ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Adelina Santolini

A proposito delle trasformazioni topologiche del piano reale euclideo su se stesso

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **36** (1964), n.5, p. 609–614. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1964_8_36_5_609_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — A proposito delle trasformazioni topologiche del piano reale euclideo su se stesso. Nota di Adelina Santolini, presentata (*) dal Corrisp. G. Scorza Dragoni.

In questa Nota (1) mi propongo di dimostrare un teorema sugli automeomorfismi del piano reale euclideo (2). Precisamente intendo dimostrare che:

Se la trasformazione topologica t del piano reale euclideo su se stesso ammette almeno un punto unito U e se una delle potenze di t ammette come libera $^{(3)}$ una curva semplice chiusa che aggira U, quest'ultima circostanza si presenta anche per t.

Il teorema e la sua dimostrazione si trasportano subito agli automeomorfismi dei sottoinsiemi semplicemente connessi del piano. Qualche novità di enunciato e di deduzione si può forse presentare nel caso di insiemi pluriconnessi. Ma sulla questione non intendo insistere, almeno per ora.

I. Consideriamo dunque la trasformazione topologica t del piano reale euclideo su se stesso. La sua potenza n-esima t^n ammetta come libera una curva semplice chiusa che aggiri il punto unito U. La stessa circostanza si presenta allora anche per t^{-n} . Non è dunque restrittivo supporre che il numero intero n (non nullo) sia positivo (e maggiore di I).

Sia j una curva semplice chiusa che aggiri U e che sia libera nella t^n . Indichiamo con

$$j_r$$
 $(r = 0, 1, \dots, n)$

la trasformata di j nella t^r , di modo che $j_0 = j$; e con

$$J_r \qquad (r = 0, 1, \dots, n)$$

la regione delimitata da $j_r^{(4)}$.

Poiché gli insiemi J_o e J_n contengono entrambi nell'interno il punto U, la $j_o \cap j_n = \emptyset$ implica la J_o \subset J_n \cdots j_n ovvero la J_n \subset J_o \cdots j_o. Non è restrittivo supporre

$$J_{\circ} \subset J_{n} - j_{n},$$

perché nel caso contrario basterebbe scambiare gli uffici di t e t^{-1} e quelli di j_0 e j_n .

- (*) Nella seduta del 9 maggio 1964.
- (1) Eseguita nell'ambito dell'attività dei Gruppi Matematici del Consiglio Nazionale delle Ricerche.
- (2) Il piano reale euclideo sarà dunque l'ambiente a cui riferiremo, nel seguito, ogni considerazione.
- (3) Una curva libera in una trasformazione è una curva priva di punti in comune con la sua immagine nella trasformazione.
- (4) Nel piano la regione delimitata da una curva semplice chiusa è l'insieme costituito dai punti della curva e da quelli che la curva separa dall'infinito.

Poiché il punto U è interno anche a J_1 , J_2 , \cdots , J_{n-1} , l'insieme dei punti del piano che si possono unire ad U mediante curve semplici aperte prive di punti in comune con $j_0 \cup j_1 \cup \cdots \cup j_{n-1}$ è delimitato da una curva semplice chiusa, γ_0 ⁽⁵⁾. La regione Γ_0 delimitata da γ_0 contiene nell'interno il punto U.

La curva γ_0 è contenuta ovviamente nell'unione di j_0, j_1, \dots, j_{n-1} :

(2)
$$\gamma_0 \subseteq j_0 \cup j_1 \cup \cdots \cup j_{n-1};$$

l'insieme Γ_o è ovviamente contenuto nell'intersezione di J_o , $J_{\scriptscriptstyle \rm I}$, \cdots , J_{n-1} :

$$\Gamma_{o} \subseteq J_{o} \cap J_{1} \cap \cdots \cap J_{n-1}.$$

Dalla (1) e dalla (3) segue immediatamente

$$(4) \gamma_{o} \cap j_{n} = \emptyset;$$

e detta $\gamma_{\rm r}$ l'immagine di $\gamma_{\rm o}$ nella t, dalla (2) segue

$$(5) \gamma_1 \subseteq j_1 \cup j_2 \cup \cdots \cup j_n.$$

La regione $\Gamma_{\rm r}$ delimitata da $\gamma_{\rm r}$ è l'immagine, nella t, di $\Gamma_{\rm c}$; perciò contiene anch'essa, nell'interno, il punto unito U.

