati, applicando un programma scritto, sempre per il calcolatore Elea 6001, da F. Sgarlata ⁽¹⁾ e da questi gentilmente messo a nostra disposizione. Va notato, a questo proposito, che, nel gruppo spaziale in questione, il rame e lo zolfo, in posizione speciale, danno contributo nullo ai fattori di struttura di tutti i riflessi con h + k = 2 n + 1. Ora questi riflessi, per i quali il contributo dell'anello piridinico ai fattori di struttura assume maggior rilievo, sono quelli di intensità più bassa, nella maggior parte dei casi al limite di significatività delle nostre misure sperimentali. Questo lasciava prevedere che il raffinamento delle coordinate degli atomi dell'anello non avrebbe potuto spingersi allo stesso grado di precisione che per gli atomi più pesanti.

Distanze ed angoli di legame.										
Cu—N	2,00 Å (2)	O ₍₃₎ —Ĉu—O ₍₃₎ '	92°40′							
Cu—O(1)	2,38 Å (2)	O(3)—Cu—N	85°55'							
Cu—O ₍₃₎	2,04 Å (2)	N—Ĉu—N	95°30'							
SO(1)	1,45 Å (2)	O(1)-Cu-O(3)	91°25'							
S—O(2)	1,50 Å (2)	O(1)—Ĉu—N	94°5′							
N—C(1)	1,36 Å	O(2)-S-O(1)	1130							
C(1)—C(2)	1,43 Å	$O_{(I)} \longrightarrow O_{(I)}'$	108°20'							
C(2)—C(3)	1,42 Å	$O_{(2)} \longrightarrow O_{(2)}'$	109°55′							
C(3)C(4)	1,31 Å	$C_{(5)} \longrightarrow \widehat{N} \longrightarrow C_{(1)}$	117°10′							
C(4)—C(5)	1,35 Å	$N - C_{(1)} - C_{(2)}$	117°40′							
C(5)—N	1,37 Å	$C_{(1)} - \widehat{C}_{(2)} - C_{(3)}$	119º10'							
		$C_{(2)} - \widehat{C}_{(3)} - C_{(4)}$	121°20′							
		$C_{(3)} - \widehat{C}_{(4)} - C_{(5)}$	1160							
		C(4)-C(5)-N	126°40′							

TABELLA II.

Il fattore finale di discordanza fra F calcolati e osservati, sui 630 riflessi $h \ k \ l$ registrati sui fotogrammi Weissenberg, è del 16,3%. Nel calcolarlo non si è tenuto conto di 13 riflessi, a ϑ basso, affetti probabilmente da estinzione, e contrassegnati con un asterisco in Tabella III. Inoltre 8 altri riflessi, sempre a ϑ basso, non sono stati osservati, perché ostruiti dal pararaggi. È stato attribuito un fattore termico medio ad ogni specie atomica; i valori finali dei parametri termici sono i seguenti: $B_{Cu} = 2,17$, $B_S = 1,26$, $B_O = 1,71$, $B_N = 2,48$, $B_C = 4,80$ Å².

(1) Comunicazione personale.

TABELLA III.

Fattori di struttura osservati e calcolati.

