ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

HISASI MORIKAWA

Notes on rings of ordinary differential operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **36** (1964), n.3, p. 319–321. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1964_8_36_3_319_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



Matematica. — Notes on rings of ordinary differential operators. Nota di Hisasi Morikawa, presentata (*) dal Socio straniero O. Zariski.

I. Let \mathfrak{M} be a closed Riemann surface and $K_{\mathfrak{M}}$ be the field of meromorphic functions on \mathfrak{M} . Let \mathfrak{S} be the direct set consisting of all the finite point sets on \mathfrak{M} , where the order in \mathfrak{S} is given by the set theoretical inclusion. If $S' \supset S$ $(S, S' \in \mathfrak{S})$, there exists the canonical homomorphism of the fundamental group $\pi_{\mathfrak{I}}$ $(\mathfrak{M} - S')$ of $\mathfrak{M} - S'$. We denote by $G_{\mathfrak{M}}$ the inverse limit $\lim_{\mathfrak{I}} \pi_{\mathfrak{I}}$ $(\mathfrak{M} - S)$ with respect to the canonical homomorphisms. Let $\mathfrak{D}_{\mathfrak{M}}$ be the ring of differential operators with coefficients in $K_{\mathfrak{M}}$, i.e. the ring consisting of all the linear operators $\sum_{l=0}^n a_l D^l$ with a_l in $K_{\mathfrak{M}}$, where is a fixed nontrivial derivation of $K_{\mathfrak{M}}$ over the field \mathfrak{S} of complex numbers. We fix once and for all in the following a non-trivial derivation D; other derivations are expressed by a D with a in $K_{\mathfrak{M}}$. We denote by V_f the finite vector space of all the solutions of the differential equation f(D) $(\mathfrak{Y}) = 0$ and by $\Omega_{\mathfrak{M}}$ the union $\bigcup_{f \in \mathfrak{D}_{\mathfrak{M}}} V_f$. Then $\Omega_{\mathfrak{M}}$ is regarded as a ring by the $f \in \mathfrak{D}_{\mathfrak{M}}$ and product and the group $G_{\mathfrak{M}}$ operates on $\Omega_{\mathfrak{M}}$ in the natural way. Thus we can consider $\Omega_{\mathfrak{M}}$ as a \mathfrak{S} $[G_{\mathfrak{M}}]$ -module or a $K_{\mathfrak{M}}$ $[G_{\mathfrak{M}}]$ -module.

For a non-zero left ideal $\mathfrak a$ of $\mathfrak D_{\mathfrak M}$ we denote by $V_{\mathfrak a}$ the vector space $\bigcap_{f\in\mathfrak a}V_f$ and call the vector space of solutions of $\mathfrak a$. Let $G_{(\mathfrak M)}$ be the Galois group in Galois theory. Choosing a $\mathfrak C$ -base of $V_{\mathfrak a}$, we have a representation $\Gamma_{\mathfrak a}$ of $G_{(\mathfrak a)}$; we call the matric group $\Gamma_{\mathfrak a}$ the matric Galois group of the left ideal $\mathfrak a$. We denote by comm $(\Gamma_{\mathfrak a})$ the commutor algebra of $\Gamma_{\mathfrak a}$ in the full matric ring of degree dim $V_{\mathfrak a}$.

2. We shall start from the notion "proper ring" due to Ore: Definition 1. – We mean by the proper ring of a left ideal $\mathfrak a$ in a ring A the subring $B_{\mathfrak a} = \{b \in A \mid \mathfrak a \ b \in \mathfrak a\}$.

We shall define primary left ideals in the most natural way as follows: $Definition\ 2$. – If the residue ring $B_{\mathfrak{a}}/\mathfrak{a}$ is a primary ring, the left ideal is called a primary left ideal.

Let \mathfrak{a} be a non-zero left ideal of $\mathfrak{D}_{\mathfrak{M}}$. Then, since $\mathfrak{a} b \in \mathfrak{a}$ for every b in $B_{\mathfrak{a}}$ and $\mathfrak{a}(V_{\mathfrak{a}}) = 0$, the residue ring $B_{\mathfrak{a}}/\mathfrak{a}$ operates on $V_{\mathfrak{a}}$ canonically and faithfully.

Theorem 1. – Let $\mathfrak a$ be a non-zero left ideal of $\mathfrak D_{\mathfrak M}$. Then the residue ring $B_{\mathfrak a}/\mathfrak a$ is canonically isomorphic to the commutor algebra comm $(\Gamma_{\mathfrak a})$ of the matric Galois group $\Gamma_{\mathfrak a}$ of $\mathfrak a$.

^(*) Nella seduta del 14 marzo 1964.