Se γ_o e γ_r non hanno punti in comune il teorema è dimostrato. Supponiamo dunque che l'intersezione di γ_o e γ_r non sia vuota e dimostriamo che γ_o e γ_r non si tagliano mai.

Ragionando per assurdo supponiamo che γ_o e γ_r si taglino. Allora Γ_o contiene nel suo interno punti esterni a Γ_r . Se P è uno di questi punti, ogni curva semplice aperta che unisca P ad U incontra γ_r , cioè $j_r \cup \cdots \cup j_n$. D'altra parte P, essendo interno a Γ_o , può essere unito ad U mediante una curva semplice aperta, c, interna a Γ_o e dunque priva di punti in comune con $j_o \cup j_r \cup \cdots \cup j_{n-r}$; dalla (1) e dalla (3) segue inoltre $c \cap j_n = \emptyset$. E tutto questo è assurdo.

Poiché Γ_o e Γ_r contengono entrambe nell'interno il punto U e poiché γ_o e γ_r non si tagliano mai, o risulta $\Gamma_r \supseteq \Gamma_o$ ovvero $\Gamma_r \subseteq \Gamma_o$.

Supponiamo, se possibile, che sia $\Gamma_{\rm r} \subseteq \Gamma_{\rm o}$.

Consideriamo, accanto a γ_r , la trasformata di γ_o nella t^r $(r=2,\cdots,n)$, che indicheremo con

$$\gamma_r$$
 $(r=2,\cdots,n),$

mentre indicheremo con

$$\Gamma_r$$
 $(r=2,\cdots,n)$

la regione delimitata da γ_r , immagine di Γ_o nella t^r . Allora risulta, in virtù dell'ipotesi, $\Gamma_r \subseteq \Gamma_{r-1}$ $(r=1,2,\dots,n)$ e quindi anche $\Gamma_r \subseteq \Gamma_o$ $(r=1,2,\dots,n)$. Di qui, dalla (1) e dalla (3) segue che γ_1 , γ_2 , \dots , γ_n non hanno punti in comune

⁽⁵⁾ Si veda, per esempio, G. SCORZA DRAGONI, Qualche teorema sulle curve di Jordan [« Rendiconti dell'Accademia Nazionale dei Lincei», serie 6a, vol. XXIII (1936), pp. 181–186], n° 4.

con j_n ; perciò γ_1 non ha punti in comune con j_1 , j_2 , ..., j_n , circostanza contraddetta dalla (5). Indi risulta $\Gamma_1 \supseteq \Gamma_0$, anzi

(6)
$$\Gamma_{r} \supset \Gamma_{o}$$
,

poiché non può presentarsi la $\Gamma_{\rm r}=\Gamma_{\rm o}$, avendo escluso la $\Gamma_{\rm r}\subseteq\Gamma_{\rm o}$.

2. Consideriamo ora gli insiemi, chiusi e limitati, \mathcal{E}_1 , \mathcal{E}_2 , \cdots , \mathcal{E}_n definiti dalle

$$\mathcal{E}_{1} = \gamma_{0} \cap \gamma_{1},$$

$$\mathcal{E}_{2} = \gamma_{0} \cap \gamma_{1} \cap \gamma_{2},$$

$$\dots$$

$$\mathcal{E}_{n-1} = \gamma_{0} \cap \gamma_{1} \cap \dots \cap \gamma_{n-1},$$

$$\mathcal{E}_{n} = \gamma_{0} \cap \gamma_{1} \cap \dots \cap \gamma_{n},$$

di modo che $\mathcal{E}_1 \supseteq \mathcal{E}_2 \supseteq \cdots \supseteq \mathcal{E}_n$.