μĸ	ī	P.	P _c	<u>h</u> k	1 1	• ⁷ c	<u>h</u> k	1	20	Pc	<u>h</u> k.	<u>1</u> P ₀	Fc	h k	I P	7 _e	D K 1	Po	۴.
0 0	2	n.o.	-214.1	1 15	0 40. 1 5 6.	0 49.2	3 4	1	66.6	84.5	4 11	< 6.8	-13.4	6 1	33.7	-33.0	7 9 0	27.8	15.0
02	0	n.o.	-162.7	1.	2 25.	8 -31.3 5 -10.0		3	60.1	-67.9		3 < 6.6	-3.6		3 < 4.5	-9.0	2	20.8	-18.0
	2 .	55.8	115.9* 95.3*		4 24.	7 26.9	3 5	0	87.1	104.1	4 12	0 45.3	-47.6	6 2	0 105.9	-99.7	4	< 6.2	4.1
	4	24.7	-54.9	1 16	1 < 5.	8 0.3 4 -4.5 7 24		2	36.1	-31.5		1 32.4 2 28.4	-25.8 34.0		1 37.2 2 73.1	-34.8 77.9	7 10 1	<6.9 <6.8	8.5 -8.0
04	0	68.4 8.5	-138.3* 0.1	1 17	0 13.	0 -17.5		4	25.7	26.2	· · .	3 43.5 4 31.2	47.2 -33.0		3 19.8 4 34.0	-2.4	4	32.7	-2.3
	2	17.9	14.1 -59.3	1	1 <4.	9 19.5 2 18.3	3 6	2	30.7	-17.3 40.8	4 13	1 <7.0 2 <6.8	-7.0	63	1 32.8	22.3	7 11 0	39.4	26.0
0 6	•	24.3 54.3	-22.0	1 18	1 <3.	5 3.4	1	3 4 .	29.6 < 5.1	28.1		3 <6.3 4 <5.6	-0.4 2.8		3 23.0 4 18.3	-13.5 -7.6	2	16.2 28.5	16.1 27.3
	1 2	29.8	36.0	20	0 n. 2 103.	•. 195.4 4 -127.7	3 7	0	67.4	-71.8	4 14	22.6	18.6	6 4	68.4	53.0	4	< 5.9	-14.2
	3	53.6 24.6	81.6 33.5		4 47.	4 75.8	1	2 3	19.3 54.6	20.0 57.3		2 23.0	-25.3		2 18.0	-17.0	2	< 6.7	-1.4
08	0	60.5	-77.8	2 1	2 <2.	9 54.1 5 -12.6		4 -	< 5.5	-6.5		4 18.9	23.2		4 23.0	-17.1	•	< 5.5	-9.7
	23	27.0	32.1		4 <2.	7 -5.4	3 8	2.	32.7 <5.6	-28.3	4 15	1 < 6.2 2 < 5.9	9.1 -9.9	6 5	<pre>1 < 5.1 2 53.2</pre>	45.5	7 13 0	30.7	-34.4
	4 <	< 5.6	2.7	2 2	0 87. 1 35.	8 _117.1 7 _40.9		4	15.9	-17.5		13.5	18.4		4 < 5.5	-3.7	3	< 5.8	3.3
0 10	1 4	76.6 <6.2	104.4		2 28.	2 37.9 0 45.7	3 9	1	28.2 47.8	29.3 57.9	4 16	0 23.0 1 15.4	28.4 -14.3	6 6	0 68.1 1 87.6	67.6 -98.8	7 14 1	< 6.2	4.8
	3	30.2	-31.1	2 3	• 29.1	o -43.2		3	17.4 65.3	-15.2		2 12.8 3 10.3	-15.6 10.9		2 69.1 3 98.3	-67.5 97.4		< 5.9 < 5.2	0.3 4.0
0 12	o	47.6	-49.3		2 16. 3 28.	7 _11.1	3 10	1.	< 6.4	-9.2	4 17	1 <4.4	-1.4	6 7	1 23.3	-17.1	7 15 0	42.2	43.6
	2	47.3	-60.9 50.3		4 < 3.	6 9.9 6 15 7	[3	16.0	12.4	50	2 50.2	38.4		2 < 5.8 3 < 5.9	0.0	1	<5.5 33.4	1.6
	4 .	31.5	-36.8		1 50.	3 67.9 2 13.0	3 11	•	<0.7	-16.7	5 1	4 24.7 0 < 3.7	-1.6	7 8	4 < 6.0 0 29.9	-12.6	7 16 1	< 4.3	-6.0
0 14	1 4	36.3	36.1		3 69. 4 16.	5 -100.4 ⁴ 1 -14.9	1.1	1 2	28.2 20.1	-27.8		1 < 3.8	-14.1 -7.3	1	1 38.6 2 18.0	35.3		<4.1	11.2