Proof. – Let (ξ_1, \dots, ξ_n) be a C-base of $V_{\mathfrak{a}}$ and (α_{ij}) be any elements in comm $(\Gamma_{\mathfrak{a}})$. Then, since the Wronskian $W(\xi_1, \dots, \xi_n)$ of (ξ_1, \dots, ξ_n) is not zero, we can put

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} \xi_1 & \xi_1' & \cdots & \xi_n^{(n-1)} \\ \vdots & & \ddots & & \vdots \\ \xi_n & \xi_n' & \cdots & \xi_n^{(n-1)} \end{pmatrix} \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & & \ddots & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} \xi_1 & \xi_1' & \cdots & \xi_n^{(n-1)} \\ \vdots & & \ddots & & \vdots \\ \vdots & \ddots & & \ddots & \vdots \\ \xi_n & \xi_n & \cdots & \xi_n^{(n-1)} \end{pmatrix}$$

and get a matrix (a_{ij}) with coefficients in $K_{\mathfrak{M}}$, where $\xi^{(l)}$ means $D^{l}(\xi)$. Put $f(D) = \sum_{l=1}^{n} a_{l} D^{l}$. Then we have $f(D)(\xi_{i}) = \sum_{l=0}^{n} \alpha_{il} \xi_{l} \ (i = 1, 2, \dots, n)$, because

$$\begin{pmatrix} f(\mathbf{D}) & (\boldsymbol{\xi}_{1}) \\ \vdots \\ f(\mathbf{D}) & (\boldsymbol{\xi}_{n}) \end{pmatrix} = \begin{pmatrix} \boldsymbol{\xi}_{1} & \boldsymbol{\xi}'_{1} & \dots & \boldsymbol{\xi}_{n}^{(n-1)} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\xi}_{n} & \boldsymbol{\xi}'_{n} & \dots & \boldsymbol{\xi}_{n}^{(n-1)} \end{pmatrix} \begin{pmatrix} \boldsymbol{a}_{11} \\ \vdots \\ \vdots \\ \boldsymbol{a}_{n} \end{pmatrix},$$

$$\begin{pmatrix} \xi_{1} & \xi_{1}' & \dots & \xi_{1}^{(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \xi_{n} & \xi_{n}' & \dots & \xi_{n}^{(n-1)} \end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} \xi_{1} & \xi_{1}' & \dots & \xi_{1}^{(n-1)} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \xi_{n} & \xi_{n}' & \dots & \xi_{n}^{(n-1)} \end{pmatrix}$$

This proves Theorem 1.

As consequences from Theorem 1 we have the following algebraic criterion of the indecomposability and infiniteness of matric Galois groups.

Theorem 2. – Let $\mathfrak a$ be a non-zero left ideal in $\mathfrak D_{\mathfrak M}$. Then we have the diagram:

(I) ${\mathfrak a}$ is primary left ideal. $\Leftarrow \Longrightarrow$ (II) comm $(\Gamma_{\mathfrak a})$ is a primary ring. $\emptyset \quad \emptyset$ (III) $V_{\mathfrak a}$ is an indecomposable $\Gamma_{\mathfrak a}\text{--module}.$

Proof. – By virtue of Theorem I (I) \iff (II) is already proved. (I) \Rightarrow (III) is obvious, because of $V_{\mathfrak{a}}$ is a decomposable $\Gamma_{\mathfrak{a}}$ -module the commutor algebra comm ($\Gamma_{\mathfrak{a}}$) of $\Gamma_{\mathfrak{a}}$ has a zero divisor which is not nilpotent. We shall prove (III) \Rightarrow (II). Assume for a moment comm ($\Gamma_{\mathfrak{a}}$) is not primary. Then there exist non-zero elements x and y in comm ($\Gamma_{\mathfrak{a}}$) such that xy = 0 and y is not nilpotent. Put $V_{\mathfrak{r}} = \bigcup$ kernel (y^n) and $V_{\mathfrak{q}} = \bigcup$ image (y^n). The by virtue of Fitting's lemma $V_{\mathfrak{a}}$ is a direct sum $V_{\mathfrak{r}} \otimes V_{\mathfrak{q}}$. Since $x(V_{\mathfrak{q}}) = 0$, if we assume $V_{\mathfrak{r}} = \{0\}$ we have $x(V_{\mathfrak{q}}) = 0$. Therefore $V_{\mathfrak{r}} = \{0\}$. This contradicts with the indecomposability of $\Gamma_{\mathfrak{q}}$ -module $V_{\mathfrak{q}}$.

Theorem 3. – Let \mathfrak{a} be a primary left ideal of $\mathfrak{T}_{\mathfrak{M}}$. Then if \mathfrak{a} is not a maximal left ideal, the matric Galois group $\Gamma_{\mathfrak{a}}$ of \mathfrak{a} is an infinite group.

Proof. – Assume for a moment that the matric Galois group Γ_{α} of α not maximal primary left ideal α is a finite group. Since every represen-

tation of a finite group in $\mathfrak C$ is semi-simple, the commutor algebra comm $(\Gamma_{\mathfrak a})$ of $\Gamma_{\mathfrak a}$ also semi-simple. Since $\mathfrak a$ is a primary left ideal, by virtue of Theorem 2 the commutor algebra must be isomorphic to C. This shows $\Gamma_{\mathfrak a}$ is an irreducible representation, i.e. $V_{\mathfrak a}$ has no proper submodule. Hence a must be a maximal left ideal. This is a contradiction with the assumption on $\mathfrak a$.