Indichiamo con $t(\mathcal{E}_r)$ $(r=1,\cdots,n-1)$ l'immagine di \mathcal{E}_r nella t. Ricordando la (2), la (4) e la (5) avremo

Indichiamo con m (I $< m \le n$) l'intero per cui risulta

$$\mathcal{E}_{\tau} \neq \emptyset, \dots, \mathcal{E}_{m-\tau} \neq \emptyset,$$

ed inoltre

$$\mathcal{E}_m = \emptyset.$$

Una prima immediata conseguenza della (7) è la

(8)
$$\mathcal{E}_{r} \subset \gamma_{o}$$
,

poiché da $\mathcal{E}_{r} = \gamma_{o}$ seguirebbe $\gamma_{o} = \gamma_{r} = \cdots = \gamma_{m}$, e dunque $\mathcal{E}_{m} = \gamma_{m}$.

Vogliamo ora dimostrare, valendoci solamente della (6), della (7), della (8) e del fatto che γ_0 aggira il punto unito U, che possiamo modificare la curva γ_0 (e di conseguenza la curva γ_1) in modo tale che la curva modificata γ'_0 aggiri il punto U, non abbia punti in comune con la sua immagine γ'_1 nella t, tranne quelli contenuti in $\mathscr{E}_1 - \mathscr{E}_{m-1}$, e verifichi, insieme con γ'_1 , condizioni analoghe alle (6), (7), (8), ma con un valore, per m, diminuito almeno di una unità.

Per questa dimostrazione non è restrittivo supporre che γ_o sia una circonferenza, poiché esistono trasformazioni topologiche del piano su se stesso che trasformano γ_o in una circonferenza ⁽⁶⁾.

Indichiamo con C il centro e con R il raggio di γ_o , con d la distanza, certamente positiva, di $t\left(\mathcal{E}_{u-1}\right)$ da Γ_o e con d^* la distanza, anch'essa positiva, del punto unito U da γ_o .

Sia ε un numero reale positivo minore di d e δ un numero reale positivo conveniente. Le condizioni da imporre a δ saranno indicate nel corso del ragionamento; intanto imponiamogli quella di essere minore di d^* . Consideriamo il δ -intorno chiuso di \mathcal{E}_{m-1} sulla circonferenza $\gamma_0^{(7)}$: esso è costituito da un numero finito di componenti connesse, \mathcal{C}_1 , \mathcal{C}_2 , \cdots , \mathcal{C}_{λ} , la cui unione non esaurisce completamente γ_0 , purché si sia assunto δ abbastanza piccolo. Sicché \mathcal{C}_1 , \mathcal{C}_2 , \cdots , \mathcal{C}_{λ} sono archi, a due a due disgiunti se $\lambda > 1$.

La componente \mathcal{C}_i $(i=1,2,\cdots,\lambda)$ abbia per estremi i punti A_i e B_i . Dette A_i' e B_i' le intersezioni dei segmenti A_i C e B_i C con la circonferenza γ_o^* concentrica con γ_o e di raggio R — δ , in γ_o sostituiamo \mathcal{C}_i con la curva semplice aperta costituita dal segmento A_i A_i' , dall'arco \mathcal{C}_i^* di γ_o^* di estremi A_i' e B_i' contenuto nel settore circolare delimitato da A_i C \bigcup B_i C \bigcup \mathcal{C}_i , dal segmento B_i' B_i . Fatto questo per ogni valore di i, otteniamo una curva semplice chiusa γ_o' che è contenuta in Γ_o , che coincide con γ_o nei punti esterni al δ -intorno chiuso di \mathcal{E}_{m-1} e che non ha punti in comune con \mathcal{C}_i , tranne gli estremi A_i e B_i $(i=1,2,\cdots,\lambda)$. Di qui e dalla (δ) segue immediatamente la

$$(9) \gamma_{\circ} \cap \gamma_{\iota} \subseteq \mathcal{E}_{\iota} - \mathcal{E}_{m-\iota}.$$