	3	11.9	-18.1	25	1 <4.0	-1.8	1	4 -	35.6 <6.2	39.8 12.0		3 44.2 4 33.6	52.2 36.3		3 34.4 4 <6.1	-30.6 -13.4	7 17 0	17.3	-20.2
0 16	• <	< 6.0	8.3		3 27.4	-26.2 21.2	3 12	1 -	<7.0 15.2	5.2 -18.0	52	1 16.4	-4.3	69	1 <6.5 2 <6.5	9.6	8 0 0	71.7 68.6	84.8
	2 .	13.8	-10.3	26	0 48.	42.3		3	< 6.6 < 6.1	-4.4		3 <4.2 4 <4.4	4.1 5.4		3 <6.5 4 <6.2	1.9 -0.1		63.1	71.3
0 18	0	33.7	-41.2		2 17.	7 10.1	3 13	0	36.5	-37.4	53	0 117.6	-140.0	6 10	0 33.6	31.0	8 1	58.7 25.9	-51.7
	1	11.4	17.2		4 22.0	3 19.9		3 -	24.8	22.0		2 74.5	67.0 -71.5		2 < 6.7	-2.2	. 1	17.0	14.0
	4	10.4	16.2	e	2 10.1	9.1 9.1		4	22.0	-14.7	· · ·	4 54.4	-61.2		4 23.7	24.0	8 2 0	81.8 15.4	75.6
1 1	0	n.o. n.o.	120.9		4 23.9	-24.0	3 14	2 3	< 6.5	-6.2	, •	2 <4.5 3 38.0	4.3	6 11	2 < 6.9	-11.5		2 66.7 3 < 5.4 40.9	57.8 7.1
	3	42.0	101.6	28	0 59.8	44.7		4 -	< 5.0	9.6		4 17.2	-11.0		4 < 6.1	11.2	8 3 .	< 5.4	8.1
1 2	1.	40.8	-50.9		3 33.0	-37.6	3 15	1 -	53.4 < 6.4 42.8	57.8 7.9	55	0 132.3	168.8 -37.2 -81.2	6 12	0 56.8 1 <7.0	-56.2		2 45.1 3 < 5.6	-31.4
	2 4	33.2	2.0 -51.3	29	1 < 5.4	-7.4	1	3 -	< 5.3 25.2	-10.4 29.9		3 11.9 4 42.8	9.9		3 27.4	29.4	8 4 0	21.0	-15.0
1 3		63.5	-101.1#		2 14. 3 24.3	2 23.4	3 16	1 -	< 5.6	-5.3	56	1 19.6	-20.6	6 13	1 <6.9	2.4		44.5	36.9
	2	55.0 55.5	100.8 ⁴⁴ 92.8 ⁴⁴	2 10	0 52.0	57.4		5 -	<4.4	2.1		3 13.8 4 < 5.5	8.3		3 < 6.0	-0.2		18.0	-40.5
	4	33.6	-55.0		1 < 6.	9.2	3 17	1 -	25.2	-28.7 4.4	5 7	0 <5.4	-10.6	6 14	0 17.6	12.1	8 5	<pre>45.7 45.3</pre>	9.0 38.4
1 4	1 2	13.9	-5.7		4 25.8	21.0	1.18	2	15.9	19.0		1 61.4	-54.9		2 18.0	-21.8		23.0 26.8	19.5
	4 4	16.4	-15.3	2 11	1 < 6.1 2 < 6.1	-8.0	4 0	0	79.0	113.3*		4 <5.8	9.5		4 15.9	17.5	8 6 9	66.7	55.0
15	0	22.0	21.6		3 < 6.8 4 < 6.2	-2.8 -0.8		2 4	62.7 47.7	-104.6#	58	1 < 5.9 2 < 6.0	-2.1 -4.7	6 15	1 < 5.8 2 < 5.4	3.9 8.2		2 55.3 3 76.3	-39.2
	2	32.4	25.0 30.6	2 12	0 49.6 1 41.2	-53.0	4 1	1	18.1	13.0		3 <6.1 4 <6.0	-13.5		3 <4.7 4 <3.4	-2.3 3.6		28.2	22.9
	4	18.0	31.9		2 36.8	38.3 43.1		3	52.3 18.5	-52.8	59	0 < 6.2 1 59.5	6.9 62.7	6 16	0 23.1	27.6		2 31.7	-27.6
	2 4	4.5	-11.2	2 13	• 20.1	-35.9	4 2	0	86.4	-89.7		2 26.6 3 57.6	-20.5		2 18.0 3 11.9	-20.7		4 24.6	15.6
