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Matematica. — Notes on rings of ordinary differential operators.
Nota di Hisast Morikawa, presentata® dal Socio straniero
O. ZARISKI.

1. Let M be a closed Riemann surface and Kg; be the field of meromor-
phic functions on M. Let & be the direct set consisting of all the finite point
sets on M, where the order in & is given by the set theoretical inclusion.
If S'DS (S,5 €8), there exists the canonical homomorphism of the fun-
damental group =, (M —S") of M —S'. We denote by Gy the inverse
limit lim 7, (M — S) with respect to the canonical homomorphisms. Let Tqy

—

s
be the ring of differential operators with coefficients in Ky, i.e. the ring consi-

n

sting of all the linear operators ¥ @ D! with a; in Ky, where is a fixed non-

trivial derivation of Ky over tlhg field € of complex numbers. We fix
once and for all in the following a non-trivial derivation D; other deriva-
tions are expressed by a D with a in Kg. We denote by V, the finite
vector space of all the solutions of the differential equation /(D) (y) = o

and by Qg the union U V. Then Qp is regarded as a ring by the
€ Dy

usual sum and product and the group Gy operates on Qqy in the natural way.
Thus we can consider Qg as a € [Gyy]-module or a Ky [Gyp]-module.

For a non-zero left ideal a of ©g we denote by V, the vector space N
f€a
V7 and call the vector space of solutions of a. Let Gy be the Galois group

in Galois theory. Choosing a @-base of V,, we have a representation I', of
Gy; we call the matric group I', the matric Galois group of the left ideal a.
We denote by comm (I';) the commutor algebra of I'y in the full matric
ring of *degfee dim V. ‘

2. We shall start from the notion ¢ proper ring ” due to Ore:

Definition 1. — We mean by the proper ring of a left ideal a in a ring A
the subring B, = {b€A|aben}.

We shall define primary left ideals in the most natural way as follows:

Definition 2. — If the residue ring Byfa is a primary ring, the left ideal
is called a primary left ideal.

Let a be a non-zero left ideal of Tyy. Then, since ab€a for every 4 in B,
and a (V) =0, the residue ring B,/a operates on V, canonically and faithfully.

THEOREM 1. — Let a be a non-zero left ideal of Tan. Then the residue
ring Bo|u is canonically isomorphic to the commutor algebra comm (To) of the
matric Galois group 1"y of a.

(*) Nella seduta del 14 marzo 1964.
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Proof. — Let (§,,---,E,) be a C-base of V, and () be any elements
in comm (I')). Then, since the Wronskian W (&, ,---, ) of (&, --, &)

is not zero, we can put

I R gl E; o g};’_‘) Hyp 00 Upg E.ar g'r e EE:’_I)

Any an.n En alz e ain—l) Ky * v Oyy Em En e gin—l)
and get a matrix (@;) with coefficients in Koy, where £ means D/ (§). Put

f@O)= Y @, D.. Then we have f(D)(E)= Doak G=1,2, --,n),
/=1 I=o0
because

'f (D? () BE o = @

f(D> (£n> \E:m g;z cee 2.51”—1)‘ Lz'ﬂl
- AL @ R EE BTV

£E - &7 \ay - a, Xy wo Uy g6 - g

This proves Theorem 1.

As consequences from Theorem 1 we have the following algebraic cri-
terion of the indecomposability and infiniteness of matric Galois groups.

THEOREM 2. — Let a be a non-zero left ideal in Day. Then we have the
diagram:

D a is primary left ideal. == (I1) comm (T',) is a primary ring.

(ITI) Vg is an indecomposable I''-module.

Proof. — By virtue of Theorem 1 (I) &== (II) is already proved.

(I) = (III) is obvious, because of V, is a decomposable I';-module the
commutor algebra comm (T;) of Iy has a zero divisor which is not nil-
potent. We shall prove (IIT) = (II). Assume for a moment comm (I')
is not primary. Then there exist non-zero elements x and y in comm (T7,)
such that xy =0 and y is not nilpotent. Put V, = U kernel (y”) and V,= U

image (¥*). The by virtue of Fitting’s lemma V, is a direct sum V, ® V,.
Since x (V,) = o, if we assume V, = {o} we have x(V,) = 0. Therefore
V. == {o}. This contradicts with the indecomposability of I'--module V,.
THEOREM 3. — Let a be a primary left ideal of Tan. Then if a is not a
maximal left ideal, the matric Galois group Ty of a is an infinite group.
Proof. — Assume for a moment that the matric Galois group I of a
not maximal primary left ideal a is a finite group. Since every represen-
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tation of a finite group in @ is semi-simple, the commutor algebra comm
(T'y) of I'y also semi-simple. Since a is a primary left ideal, by virtue of
Theorem 2 the commutor algebra must be isomorphic to C. This shows I,
is an irreducible representation, i.e. V, has no proper submodule. Hence

a must be a maximal left ideal. This is a contradiction with the assump-
tion on a.