Inoltre, poiché ogni punto di $A_iA_i' \cup \mathcal{C}_i^* \cup B_i'B_i$ $(i=1,2,\cdots,\lambda)$ ha distanza minore di $2\cdot\delta$ da qualche punto di \mathcal{E}_{m-1} , γ_o' differisce da γ_o solamente in punti interni al $2\cdot\delta$ -intorno piano chiuso di $\mathcal{E}_{m-1}^{(8)}$.

La regione Γ'_{\circ} delimitata da γ'_{\circ} contiene nell'interno il punto U, perché $\delta < d^*$, e soddisfa alla

(10)
$$\Gamma'_{\circ} \subset \Gamma_{\circ}$$
,

perché γ_o' è contenuta in Γ_o e non coincide con γ_o .

Poiché γ_o e γ'_o differiscono solamente in punti interni al 2 δ -intorno piano chiuso di \mathcal{E}_{m-1} , basta impiccolire eventualmente δ , in corrispondenza al numero ε già fissato, per essere sicuri che γ_i e γ'_i differiscono solamente in punti interni all' ε -intorno piano chiuso di $t(\mathcal{E}_{m-1})^{(9)}$; tale intorno non ha punti

⁽⁶⁾ Cfr. B. V. KERÉKJÁRTÓ, Topologie (Springer, Berlino 1923) cap. 2, §2.

⁽⁷⁾ È l'involucro chiuso dell'insieme dei punti di γ_o aventi distanza minore di δ da qualche punto di δ_{m-1} .

⁽⁸⁾ Il $2\cdot\delta$ —intorno piano chiuso di un insieme E non vuoto è l'involucro chiuso dell'insieme costituito dai punti del piano che hanno distanza minore di $2\cdot\delta$ da qualche punto di E.

⁽⁹⁾ Si rammenti che t è continua in tutto il piano e che \mathcal{S}_{m-1} è limitato.

in comune con Γ_o , poiché $t(\mathcal{E}_{m-1})$ è esterno a Γ_o e poiché $\varepsilon < d$; dunque nemmeno con Γ'_o , per la (10); indi $\gamma'_o \cap \gamma_r = \gamma'_o \cap \gamma'_r$. E la (9) equivale alla

$$(II) \qquad \qquad \gamma'_{\circ} \cap \gamma'_{\mathsf{I}} \subseteq \mathscr{E}_{\mathsf{I}} - \mathscr{E}_{m-\mathsf{I}},$$

che era una delle condizioni imposte a γ'_{o} .

Se si tiene conto anche della circostanza che γ_r non contiene punti interni a Γ_o , nelle considerazioni, precedenti è inoltre implicito che γ_r' non contiene punti interni a Γ_o . D'altra parte il punto unito U, essendo interno a Γ_o' , è interno alla regione Γ_r' delimitata da γ_r' ; ma il punto U è interno anche a Γ_o e dunque $\Gamma_o \subseteq \Gamma_r'$. Di qui e dalla (10) segue la

$$\Gamma_{\circ}' \subset \Gamma_{\scriptscriptstyle \rm I}'.$$

Accanto a γ'_r consideriamo l'immagine di γ'_o nella t^r $(r=2,\cdots,m-1)$, che indicheremo con γ'_r , e costruiamo gli insiemi

$$\mathcal{E}'_{1} = \gamma'_{0} \cap \gamma'_{1},$$

$$\mathcal{E}'_{2} = \gamma'_{0} \cap \gamma'_{1} \cap \gamma'_{2},$$

$$\dots$$

$$\mathcal{E}'_{m-1} = \gamma'_{0} \cap \gamma'_{1} \cap \dots \cap \gamma'_{m-1}.$$