	4 <	< 4.9	12.2		2 < 6.8	-16.5	1.1	23	57.7 9.3	54.4	5 10	• -0.2 1 <6.6	-6.3	70	2 31.4	-22.6	8 8	52.3 52.3	-0.5 50.6
1 7	1 1	51.9 29.6	-69.0 -30.4	2 14	4 < 5.8	4.4		4	40.6	-45.0		2 28.3 3 <6.6	27.1	7 1	0 <4.6	18.3		47.4 30.0	-41.9 -13.2
	3 4	48.2	55.6		1 < 6.9 2 14.3	7.8	1 3	2 4	15.4	-3.0	E 11	4 < 6.2	6.0		2 26.2	-21.3	8 9	1 22.8	17.4
18	1 4	5.3	10.3		21.1 < 5.2	-22.8		4	14.1	-13.1		1 <6.9 2 16.1	-8.1	а. С	4 37.0	34.3		3 36.8	-33.8
	3 4	<5.6	7.1	2 15	1 < 6.4 2 < 6.1	9.6	1	1 2	25.0 73.1	-13.9		3 24.3 4 <6.1	24.5 -13.8	7 2	1 16.5 2 < 4.8	-15.1	8 10	0 26.0	23.2
19	•	21.8	16.5		3 ≺ 5.5 I 16.5	-3.7		3 i 4 4	66.7	-78.6	5 12	1 <7.0	-12.2		4 20.7	-18.5		2 18.7 3 18.2	-17.6
	2	15.9	-17.9	2 16 0	26.5	28.6	4 5	1 <	4.5	-1.2		3 17.8 4 < 5.9	14.0 7.6	7 3	0 113.6	-125.6		4 <6.0	10.2
	4 2	26.5	19.8		2 13.5 <4.6	-13.7		3	29.7	-28.7	5 13	36.4	38.3		2 03.5 3 52.2 4 60.6	-53.8	8 11	1 < 7.0	-10.9
1 10	2 1	12.2	-0.4	2 17 1	<4.8	-3.5	4 6	0 .	77.1	76.3		2 29.6	28.0	7 4	1 < 5.1	2.5		4 <5.7	9.5
	i 7	6.2	-13.4	2 18 0	26.7	-37.4		2 .	93.9	-143.0		4 16.0	-12.2		2 < 5.2	15.6	8 12	0 44.9 1 30.7	-46.8
1,11	0 2	23.8	27.6 -69.3	· •	15.4	21.8		4	36.0	33.9	5 14	2 < 6.3	-10.5	7 5	0 100.8	105.8		2 30.0 3 34.7 4 20.9	34.8
	~ ~ • •	52.0 56.2	-1.6 58.8	502	30.9	33.0 -9.5	4 7	1 <	5.3	-2.4		4 <4.8	6.1		1 57.8	-53.9	8 13	1 < 6.5	4.7
1 12	1 <	6.9	-7.4	3 1 0	95.4 37.0	149.7* 27.8		4 3	38.3	-34.4	5 15	55.3 1 < 6.1	61.0 1.6	l	4 42.0	22.2	+	2 < 6.1	-5.5
	2 2 2 3	6.8	-3.1	1 2	38.8 49.6	-37.0	4 8	0 2	23.6	-31.4 47.1		4 26.4	-6.4	76	1 <5.7 2 24.5	8.7	8 14	0 19.0	9.9
1 13	• < • •	35.0	-37.1	321	. 36.1 <3.1	40.9		2 <	5.8	-58.2	5 16	\$ \$.3	-1.3		3 26.3 4 <5.9	-21.3 -9.9		1 16.9 2 14.1	13.5 -15.4
-	1 4	7.0	-6.5	2	57.0 52.8	-62.5 -55.5	4 9	• < 1 <	6.1	-0.6		2 < 4.8 3 < 3.9	0.1 -3.9	77	0 31.0 1 58.9	15.2		4 13.4	-12.4 20.8
	4 2	20.7	3.6 -21.0	4	10.0	13.8 _202.8#		2 <	6.2	12.3 35.7	5 17	0 20.3 1 < 4. 0	-22.5		2 <6.1 3 43.0	6.2 43.5	8 15	1 < 5.2 2 12.2	0.4
1 14		6.9 6.6	-2.1 -11.0	1	54.9 73.4	68.8	4 10	• <	6.1	-6.0	6 0	2 14.5	17.4	7 8	4 <6.1 1 <6.1	-6.9		3 < 3.8	3.6
	4	:6.1 :5.3	-7.2	4	65.6 50.3	-69.1 -66.0		2 4	6.5	20.0		2 38.4	-38.4		2 11.7	- 14.4 14.9	9 0	2 < 5.6	15.8-
								4 <	26.6	-24.2 3.5					4 17.7	-1,4.7		4 27.1	23.6
																	-	2	