Se $\mathscr{E}_{1}' = \emptyset$ il teorema è dimostrato. Supponiamo dunque $\mathscr{E}_{1}' \neq \emptyset$. La (II) implica la $\gamma'_{0} \cap \gamma'_{1} \subset \gamma_{0} \cap \gamma_{1}$; da cui la $\gamma'_{r-1} \cap \gamma'_{r} \subset \gamma_{r-1} \cap \gamma_{r}$ $(r = 2, \dots, m-1)$; epperò accanto alla $\gamma'_{0} \cap \gamma'_{1} \subset \gamma_{0} \cap \gamma_{1}$ si trova

$$\begin{split} \gamma_{o}' \cap \gamma_{1}' \cap \gamma_{2}' &= (\gamma_{o}' \cap \gamma_{1}') \cap (\gamma_{1}' \cap \gamma_{2}') \subseteq (\gamma_{o} \cap \gamma_{1}) \cap (\gamma_{1} \cap \gamma_{2}) = \\ &= \gamma_{o} \cap \gamma_{1} \cap \gamma_{2}; \\ \gamma_{o}' \cap \gamma_{1}' \cap \gamma_{2}' \cap \gamma_{3}' &= (\gamma_{o}' \cap \gamma_{1}') \cap (\gamma_{1}' \cap \gamma_{2}') \cap (\gamma_{2}' \cap \gamma_{3}') \subseteq \\ &\subseteq (\gamma_{o} \cap \gamma_{1}) \cap (\gamma_{1} \cap \gamma_{2}) \cap (\gamma_{2} \cap \gamma_{3}) = \gamma_{o} \cap \gamma_{1} \cap \gamma_{2} \cap \gamma_{3}; \end{split}$$

e così via fino alla

$$\gamma'_{\circ} \cap \gamma'_{1} \cap \cdots \cap \gamma'_{m-1} \subseteq \gamma_{\circ} \cap \gamma_{1} \cap \cdots \cap \gamma_{m-1}$$

cioè alla

$$\mathcal{E}'_{m-1} \subseteq \mathcal{E}_{m-1}$$
;

ma la (11) implica altresì la $\gamma'_{\circ} \cap \gamma'_{\circ} \cap \mathcal{E}_{m-1} = \emptyset$, indi risulta

$$\gamma'_{0} \cap \gamma'_{1} \cap \mathcal{E}'_{m-1} = \emptyset;$$

d'altra parte

$$\gamma'_{\circ} \cap \gamma'_{1} \cap \mathscr{E}'_{m-1} = \gamma'_{\circ} \cap \gamma'_{1} \cap (\gamma'_{\circ} \cap \gamma'_{1} \cap \cdots \cap \gamma'_{m-1}) = \gamma'_{\circ} \cap \gamma'_{1} \cap \cdots \cap \gamma'_{m-1} = \mathscr{E}'_{m-1},$$
e dunque si conclude con la

$$\mathcal{E}'_{m-1} = \emptyset.$$

41. — RENDICONTI 1964, Vol. XXXVI, fasc. 5.

Dalla (13) segue immediatamente

$$\mathcal{E}_{\mathtt{i}}' \subset \gamma_{\mathtt{o}}',$$

poiché $\mathcal{E}_{\mathbf{i}}' = \gamma_{\mathbf{o}}'$ implicherebbe $\gamma_{\mathbf{o}}' = \gamma_{\mathbf{i}}' = \cdots = \gamma_{m-1}'$ e $\gamma_{m-1}' = \mathcal{E}_{m-1}'$.

Sicché, in conclusione, le curve γ_o' e γ_r' aggirano il punto unito U al pari di γ_o e γ_r e, verificando la (12), la (13) e la (14), si trovano nelle stesse condizioni espresse, per γ_o e γ_r , dalla (6), dalla (7) e dalla (8), ma con un valore, per m, diminuito almeno di una unità. E basta ripetere il ragionamento al massimo m-2 volte, per concludere nel modo enunciato in principio.