Segue: TABELLA III.

	1.1	, 1	b 14	, 1,1	F	h t 1	1 2 1		ь v 1	1=1	÷ T	n k 1 le l	
<u> </u>	27.7	32.2	10 10	≜ ['o]	°c 28 5	12 6 0	<u> '∘ </u>	°c	14 5 1	< 6.9	· c -1,2 1	6 7 1 <5.5	°c 1.6
1 2 3	63.7 36.4 29.7 39.4	-62.8 -27.3 31.3 42.6		1 25.8 2 40.8 3 19.3 4 20.4	23.7 -39.8 -16.6 18.5	1 2 3	45.9 16.6 34.9 25.7	-42.8 -14.8 32.9 20.2		<6.6 <6.2 <5.3	0.4 -4.8 16.8	2 <5.0 3 <4.2 4 <2.5	3.5 1.1 -6.7
921	24.0 < 5.7 29.6	-21.6 1.9 29.2	10 11	1 <6.8 2 <6.5 3 <5.9	- 0.7 4.5 -6.7	12 7 1 2 3	₹7.0 15.5 ₹6.5	-4.9 17.1 2.4	14 6 (< <li<< li=""> <li< li=""> <li<<< td=""><td>6.5 1 -53.3 -13.7 36.9</td><td>6 8 0 <5.2 1 17.3 2 10.3 3 14.0</td><td>-0.8 15.2 8.0 -14.7</td></li<<<></li<></li<<>	6.5 1 -53.3 -13.7 36.9	6 8 0 <5.2 1 17.3 2 10.3 3 14.0	-0.8 15.2 8.0 -14.7
930	26.2 83.2 17.1	-20.5 -71.7 16.1	10 12	4 < 5.0 0 40.0 1 39.8	-40.0 -39.7	12 8 0	< 5.7 <7.0 26.5	-9.7 26.7	14 7	18.7 1 < 6.6 2 < 6.3	20.8 -11.8 2.4	6 9 1 <4.5 2 <3.9 3 <2.4	1.7 3.8 6.1
3	49.4	39.3 -52.9		3 23.1	25.5	3	27.8	-23.5		i ₹ i:†	-7.1	7 0 2 <5.6 4 <3.7	-9.5
941 2 3	× 5.9 × 5.6 31.9 × 6.0	-7.3 4.4 28.5 0.6	10 13	1 <5.9 2 <5.4 3 <4.7 4 <3.4	0.8 2.5 -2.1 -13.6	12 9 1 2 3 4	¥6.8 ¥6.5 ¥6.0 ¥5.0	13.9 1.7 -4.1 0.2	14 0	23.8 2 <6.0 3 17.6 4 <4.3	-7.1 20.2 12.9 -16.9 -4.8	17 1 0 13.6 1 <6.0 2 13.3 3 <4.8	9.0 -8.1 -14.3 -2.7
950 1 2 3	56.8 25.9 54.2 26.8	40.8 -24.1 -45.7 19.2	10 14 11 0	0 18.7 2 j3.0 4 ≺6.2	15.2 35.8 -12.4	12 10 0	38.5 ¥6.5 30.9 ¥5.5	29.2 15.0 -28.0 -14.1	14 9	1 <5.9 2 <5.6 3 <4.9 4 <3.7	1.0 1.2 6.7 -2.2	17 2 1 <5.9 2 <5.4 3 <4.8	4.2 -5.6 -0.3
9 6 1 2 3	<6.3 <6.4 24.5	-12.4 -4.8 -12.8	11 1	0 58.4 1 54.6 2 51.1 3 25.4	50.0 -52.8 -54.2 23.3	12 11 1	<6.1 <5.7 10.9	-1.6 14.5 -10.6	14 10	$\begin{array}{c} 0 \\ < 5.6 \\ 1 \\ < 5.5 \\ 2 \\ 10.1 \\ 3 \\ 11.4 \\ 4 \\ < 2.6 \end{array}$	-1.0 6.8 -11.8 -10.0	17 3 0 29.4 1 27.1 2 29.1 3 22.5	-24.9 30.0 31.4
970	< 6.5 33.8 13.5	-15.9 -25.2 6.7	11 2	1 < 6.4 2 < 6.4 3 23.3	-8.3 -8.9 20.9	12 12 0	31.8 31.1 25.2	-25.3 -38.0 32.4	14/11	1 <4.9 2 <4.4 3 <3.3	-0.3 5.7 -8.0	4 < 3.3 17 4 1 < 5.6 2 < 5.2	-3.1 5.4 4.0
981	23.3	-16.9 21.1	11 3	• < 6.2 0 60.9 1 53.3	-9.6 -50.1 48.6	13 0 2	18.3 25.4	-25.6	14 12	0 14.3 1 22.1 2 13.5	-14.7 -27.6 20.2	4 <2.3	-4.0
3	₹6.6 ₹6.2	-22.5 -11.7 -2.6		2 71.5 3 35.0 4 52.3	-30.0	13 1 0	< 6.1 30.5 44.8	26.8 -36.9	15 0	2 <6.7 4 <5.3	8.8 -1.4	2 26.8 3 <4.0 4 <1.8	-25.5 10.8 17.7
9 9 0 1 2	66.9 18.1 50.5	30.9 70.9 -18.9 -52.3		2 <6.6 3 <6.6 4 <6.2	1.5 7.1 5.8	3	17.8 26.4	-37.5	1, 1	1 <6.9 2 30.3 3 <6.1	4.8 -22.9 -4.1	17 6 1 <5.0 2 <4.5 3 <6.6	0.6 8.6 -5.5
9 10 1 2 3	<7.0 <6.9 <6.5	11.3 6.9 -12.2	11 5	0 23.6 1 29.0 2 <6.7 3 37.7	-11.7 -25.5 -5.7 28.9	3	√6.8 √6.6 √6.1	-3.8 -7.9 -8.1	15 2	1 <6.9 2 <6.6 3 <6.1	-2.3 -8.3 -9.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 -25.9 9.0 14.2
9 11 0 1	18.8 <7.0 24.2	22.5 -2.2 -25.5	11 6	4 26.5 1 23.9 2 < 6.8	27.2 -20.3 -2.6	13 3 0 1 2 3	30.0 43.6 44.8 35.7	-27.0 44.9 47.5 -28.5	15 3	4 < 5.2 0 54.4 1 43.9	0.8 -44.4 47.2	18 0 0 33.4 2 32.1	23.6 -34.7
2 3 4	<6.7 27.2 <5.4	9.4 24.5 -0.4	11 7	3 < 6.6 4 < 6.2	9.8	13 4 1	46.3 <7.0	-41.9 8.0		2 47.7 3 24.0 4 38.7	46.4 -20.8 -40.0	18 1 1 <5.2 2 <4.7 3 <3.8	-1.4 -10.1 2.7
9 12 1 2 3 4	¥6.7 ¥6.4 ¥5.8 ¥4.8	-15.0 4.2 4.1 -11.6		1 34.4 2 12.5 3 < 6.6 4 < 6.0	27.3 -2.6 14.6 -2.5	3 4 13 5 0	<6.6 <5.9 <7.1	-4.6 6.1 6.7	15 4	1 <6.7 2 <6.4 3 <5.9 4 <4.9	11.3 -0.5 -10.8 1.0	18 2 0 22.9 1 <5.1 2 23.5 3 <3.6	13.5 2.1 23.1 _11.2
9 13 0 1 2 3	37.8 <6.2 19.8 <5.2	-32.3 -7.9 26.4 4.9	11 8	1 <7.0 2 23.2 3 13.2 4 <5.8	1.6 -21.9 -10.1 1.6	1 2 3 4	<7.0 17.4 18.0 27.1	-5.8 -14.8 17.1 24.2	15 5	0 29.8 1 < 6.6 2 37.4 3 19.7	14.0 -11.5 -35.3 16.5	18 3 1 <4.9 2 <4.4 3 <3.4	2.9 -2.0 -5.8
9 14 1 2 3	15.5 ×5.6 ×5.1 ×9.6	-15.2 4.4 2.4 7.0	11 9	$\begin{array}{ccc} 0 & 23.3 \\ 1 & 65.6 \\ 2 & < 6.8 \\ 3 & 54.4 \\ \end{array}$	17.7 69.4 -11.9 -54.3	13 6 1 2 3	₹7.0 ₹6.8 16.0 15.0	-7.3 -7.1 14.4 16.4	15 6	4 25.3 1 <6.4 2 <6.0 3 <5.4	24.5 -4.1 4.3 7.1	18 4 0 <6.0 1 20.2 2 <4.1 3 10.2	7.3 21.5 5.7 -7.1
9 15 0 1 2	<2.8 26.3 <4.7 21.4	-8.3 26.6 -0.7 -30.1	11 10	4 < 5.5 1 < 6.8 2 < 6.5 3 < 6.0	8.7 7.1 9.6	13 7 0 1 2 3	< 7.0 34.8 17.2 22.2	-11.6 -28.7 12.8 18.5	15 7	4 <4.4 0 15.9 1 28.5 2 14.8	3.3 -10.6 -32.7 11.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1 12.6 -4.7 10.2
3 10 0 0 2	< 3.0 82.2 74.9	-3.1 98.9 -97.2	11 11	4 < 5.1 0 < 6.6 1 41.2	3.3 0.8 -43.6	13 8 1 2 3	<6.7 <6.4 <5.9	3.2 -8.6 0.8	15 8	3 15.5 1 < 5.8 2 < 5.4	13.7 -3.1 -0.8	1 28.9 2 14.2	-37.9 -18.6
10 1 1	28.1 <6.1 16.9	-33.4 15.9 8.9	11 12	2 < 6.1 3 30.4 1 < 6.0 2 < 5.6	1.7 28.9 -0.5	4 13 9 0 1	< 5.0 < 6.6 44.3	-2.0 5.7 44.2	15 9	3 <4.6 0 <5.5 1 25.0 2 <4.9	3.4 5.3 28.3		
4 10 2 0 1	< 6.1 63.4 42.6	-3.0 -57.1 -34.0	11 13	3 <4.9 4 <6.7 0 <5.5	-4.8 -6.5 -15.1	13 10 1	32.9	-32.8 11.7	15 10	3 23.3 1 <4.7 2 <4.2	-22.8 -1.0 6.4		
3	40.8	45.0 9.9 -35.7		1 < 5.4 2 15.3 3 < 4.1 4 < 2.0	-5.4 14.7 8.3 -16.3	234	< 5.6 < 5.0 < 3.9	14.4 -2.7 -8.1	15 11	3 < 3.1 0 <4.1 1 12.8	3.9 -13.4 -16.8		
2	<6.2 21.2 ≺6.1	-14.3 13.2 -13.0	11-14.	1 <4.5 2 <4.0 3 <2.6	8.0 6.8 0.9	13 11 0 1 2 3	<5.7 29.0 <5.1 16.0	-7.1 -32.8 0.8	16 0	2 < 3.2 0 25.5 2 38.4	10.1 18.8 -42.5		
10 4 0 1 2 3	24.5 35.5 17.4 28.4	-15.1 23.1 13.8 -28.8	11 15	0 14.4 1 <3.2	17.8	13 12 1	< 2.8 < 4.9 < 4.4	-5.1 -1.1 -0.5	16 1	+ 31.2 1 ≤6.5 2 ≤6.2	-0.1 -4.1		
4 10 5 1 2	25.3 < 6.4 16.8 20.7	-14.2 1.8 14.8	12 1	2 72.3 4 52.0 1 < 6.7	-89.9 64.4	14 0 0 2 4	56.7 50.2 38.3	-0.3 47.3 -61.3 44.4	16 2	4 <4.6 0 <6.6 1 <6.5	-7.5 8.8		
4 10 6 0	16.2 26.8	25.2		2 20.9 3 <6.6 4 <6.2	20.8 -3.0 -9.7	14 1 1 2 3	₹7.0 ₹6.8 ₹6.5	5.0 4.8 -3.0		2 21.4 3 <5.5 4 24.2	21.1 -12.9 -24.2		
234	₹6.6 58.6 23.0	-7.5 45.1 16.8	12 2	0 51.0 1 <6.7 2 50.8 3 <6.6	-35.7 5.3 45.4 0.6	4 14 2 0 1	<5.8 12.4 <7.0	-8.6 -13.1 5.5	16 3	1 <6.4 2 <6.1 3 <5.4 4 <4.4	0.6 -0.8 -7.0 -2.9		
10 7 1 2 3 4	46.8 46.7 46.6 46.2	-6.9 -15.1 0.4 3.0	12 3	4 36.5 1 < 6.8 2 < 6.8	-35.0 -2.0 -5.5	234	25.1 < 6.5 26.9	25.9 -9.6 -30.1	16 4	0 <6.4 1 45.5 2 <5.9	-6.3 45.4 10.2		
10 8 0 1 2	<7.0 44.0 <6.9	-6.4 44.7 12.7	12 4	4 16.7 0 39.0	-10.8	23	<6.8 <5.4 <5.7	-5.1 -3.9 1.3	16 5	4 <4.2 1 <6.1	-4.0		
10 9 1	<6.1 <7.0 <6.9	-6.9		2 < 6.8 3 < 6.6 4 16.2	8.6 -12.4 -13.1	14 4 0 1 2	< 7.0 48.6 13.2 23.7	-11.8 49.2 11.7	16 6	3 <5.0 0 <6.0	-4.7		
3	14.6 < 5.8	-10.3	12 5	1 < 6.9 2 19.7 3 < 6.6 4 25.4	-6.1 -10.4 7.4 25.3		₹5.5	-7.0		2 17.1 3 36.4 4 15.7	-18.5 33.7 18.3		

Le coordinate finali di tutti gli atomi, espresse in frazioni dei parametri della cella, sono riportate in Tabella I; le distanze e gli angoli di legame in Tabella II. L'errore sulle coordinate, calcolato secondo Cruickshank [3], è risultato minore di 0,002 Å per il rame e lo zolfo, minore di 0,03 Å per l'ossigeno e l'azoto, di 0,04 Å per il carbonio. Questi errori, tenuto conto anche di quelli sui parametri della cella, comportano un margine di incertezza di \pm 0,03 Å per le distanze e di \pm 1°45′ per gli angoli di legame.

DESCRIZIONE DELLA STRUTTURA.

Il rame è circondato da due molecole di acqua (Cu—O 2,04 Å) e da due atomi di azoto dell'anello piridinico (Cu—N 2,00 Å) disposti ai vertici di un quadrato, e presenta due legami più lunghi (2,38 Å) con due ossigeni $O_{(1)}$ dei tetraedri SO₄, press'a poco normali al piano dei primi quattro, in modo da formare un ottaedro lievemente distorto (gli assi formano fra loro angoli assai vicini a 90° e la retta $O_{(1)}$ —Cu— $O_{(1)}$ forma un angolo di 80° col piano dei primi quattro legami).

La coordinazione ottaedrica del rame, con quattro legami planari più brevi e due più lunghi, normali al piano dei primi quattro, è quella consueta e più volte riportata in letteratura, per esempio, per strutture analoghe a quella qui studiata, per il $Cu(py)_2Cl_2$ [4] (Cu—N 2,02 Å due volte; Cu—Cl 2,28 Å due volte e 3,05 Å due volte) e per il $Cu(py)_2Br_2$ [5] (Cu—N 1,99 Å due volte; Cu—Br 2,46 Å due volte e 3,19 Å due volte).

I tetraedri SO₄ presentano due distanze S—O di 1,45 Å e due distanze di 1,50 Å; la distanza media riportata in letteratura (Tabelle Internazionali) è di 1,49 Å. Gli angoli sono piuttosto regolari (108° 20', 109° 55', 113°).

Per quanto riguarda infine l'anello piridinico (che giace con lievi scarti nel piano di equazione 0,0426 x + 0,0773 y + 0,0582 z = 1) le distanze oscillano fra un minimo di 1,31 Å e un massimo di 1,43 Å per le C—C, mentre le C—N sono rispettivamente di 1,36 e 1,37 Å. Gli angoli C— \widehat{C} —C oscillano fra 116° e 121° 20', quelli N— \widehat{C} —C fra 117° 40' e 126° 40', quello C— \widehat{N} —C è di 117° 10'. Va comunque, come già detto, tenuto presente che non è in strutture di questo tipo che si possono fare determinazioni accurate di tali distanze e di tali angoli. Infatti anche nei lavori già citati si hanno oscillazioni simili su queste distanze: da 1,32 a 1,45 Å e da 1,25 a 1,51 Å per le C—C rispettivamente nel Cu(py)₂Cl₂ e nel Cu(py)₂Br₂; da 1,32 a 1,51 Å e 1,40 Å per le C—N. Le medie riportate per gli angoli sono rispettivamente 119° per quelli C— \widehat{C} —C, 122° per quelli N— \widehat{C} —C e 118° per quelli C— \widehat{N} —C.

BIBLIOGRAFIA.

- [1] J. FORSYTH, B. WELLS, «Acta Cryst. », 12, 412 (1959).
- [2] F. H. MOORE, «Acta Cryst.», 16, 1169 (1963).
- [3] D. W. J. CRUICKSHANK, «Acta Cryst. », 2, 65, 154 (1949).
- [4] J. D. DUNITZ, «Acta Cryst. », 10, 307 (1957).
- [5] V. KUPČÍK, S. ĎUROVIČ, «Czechoslovak Journal of Physics», 10, 182 (1960).